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Abstract

A scheme is presented for naming nodes and routing messages in a planar

distributed network. For an n-node network, the scheme uses O((l/t:) logn)-bit

names and O(n1+1!:) items of routing information, where t: is any constant, 0 < t: <

1/3, and routes between any pair of nodes along a path which is, in worst case, at

most 7 times longer than a shortest path. A simpler scheme that uses O(logn)-bit

names and O(n4
/ 3 ) items to realize a worst-case bound of 3 on the routings is also

given.

Keywords and phrases. Distributed network, graph theory, planar graph, rout

ing, separator, shortest paths.



1. Introd uction

One of the primary functions in a distributed network is the routing of mes

sages between pairs of nodes. Assuming that a cost, or distance, is associated with

each edge, it is desirable to route along shortest paths. This can be accomplished

easily by maintaining a complete routing table at each of the n nodes in the network.

However, such tables are expensive for large networks, storing a total of 0(n 2) items

of routing information, where each item is a node name. Thus, recent research has

focused on identifying classes of network topologies for which the shortest paths

information at each node can be stored succinctly, if suitable names are assigned to

the nodes. Optimal routing schemes using a total of0(n) items of routing informa

tion have been given for networks such as trees, unit-cost rings [SK,vLT1], complete

networks, unit-cost grids [vLT2], and networks at the lower end of a hierarchy iden

tified in [FJ1). Unfortunately, the approach in the above research does not yield a

space-efficient scheme for even such a simple class as the series-parallel networks.

However, by shifting our focus to consider schemes that route along near-shortest

paths, we have been able to generate space-efficient strategies for much broader

classes of network topologies.

In this paper we present a near-optimal routing scheme for general planar

networks. For any constant f, 0 < f < 1/3, our scheme can be set up to use

O((l/f) logn)-bit names and O(n 1+f
) items of routing information, and route be

tween any source-destination pair of nodes along a path that is, in worst case, at

most 7 times longer than a shortest path. Our approach makes use of separator

strategies [LT,MJ to hierarchically decompose the network and generate names for

the nodes. However, using only the Lipton-Tarjan [LTJ separator algorithm the
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best we are able to achieve is a scheme that uses O(n4/ 3 ) space, although with a

better bound of 3 on the routings. To reduce the storage to O(n1+o!:), we employ a

combination of very sparse routing tables and interval routing [FJl] to route in suc

cession to a number of intermediate destinations carefully placed at higher levels of

the decomposition. We show how Miller's [M] algorithm can be applied to generate

the structured separators necessary for encoding the interval routing information.

In related work [FJ2, FJ3], we present a scheme that uses O(cnlogn) items and

handles any network that can be recursively decomposed by separators of size at

most a constant c. Examples of such networks are the series-parallel networks, for

which c = 2, and the k-outerplanar networks, for k > 1 a constant, for which c = 2k.

Using only the names generated from a separator-based hierarchical decomposition

of the network, our scheme realizes a worst-case bound of 3 on the routings. We show

how to generate improved routings by succinctly encoding additional information

in the node names. By augmenting the names with just O(clogclogn) additional

bits, we are able to reduce the bound to 2 for c :5: 3, and to a value ranging from 2

to 3 as c increases.

The decomposition technique used in [FJ2, F J3] for constant-size separator

networks does not yield a space-efficient solution for planar networks, since the latter

have separators of size O(y'n). Instead, we take advantage of a different approach

for planar graph decomposition, as presented in [FJ. This result is reviewed briefly

in the next section. Sections 3 through 5 describe the O(n4/ 3 )_space scheme, called

Scheme I, while sections 6 through 8 discuss the O(n 1+o!:)_space scheme, referred to

as Scheme II.

A preliminary version of this paper appeared as part of [FJ3J.
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2. Division of a planar graph

We model our network with an undirected planar graph. A planar graph is a

graph that can be embedded in the plane so that edges do not cross [HJ. A division

of a planar graph is a grouping of its nodes into subsets called regions. A region

contains two types of nodes, namely interior nodes and boundary nodes. An interior

node is contained in exactly one region and is adjacent only to nodes contained in

the region, whereas a boundary node is contained in two or more regions.

For any parameter f(n) < n, an f(n)-division of a planar graph is a division

into EJ(n/J(n)) regions with a total of O(n/Vf(n)) boundary nodes, where each

region contains OU(n)) nodes and 0(";f(n)) boundary nodes. An f(n)-division

algorithm, based on the planar separator of [LTl, is given in [FJ.

3. Hierarchical decomposition and naming in Scheme I

The node names are generated from a multi-level division of the network G into

regions. The level 0 region R 1 consists of the nodes of G, with all nodes interior.

In general, the name of a region is of the form R"f' where 'Y is a sequence of positive

integers. Let f(n) < n be a parameter to be specified later. For i > 1, let R"f be

a level i-I region with n 1 nodes. If R.y has a nonzero number of interior nodes,

then the f(n')-division algorithm is applied to it to generate the level i regions

R"fl' R"f2).'" R'jr, for some positive integer r > 1.

While performing the division of R"fl we treat the boundary nodes of R"f as

boundary nodes of the resulting level i regions also. From the arguments in [FJ it

can be shown that, for the choice of f(·) to be made, the division is still an fO

division. A node v that is interior to R"f and first becomes a boundary node during
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its division is a level i node. Any other level i node generated by the division of R..,

is a sibling of v. A boundary node u of a level j < 1· region to which v is interior is

an ancestor of v for level j. We call v a descendant of u. Two nodes are related if

one is an ancestor of the other or if they are siblings.

Each level 1· node resulting from the division of R"'( is assigned the name 'Y, with

a distinguisher appended. This naming has the property that for unrelated nodes v

and u, the length I of the longest common prefix of the distinguisher-free portions

of their names is the smallest integer for which the nodes are in different level I

regions. We call level I the separating level for v and u.

Additional information is encoded into the name of a level i node v, identifying

the closest ancestor of v for each level j < i. An integer, called a level j designator,

is associated with each boundary node of the level j regions that result from the

division of the level j -1 region to which v is interior. The level j designator of the

closest ancestor of v for level j is recorded in v's name, in the ph field following the

distinguisher.

The length of the names depends on the parameter 1(·). We show later that

for the choice of f(-) to be made, the names are O(log n) bits long.

4. Routing information in Scheme I

A routing table is maintained at v, giving for each related node u the name

w = next...nodev(u) of the next node on a shortest (v, u)-path in G. To route to u, v

sends the message to w over edge {v, w}. If wand u are unrelated, then additional

information is stored at v to facilitate the routing at w. This information consists

of the names a1 and a2 of a pair of related nodes on a shortest (v, ttl-path through

w, where a1 is an ancestor of wand a2 an ancestor of u. These names are made
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available to w by v in the message header, and the routing from w to u proceeds

through al and a2, in that order. Let R be the region such that wand u are both in

R, but are in different regions R' and R II resulting from the division of R. Then a 1

and a2 are respectively the first boundary nodes of R' and R II on a shortest (v,u)

path through w. Nodes al and a2 are respectively called the next milestone and

final milestone for u at v, denoted ncxt..milestonc",(u) and final..milestoneu(u).

Figure 1 illustrates schematically a two-level division of a planar graph. A

shortest (v, u)-path is shown in bold, where the neighbor w of v on this path and

node u are unrelated. Both wand u are in region R ll , but in different regions R U3

and R U1 resulting from the division of R u . Nodes al and a2 are the first boundary

nodes of R 1l3 and R u1 , respectively, on the shortest (v,u)-path.

The following information is stored at v to enable routing to unrelated nodes.

Let v be a level i node, and consider the division of the level i-I region to which v

is interior into level i regions. A table is stored at v, mapping the level i designator

of each boundary node of the level i regions to its name. Furthermore, the name of

the closest ancestor of v for each level i < i is stored at v.

The amount of routing information in the network depends on 1(·). As the

following theorem shows, the appropriate choice for f(n) is n 2/ 3 •

Theorem 1. For any n-node planar graph, Scheme I uses a total of O(n 4 / 3 ) items

of routing information.

Proof. We count the amount of routing information by levels. Since there

are O(n/V/(n)) level 1 nodes, the level 1 nodes together maintain a total of

O«n/v'f(n))') items of shortest paths information for siblings. As there are

8(n/ f(n)) level 1 regions, each containing O(f(n)) nodes and O(v' f(n)) boundary
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nodes, the level 1 nodes store a total of O(~f(n)n/fen)), i.e., O(nv' f(n))

items of shortest paths information for descendants. The size of the table of des

ignators of a level 1 node O(n/v'f(n)), so that the space used by the designator

tables of all level 1 nodes is O((n/v'f(n))'j.

The descendants of the level 1 nodes store O(nv'fen)) items of shortest paths

information overall for the level 1 nodes, and O(J(n)n/ f(n)), I.e., O(n) items iden-

tifying nearest level 1 nodes.

Let Sen) be the total amount of information stored in an n-node network.

Then, for positive constants a, band c, we have Sen) :0; an'/f(n) + bnv'f(n) +

c(n/f(n))S(J(n)), where the last term accounts for the information stored at lower

levels in the decomposition. We choose fen) = n 2/ 3 to make the opposing terms

an2
/ fen) and bnvfen) equal, to within a constant factor. Making an appropriate

choice for the basis, we have, for positive constants d and e,

Sen) :0; en4/', for n < (2c)9,

Sen) < dn4/' + cn'I'S(n'/3), for n ~ (2C)9.

Then we claim that Sen) ~ gn4
/
3

, where 9 = max {e,2d}. The claim can be

shown by induction on n. The claim clearly holds for the basis, which is n < (2c) 9.

For the induction step, n 2:: (2c)9, we require dn4 / 3 + cn1/ 3gn8/ 9 5 gn4/ 3, i.e.,

d + cgn- 1
/

9 :5 gl i.e., d + g/2 < g, which is true.

A few points are in order about our choice of constants. First, our choice of

the threshold for n as (2C)9 was arbitrary. A threshold of ((1 + 6)C)9 for any 6 > 0

will do. Correspondingly, 9 = max {e, (1+ 1/6)d}. The second remark concerns the

size of the constant e. We can bound e from above (quite generously) as follows.
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Certainly, O(n) is an upper bound on the number of items maintained per level by

any node. Since there are O(log log n) levels, the total space is at most hn 2 log logn

items, for some small constant h. Thus e 5: hn 2/ 3 loglogn < h(2c)6Iog log(2c)Q,

since n:': (2C)9. I

We next show that for the above choice of f(n) the node names are only

O(logn) bits long. With Scheme IT in mind, we prove the claim for f(n) = n1-f:,

where! is any constant, 0 < e < 1.

Theorem 2. Consider the naming of the nodes of an n-node planar graph from

a multi-level division, performed with respect to a parameter f(n) = n1-t:, where

! is any constant, 0 < E < 1. The node names are at most (3 + II!) logn +
0((1/<) loglogn) bits long.

Proof. At level 0 in the decomposition there is just one region of size n and no

bOWldary nodes. It is easy to show that the division of a level i-I region into

level i regions, i > 1, results in O(n P_t:)i-
1

t:) level i regions and O(n(1-t:)i- 1 (1+t:)/2)

bOWldary nodes of these level j regions. Furthermore, it can be established that

the highest level number L in the decomposition is at most 1 + IOg1/(1_t:) logn =

1 + loglogn/log(l/(l- E)).

For i > 1, the name of a level i node v consists of 2i fields, namely: i integers

which constitute the name of the level i-I region to which v is interior; an integer

distinguisheri and i-I integers, each a level j designator, 0 5: j < i-I. These

fields are separated by 2i - 1 delimiters. The delimiter and the bits 0 and 1 used

in the binary representation of the fields can be encoded using two bits each.
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The number of bits needed to encode the region name is at most

i-I

2(1 + 2::flogn(1-,ji-"l)
;=1
i-I

< 2(1 + 2::(1 + logn(1-,ji-',))
;=1

= 2(i + (1- (1 - ,)'-1) logn).

The number of bits needed for the distinguisher is at most

2flog n (1-')'-' (H')/'l

< 2(1 + logn(I-,j'-'(H,j/')

= 2(1 + ((1- ,)'-1(1 + .)/2) logn).

The number of bits needed to encode all the designators is at most

i-I

2 2:: flog n (1_,)i-' (1+,j/'l

;=1
i-I

< 22::(1 + log n(1-,ji-' (H')/')
;=1

= 2(i -1 + ((1 + ,)/2)(1- (1- ,)'-1)/, log n).

Finally, the delimiters can be encoded using 2(2i - 1) bits in all.

Summing these and simplifying, the total number of bits needed to encode the

name of v is at most

8i - 2+ (2 - (1- .)' + (1 + ,)(1- (1- ,)'-1)/,) logn

< 8i+ (2+ (1 + ,)/,)logn

< 8L + (3 + 1/,) logn, since i ~ L

= (3 + 1/') logn + 0((1/,) loglogn), noting that log(l/(l- ,)) > ,. I
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5. Routing in Scheme I

A message is routed from a source s to a destination d as follows. The message

header contains separa.te fields for the next milestone, final milestone and the des

tination, all initially set to d. The next and final milestone fields alone are reset, as

necessary, during the routing. Let d' and d" respectively denote the current names

in the next milestone and final milestone fields. -Each node v participating in the

routing performs a Touting action as follows. It determines w = next..nodev(d'),

resets d" to finaLmilestonev(d') and d' to nextmilestonev(d') if these entries for

d' are stored at v, and then sends the message to w.

Node s searches its routing table for d' = d. If found, then sand d are related,

and s performs a routing action. Otherwise, let 1be the separating level for sand d,

and s the closest ancestor of s for levell. Then s resets d' and dll to s and performs

a routing action.

Let v be any node that the message anives at subsequently. If v =I- d', then v

performs a routing action.

IT v = d' =j:. d", then v sets d' to d" and performs a routing action.

Suppose that v = d' = dll =f:. d. If v and d are related, then v sets d' and d" to d

and performs a routing action. Otherwise, v must be S, and smust be a level 1node

(Lemma 1 below). Using its table of level 1 designators and the 1th field designator

in d's name, v determines the closest ancestor J of d for level 1. It then sets d' and

d" to aand performs a routing action.

If v = d' = d" ;:;: d, then the routing terminates.

Lemma 1. Let 1 be the separating level for source s and destination d, and let s
be the closest ancestor of s for level 1. In the routing from s to d, let v be any final
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milestone different from d. If v and d are unrelated, then v must be S, and s must

be a level 1 node.

Proof. Clearly, if s and d are related, then so are v and d. Thus assume that sand

d are unrelated. We first show that for each v, v and d are related, except possibly

when v is s.

In the routing from s to S, v is always S, since s is an ancestor of every node in

the routing. If .s and d are related, the routing is from s to d. Thus every v in this

routing is an ancestor of d. However, if sand d are unrelated, then the routing is

from s to d. Every v in this phase is an ancestor of d, and hence an ancestor of d.

The message eventually reaches a final milestone that is either J, or an ancestor of

d. Thus, in the routing from this node to d, every v is an ancestor of d. Every v in

this routing is an ancestor of d.

Thus, if v and d are unrelated, then v must be s. Suppose that .s is a level j < 1

node. Thus s is a boundary node of the level 1- 1 region to which s is interior.

But, since sand d are interior to the same levell- 1 region, s must be an ancestor

of d, a contradiction. Thus smust be a level 1 node. I

The following theorem bounds the length of the routings generated by this

scheme.

Theorem 3. Let G be a planar graph. For any nodes sand d, let p(s, d) denote the

length of a shortest (s, d)-path in G, and pes, d) the length of the (s, d)-path gener

ated in Scheme 1. Then the performance bound of Scheme I is p(s, d)/p(s, d) < 3.

Proof. If sand d are related then the routing is along a shortest (s, d)-path. This

is because every node participating in the routing performs a routing action with

respect to d', which is always on a shortest (s,d)-path. Otherwise, s routes to
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ancestor s, and if sand d are related, then s routes to d. As both routings are

along shortest paths, we have

p(s,tl) = p(s,s) + p(s,d)

:0; p(s,s) + pis,s) + p(s,d)

:0; 3p(s,d), as p(s,.;):o; p(s,d).

If sand d are unrelated, then s routes to d, where dis a sibling or an ancestor.

Consider the fust occasion that a final milestone d' is reached, where d' is either d,

or an ancestor of d, and hence an ancestor of sand d. The message is routed from
... ","
d' to d. The routings from s to d and from d' to d are both along shortest paths.

Thus,

p(s, tl) = p(s, s) + p(.;, d') + p(d', d)

< p(s,';) + p(.;,d') + p(d',d') + p(d,d)

= p(s, s) + p(s, d) + p(d, d), since d' is on a shortest (s, d)-path

< p(s,s) + pis, s) + p(s, d) + p(d,d) + p(d, d)

< 3p(s,d), as p(s,.;) + p(d,d):O; p(s,d) I

6. An improved space bound for planar networks

We now present Scheme IT in which the storage is reduced to O(n 1+t:) items,

where e is any constant, 0 < e < 1/3. The scheme uses O((l/e) logn)-bit names

and has a performance bound of 7. To reduce the storage, we maintain at each

node a routing table "for only certain closest ancestors and descendants. However,

the previous routing strategy will not work now, since the routing tables are very

sparse. To overcome this problem, we introduce an additional phase in the routing,

11



in which the message is routed to a pair of intermediate destinations carefully placed

at a higher level in the decomposition. We show how to choose a good, though

not necessarily optimal, path for this phase, for which the multi-interval labelling

scheme from [FJl] can be used to succinctly encode the routing information in

interval form.

The network is decomposed essentially as in Scheme I. However, in order to

set up the multi-interval routing information, the boundary nodes of each region

must lie on one or more cycles. For a triangulated planar graph, Miller's algorithm

[M] yields an O(vn)-separator that is a simple cycle. The desired regions can be

generated by using this, instead of the Lipton-Tarjan separator algorithm [LT], in

the f(')-division algorithm. The graphs induced on the regions at each level are

triangulated with edges of large cost, the faces of each graph are assigned zero weight

(as Miller's algorithm requires that faces be weighted), and the f(·)-algorithm is

then applied to generate the regions at the next level. As in Scheme I, the boundary

nodes of each region are considered to be boundary nodes of the regions resulting

from its division. The nodes are named as in Scheme I.

8. Routing information in Scheme II

Let v be a level j node, j > 1. For each level i 2: j, shortest paths information

IS maintained at v for only those of its descendants for which it is the closest

ancestor for level i. Let T be a tree of shortest paths from v to these descendants.

Starting at v, depth-first numbers are assigned to the nodes of T, and at each node,

the edge joining it to a child is labelled by a subinterval of depth-first numbers,

representing all nodes in the subtree rooted at the child. A table is stored at v,

mapping node names to depth-first numbers. A shortest routing from v to any node
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tL in T is performed by having each node on the path use the depth-first number

of u, recorded in the message header by V, to choose the appropriate edge to route

over.

For each level i < J', the closest ancestor of v for level i is identified, and the

name of the parent of V in the tree rooted at that ancestor is stored at v. Thus v

can perform a shortest routing to this ancestor.

For any level i 2: i, let R be a level i region for which v is a boundary node. Let

R' be the level i-I region containing R, and B the set of boundary nodes associated

with the division of R'. The following information maintained at venables it to

route to the nodes in B.

A table of designators is stored at v, mapping the level i designator of each

node u in B to its name.

For each u, a level number 1 is maintained at v, where -: :5 i is the largest

integer for which there is a shortest (v, u)-path in G wholly in the level 1-1 region

R containing R.

Furthermore, consider each u for which there is at least one (v,u)-path in G

wholly in R', and let P be a least-cost such path. The name nextmilestonev(u)

of the first node from B on P (in the direction from v to u) is stored at v. The

routing from v to u is performed along P. Path P consists of segments, each of

which is wholly in some level i region resulting from the division of R', and whose

endpoints are boundary nodes of the level i region. Furthermore, each segment

is a shortest such segment. For instance, the first segment has endpoints v and

next..milestonev(u), and, without loss of generality, lies wholly in region R. Each

intermediate node on this segment routes to next..milestonev(u). The routing in-
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formation for this segment can be set up using the multi-interval labelling scheme

from IFJ1j, as follows.

In the decomposition, the boundary nodes of each region lie on cycles. Let

region R have t boundary nodes lying on p ~ 1 cycles. Associate an integer

between 1 and t, called an interval name, with each boundary node by proceeding

around each cycle in turn, as described in [FJ1].

The following lemma shows that the routing information for the boundary

nodes of R can be encoded succinctly at each node of R as subintervals of interval

names labelling each incident edge.

Lemma 2. At any node w of R, the ends of all the edges incident with w can be

labelled with at most 3p +degree(w) - 2 subintervals of [1, t] such that the following

is true. Let z be any boundary node of R reachable from w by a path in G that

is wholly contained in R. Then, the first edge on a shortest such (w,z)-path is the

one whose label at w contains the interval name of z.

Proof. Consider the graph G R defined by the nodes and edges of R. A shortest

(w, z)-path in G that is wholly contained in R is a shortest (w, z)-path in GR. The

lemma then follows from Corollary 5.1 in [FJ1], since all the boundary nodes z lie

on at most p faces in GR. I

The edges incident with each node of R are labelled with subintervals of interval

names. At boundary node v, a table mapping the names of the other boundary

nodes of R to their respective interval names with respect to R is stored. The

routing from v to nexLmilestonev(u) is performed by having each participating

node use the interval name of nextJnaestonev(u), recorded in the message header

by v, to choose the appropriate edge to route over.
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The following theorem bounds the number of items of routing information used

by Scheme II.

Theorem 4. For any n-node planar graph, Scheme II can be set up to use D(n Hc)

items, for any constant to, 0 < € < 1/3.

Proof. We count the amount of routing information by levels. The level 1 nodes

claim, in the role of closest ancestors for levell, disjoint subsets of the level i > 1

nodes. Thus the tables at the level 1 nodes, which map node names to depth

first search numbers, use a total of D(n) space. Furthermore, the total number of

subintervals of depth-first search numbers maintained for level 1 is proportional to

the number of edges of G, which is D(n).

Each level i > 1 node maintains a constant number of items for its closest

ancestor for level!. Thus the level J' nodes maintain a total of D(n) items about

nearest ancestors for level!.

Each boundary node of a level 1 region maintains a constant number of items

(a level! designator, a level number, and ncxt.milestone(·)) for each of the other

boundary nodes. Since there are D(n/ Jf(n)) boundary nodes of level 1 regions, a

total of O(nj-lf(n) )'), i.e., O(n'jf(n)) items is stored.

The storage used by the multi-interval routing scheme for level 1 is as follows.

Each boundary node of a level 1 region maintains for each of the other boundary

nodes of the region, an entry in the table which maps node names to interval

names. Since there are O( J f(n)) boundary nodes per level 1 region, a total of

O(-If(n))'), i.e., O(J(n)) items is stored per level I region. Thus, as there are

0(njf(n)) level I regions, a total of O(J(n)njf(n)), i.e, O(n) items is stored for

all level 1 regions. By Lemma 3 below, D(n) intervals are used to encode the
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multi-interval routing information.

Let Sen) the total space used for an n-node network. Then, for positive con

stants e and d we have S(n) < dn' / J(n) + e(n/ f(n))S(f(n)). Choose f(n) = n1-.,

for any constant f", 0 < f" < 1/3. With an appropriate choice of basis we then have,

for some positive constant e,

We claim that Sen) ::; gn1+e:, where g = max {e , 2d}. The proof is by induction,

and is similar to that in Theorem 1. Remarks analogous to those in Theorem 1 apply

here as well.•

The multi-interval routing scheme at level 1 enables routing between the bound

ary nodes of the various level 1 regions that result from the division of the level 0

region, which has n nodes. We show in the following lemma that this scheme uses

a total of D(n) intervals. (In general, for any level i > 1. there are a number of

multi-interval routing schemes. Each scheme is associated with a level i-I region

and enables routing between certain boundary nodes of the level i regions resulting

from the division of the level i-I region. The number of intervals used for each

scheme is proportional to the size of the corresponding level i-I region.)

The following lemma bounds the number of intervals used by the multi-interval

labelling scheme at level!.

Lemma 3. The multi-interval labelling scheme at level 1 uses a total of D(n)

intervals.
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Proof. We first derive an upper bound on the number of cycles on the boundaries

of the level! regions, counting separately each occurrence of a cycle on a level 1

region boundary. In worst case the cycles are all vertex-disjoint, so that the number

of cycles is one less than the number of level 1 regions, which is 0(njf(n)). Since

each cycle is on the boundary of two level 1 regions, the desired upper bound is

EJ(nj f(n)).

Let PR be the number of cycles on the boundary of level 1 region R, and let

w be any node of R. From Lemma 2 it follows that the total number of intervals

maintained for R by all nodes w is less than

L (3PR + degree(w))
wER

S 3PRcf(n) + 2(3cf(n) - 6),

since R has at most cf(n) nodes for some constant c, and the induced subgraph of

G on R is planar. Thus the total number of intervals for all level! regions is less

than

L (3PRcf(n) + 6cf(n))
all R

= 3cf(n) L PR + 6cf(n) L 1,
all R all R

which is O(n), since, from the first part of the lemma, L.II R PR is EJ(nj f(n)), and

since there are EJ(nj f(n)) level 1 regions. I

9. Routing in Scheme II

The routing from s to d is as follows. Irrespective of whether or not sand d

are related, the routing is always performed via the closest ancestor oS of s and the

closest ancestor dof d for levell, where 1 is the length of the longest common prefix
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of the distinguisher-free portions of the names of sand d. The routing from s to s is

along a shortest path tree rooted at.s. Using its table of designators and the [th field

designator in d's name, s determines d. Unfortunately, unlike Scheme I, it is now

not possible to perform shortest paths routing from s to d, since, in general, this

information will not be available at s. Instead the routing from s to d is performed

along- a near-shortest path as follows.

Let r < I be the level number maintained at s for d. Thus there is a shortest

(s, d)-path wholly contained in the enveloping level r -1 region. Let ~ and dbe the

closest ancestors of s and d respectively, for level 1. If r = I then we take ~ and d to

be just sand d respectively. The routing from s to d is performed in three stages,

as follows. Node s records rand d in the message header and routes to § along a

shortest (s, g)-path. Using its table of designators and the ph field designator in d's. .
name, § determines d. It then uses interval routing information to route to d along

a path P of least cost from among those that are wholly contained in the level r-1

region. Note that at least one such path exists, namely the one consisting of the. .
shortest paths from § to 5, from 5 to d and from d to d. Node d then routes to.
J along a shortest (J, d)-path. Finally, the message is routed from J to d along a

shortest (J, d)-path.

An example (s, d)-routing is shown schematically in Figure 2. (For clarity, the

figure is not drawn to scale and not all regions and region names are shown.) Since

sand d are in different level 4 regions R UUI and R UIl2 ' but in the same level 3

region R uu , [ is 4. As level 1 region R u is the first enveloping region to completely

r..ontain a shortest (s, d)-path, shown dashed, r is 2. The message path is shown in

bold.
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The following theorem establishes the performance bound of the routing.

Theorem 5. For any planar graph G, the performance bound of Scheme II satisfies

p(s,d)fp(s,d) ~ 7.

Proof. If r= I then i and dare just 8 and Jrespectively, and it follows that P is

a shortest (s,d)-path in G. Thus

p(s, d) = pis, s) + p(s,d) + prJ, d)

~ p(s,s) + p(s,s) + p(s,d) + p(d,d) + p(J,d)

~ 3p(s,d), as p(s,s) +p(d,d) ~ p(s,d).

Otherwise r< l is the highest-numbered level for which a shortest (8, d)-path in

G is not contained in the enveloping level [ region, but is contained in the enveloping

level r- 1 region. The path thus leaves the level r region for the first time and

reenters it for the last time via two of its boundary nodes. bi and b2 respectively.

Thus p(s,d) 2': p(s,b') + p(J,b,) > p(s,i) + p(J,d), by our choice of i and J. Let

I P I be the length of P. Then I P 1= p(i,s) +p(s,d) +p(J,J) < 2p(s,d). The

length of the routing from s to J is then p(s, i) + IP I+p(J, d) < 3p(s, d). Thus

p(s,d) ~ p(s,s) + 3p(s,dj + p(J,d)

~ p(s,s) + 3(p(s,s) + p(s,d) + p(d,J)) + p(J,d)

~ p(s,s) + 3(2p(s,d)) +p(J,d)

~ 7p(s,d).1
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