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Abstract. Consider a matroid of rank n in which each element has a real-valued cost
and one of 4 > 1 colors. A class of matroid intersection problems is studied in which
one of the matroids is a partition matroid that specifies that a base have q; elements of
color j, for j = 1, 2, - -, d. Relationships are characterized among the solutions to the
family of problems generated when the vector (g1, g4, * * , g,) is allowed to range over
all values that sum to n. A fast algorithm is given for solving such matroid intersection
problems when 4 is small. A characterization is presented for l;ow the solution changes
when one element changes in cost. Data structures are given for updating the solution
on-line each time the cost of an arbitrary matroid element is modified. Efficient update
algorithms are given for maintaining a color-constrained minimum spanning tree in
either a general or a planar graph. An application of the techniques to finding a

minimum spanning tree with several degree-constrained vertices is described.

Keywords. data structures, degree-constrained spanning tree, matroid intersection,

minimum spanning tree, on-line updating, partition matroid.



1. Intreduction

Matroids are discrete mathematical structures that appear in a variety of applica-
tions. They are structures for which the greedy ;lgorithm gives an optima]-soluﬁon, and
when intersected characterize such problems as minirqum weight maximum cardinality
bipartite matching [L.1]. In this paper we study a class of combinatc;rial problems from a
matroid point of view. Consider a matroid in which each element has a real-valued cost,
and one of d colors, for some constant 4 > 1. Give;1 positive integers ¢4, 92, " *, G4
we seek a base of the matroid that is of smallest cost subject to the constraint that it con-
tain ¢; elements of color j, for j =1,2,---, d. For example, we can generalize the
minimum Spanning tree problem to a problem in which the edges have colors, and we

desire a spanning tree of minimum cost subject to constraints on the number of edges of

each color that are in the tree,

A marroid M consists of a set E of elements, and rules describing a property,

called independence, of certain subsets of E. The rules satisfy axioms which may be
found in [L1, W]. A maximal independent subset of E is called a base. A matroid
optimization problem is the problem of finding a minimum cost base in a matroid in
which a cost is associated with each element. For example, finding a minimum spanning
tree of a connected graph is a matroid optimization problem, where the matroid consists
of the set of edges in the graph, and independence cormresponds to acyclicity. As stated

above, matroid optirnization problems can be solved by the greedy algorithm.

A matroid intersection involves two matroids defined on the same set E of ele-
ments, but with different sets of rules determining the independence of subsets in each

matroid. A mairoid intersection problem is an optimization problem whose solution is a



subset of £ of maximumn cardinality that is independent in both matroids simultaneously,
and is of minimum cost among all such subsets of £. There are algorithms for solving
any given matroid intersecl:i;m problem in polynomial time whenever independence of a
set in the matroid can be tested in polynomial time [BCG1, L2]. However the polyno-
mial is large: at least O (n?m), where m is the number of elements, and n is the cardinal-
ity of the largest independent set. The special type of matroid intersection problem that
we focus on in this paper is one in which each of the elements lis labeled with one of 4
colors, and one of the matroids (a partition matroid) specifies that a certain number of
elements of each color must be in the solution. For d = 2 colors, very efficient special
purpose algorithms have been presented for a variety of problems in [GT, G). In this
paper we explore the structure of 4-color problems which allows for their efficient solu-

ton when d > 2.

The solution techniques of [GT, G] rely on finding a minimum cost solution from

among only red elements and a minimum cost solution from among only green elements,

and then pairing these red elements and green elements. However, for d > 2 colors, the
analogue of such a pairing does not seem to exist. We overcome this difficulty by gen-
eralizing other characterization results in [GT, G]. We characterize the relationships
among the solutions to a family of problems generated when the vector (g1, " -, ¢z) is
allowed to vary over all combinations that sum to . The number of problems in this
family is thus (n+d—-1)!/(n 1(d-1)!), which is @(nd‘lf(d—-l)!) for small 4. The key rela-
tionship that we establish is the property of dominance, which allows us to search
efficiently within the set of solutions to these problems. Dominance means that if one
constrained minirnum cost base dominates another with respect to the color constraints,

then all elements of a certain color in the second base are in the first.



The dominance property makes possible a divide-and-conquer approach for
finding a constrained minimum cost base that is efficient for small values of d. For a
variety of matroids possessing certain desirable properties, the algorithm runs in time
Od Tolm,n)+ (d !)2 T(n, 2)), where Tlu(m, n) is the time to solve an uncolored ver-
sion of the problem, and T'{#, 2) is the time to solve the 2-color version given a solution
for each of the two colors. For graphic matroids, it was shown in [FT, GGST] that
Tylm, n) is slightly larger than proportional to 7, and in [GT] ilt was shown that T (n, 2)
is O (n log n).T Our algorithm handles any 4-color matroid intersection problem, such
as scheduling unit-time jobs with integer release times and deadlines [GT], in essentially
the same time bound. While the algorithm is factorial in 4, it matches the bound in [GT]
for d = 2 and is significantly more efficient than the previously known algorithms when

d is a small constant.

We also address the problem of updating a solution repeatedly, as the cost of ele-
ments cha_nEa one at a_ti_me. Thi__s__on_-}ine_up@aﬁng prol?_l_c_en_1 _is a generili{z_glion of the 2-
color update problem discussed in [FS]. We show how to use the dominance property to
generate and maintain efficiently a sparse description of the (n+d—1)!/(n!(d~1)!) solu-
tions to all problems as the vector (g, * - * ,q,) ranges over all valid possibilities. We can
update a d-color minimum spanning tree in O (d2m 2 + d13(d )% #13 log ) time, and

in O (d31)® (Qogdy 2 222°s@ 1™ (150 1 Y¥2) time if the graph is planar. These

match the update times in [FS] for the case whend = 2.

Our 4 -color algorithm can be used to find a multiple-degree-constrained spanning

tree of a communications network. Suppose the degrees of 2 number 4 of the nodes are

T All logarithms are to the base 2.



prespecified, because of the number of ports that they have. When d = 1, the problem is
a special case of the 2-color minimum spanning tree problem [GT]. However, many
interesting problem instances may require d degree-constrained nodes, where 4 is a
small constant greater than one. We reduce this problem to a set of (d+1)-color prob-
lems, one of which yields the solution. While the problem is NP-hard for general 4 [GJ,
p- 206], our algorithm is efficient for small 4. If the set of vertices for which there are
degree constraints is an independent set, then finding a mulﬁplc-ﬁegree-constrajned span-

ning tree is tractable, and an O (z°) algorithm exists [BCG2].

The remainder of the paper is organized as follows. In section 2 we introduce
some terminology and new concepts that facilitate the later discussion. In section 3 we
characterize the structure of d-color problem solutions, and establish the overall
minimum cost, convexity and dominance properties. In section 4 we apply these charac-
terizations to develop an efficient divide-and-conquer algorithm for the static d-color
problem, and illustrate its efficiency for graphic matroids. In sections 5 and 6 we gen-
eralize the 2-c016r results-of [FS] to- d color-s. and describe how to maintain a sparse
description of certain arrangements of solutions to d-color problems to permit fast on-

line update. In section 7 we discuss an application of our methods.

2. Definitions

We identify some additional matroid terminology; a more complete discussion
can be found in [L1, W). The rank of a set E' CE, denoted as rank (E’), is the cardinality
of a maximal independent subset of £°. Let B be a base, and f an element in E-B. The

circuit C{f , B) is the set consisting of every element that can be deleted from B (_{f }



to restore independence. Let e be an element in B. The cocircuit c (e, B) is the set con-
sisting of every element that restores rank to B—{e}. We will sometimes refer to an ele-
ment In C(f,B)—-{f} as one thar f can replace in B, and an element in
C (e, B) — {e} as one that can replace e in B. Let M/E’ denote the contracted matroid
obtained from M by contracting the elements E'cE. The elements of M/E’ are E — E’.
Suppose E’ is independent. Then the independent sets (bases) of M/E’ are those sets
XcE —E’ for which X\ JE is independent (a ' base) in M, and

rank (MIE") = rank (M) — rank (E’).

For our problems on graphs, read edge for element, spanning tree for base, cycle
for circuit, and forest for independent ser. The rank is the number of edges in a spanning
tree. Thus a minimum spanning tree is a minimum cost base of a graphic matroid. Simi-
larly, for our unit-time job scheduling problem, read job for element, a set of jobs with a
feasible schedule for an independent set, a maximal such set of jobs for a base, and a
minimal infeasible set of jobs for a circuit. Thus a maximum-profit set of jobs with a
feasible schedule is a maximum-cost base of a job scheduling matroid. Letm = | E | and

n =rank(M).

We associate a color j, je {1,---,d} with each element in set E. For any set
E’'CE, let colors (E”) be a d-tuple (iy, i5, - - -, iy) giving the count of elements of each
color in E’. Let cgle) be the positve, real-valued cost of element e, and ¢ 4(E ) the total
cost of elements in a set £’. For a given cost function, we refer to a base B in such a
matroid as a constrained minimum cost base, or a minimum cost base for its vector
colors(B), if B is of minimurn cost over all bases with the same colors vector. We

assume that E has been augmented with elements of cost o as necessary so that a base of



-each color 1, - - -, d exists. Thus a monochromatic minimum cost base is a constrained

minimum cost base whose colors vector has exactly one nonzero component.

Following [GT], we find it advantageous to extend the cost function so that each
constrained minimum cost base B is unique for-its vector colors (B). We make two dif-
ferent extensions, both similar to extensions given in [GT]. We assume that a unique
index is associated with each element. Let o = min({lco(E") = c(E”)|: E', E” are
sets of elements, |E’| = [E”|, co(E) = co(E™} U {cole):e in E}). We define
ce)=cole) -/ 3", where | is the index of e. By our choice of o, we note that for
any two distinct bases B and B, ¢ (B 1) # ¢(B5), and for any three distinct bases B, B,

andB3, 2(.'(32) # C(BI) + C(B3).

The second extension ¢y, () of ¢¢(°) is based on lexicography. A real function g ()
is said to be convex if for any choice of values x; < x, < x3, (g (x)~g (x )V (x—xy)
< (g (x3)~g (x2))/(x3—x4). Let f =(f 1), f90),**+, fa(*)) be a d-tuple of convex func-
tions, and let T be any permutation on d-tuples. Let E” be a set of edges. We assume
that f (colors (E)) yields d-tuple (f ((i(), - -, f4(4)). Let indices(E") be a sorted ord-
ering of the indices of the elements in £, Then we define ¢; (E") as the tuple (co(E”),
11:(fT (colors(E"))), indices (E")). Comparisons between costs are resolved by lexicogra-

phy on the tuples.

Note that for any two bases B and B,, ¢, (B ) = ¢, (B,) implies that B; = B,. It
is clear that for any two bases B, and B, with identical colors vectors, and any f and =,
c(B1) < c(By if and only if ¢; (B;) < ¢, (B,). Thus a constrained minimum cost base
under ¢ () is a constrained minimum cost base under ¢; (-). We find ¢ (-) more convenient

in proving several key properties about d-color matroids, and ¢ (-) more appropriate to



use when designing algorithms for d—color matroids. When the cost function ensures
that there is a unique base of minimum cost over all bases with colors vector i, we call

this base B,.-.

We next define the notion of a uniform cal)st adjustment with respect to each of the
extended cost functions. The notion of a uniform cost adjustment coH:tes from [G], where
it was applied in handling 2-color matroids. A uniform cost adjustment with respect to
c(*) consists of adding a constant Sj to the cost of every element of color j in the
matroid, for j =1, 2,---, d, and is specified by the d-tuple 3. A uniform cost adjust-
ment with respect to ¢z () consists of adjusting costs according to a d-tuple & and intro-
ducing a new d-tuple f of functons, along with permutation ®. Since only differences in
cost between elements of a particular color are significant in determining any constrained
minimum cost base By, the base By remains of minimum cost over the vector i after a
uniform cost adjustment. Note that only differences in cost between various colors are
significant in determining the relative costs of bases with different colors vectors. Furth-
ermore, we can always assume without loss of generality that a uniform cost adjustment
in a d-color matroid has at most d—1 nonzero components. The purpose of a uniform

cost adjustment is to make some constrained minimum cost base By of overall minimum

cost.

Let j; and j, # j, be integers in {1, 2,---, d}. We say that a vector i’ is a
(1 Jo)-neighbor of i = (iy, ig,* -, ig) if §j/ =i; = 1, i,/ = i; + 1, and §;" = i; for all
other j. Let the j,-negative neighbors of i be the set of all (j1 , Jo)-neighbors of i. Let
the j,-positive neighbors of I be the set of all (j2 » j)-neighbors of i. When there is a

unique minimum cost base for each vector i, we extend the notion of neighbor from



vectors to the bases that they index in the natural way. Let i and i’ be the colors vectors
of two bases. Suppose there is a unique color j for which i ;> ij’. Then we say that i

dominates i’ with respect to color j, or that i j-dominates i’

Given a base B,aswap s = (e, f) wai@te in B is an ordered pair of elements,
whereeeB, f¢ B, e and f are of different colors, and C(f, B) contains e. Element f
can be swapped in to replace element e, resulting in a base B—{e h {f} (denoted by
B D 5o0rB —e+f) LetS be asequence of ordered element pairs s, .. .,s,, where
each s; = {e;, f;). Given a base B, we say that S is g swap sequen-ce available in B if 5
is a swap available in B and if » > 1 then 54, ...,s5, is 2 swap sequence available in
B © s5,. If S is a swap sequence available in B then B © S denotes the base obtained
by applying S to B. Consider any cost function on E. Suppose swap sequence S is
available in a constrained minimum cost base B. Lets; = (g, f;) fori =1,...,r.
We say that the sequence S is optimal if basesB @ s5;,...,B @ 5, ® -+ @ 5, are

all constrained minimum cost bases. The sequence S is color-conserving if

colors(f;) = colors(e;y;) for i=1,...,r—1. The sequence S is acyclic if
colors(e;) # colors(e;) fori, j € {1,...,d} and i # j. Finally, the sequence S is reg-
ular if it is optimal, acyclic, and color-conserving, Note that any subsequence of a regu-
Jar swap sequence is regular. We refer to a regular swap sequence S with

colors(e ) = j, and colors(f,) = j, as a regular (j,, j,) sequence.

Let D be a set of bases with distinct colors vectors. The set D is fighr if, for
every pair of bases By and B, in D, B, and B, are neighbors. A tight set D with
|ID[ =k > 1is negative if colors jy, ..., j, can be uniquely assigned to bases in D

such that for any base B in D, if base B is assigned color j, then every basein D ~ {B}



is a j-negative neighbor of B. A positive tight set is defined analogously, using j-
positive neighbors instead of j-negative neighbors. If [D ] =1, then we arbitrarily
assign the single base in D the color 1, and call D negative. We say that sue (B) is the
color assigned to B, and for any subset D”of D, hue (D) =\ g p- hue(B). LetD bea
negative tight set, B a base in D with colors(B) =1, and r = Yiche®) ij- Let
hspan (D) be the set of bases with colors vectors i’ such that Yichep)i’j=r, and
i’ = i; for j& hue(D). A ughtset D is complete if |D | = d. We denote the unique
complete, negative, tight set associated with a base B and color j by D (B, j). Note that

ifB,B’eD (B, j)and B"is Bs (j I) neighbor, then D (B, j) = D (B", 1).

Let D be a negative, tight set of bases. The swap graph G, associated with D
has vertex set D and contains an edge (B,,B,) if and only if bases B, and B, are related
by a single swap. If every constrained minimum cost base is unique for its colors vector,
then there is a close relationship between negative tight sets of minimum cost bases and

regular swap sequences. If D is a negative tight set of minimum cost bases and G, is its

swap graph, then every simple path in G, corresponds to a regular swap sequence.

3. Characterization results

In this section we first give several properties of 2-color matroids identified in
[GT, G]. We then consider d-color matroids for 4 > 2 and establish the following
important properties regarding constrained minimum cost bases and their neighbors,
which hold for the modified cost function ¢ (-). First, there is a uniform cost adjustment
that makes each constrained minimum cost base the overall (unconstrained) minimum

cost base. Second, every pair of adjacent constrained minimum cost bases is related by a
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regular swap sequence of at most d—1 swaps. Third, if the colors vector of one
minimum cost base dominates that of another with respect to a certain color, then all ele-
ments of that color in the dominated base are contained in the dominating base. Finally,
we characterize how a constrained minimum_coét base changes when the cost of one ¢le-

ment changes. -

Lemma 1 [GT, Thm. 3.1]. Consider a matroid with elements of two colors, red and
green. Consider any positive, real-valued cost fu;lqﬁon. Let B; be a constrained
minimum cost base with i/ red elements. Executing a lowest cost red-green swap avail-
able in B; transforms B; into a constrained minimum cost base B;,; with {+1 red ele-

ments, [

Lemma 2 [GT, Cor. 3.3]. Consider a matroid with elements of two colors, red and
green. Consider any positive, real-valued cost function ¢’(-). Let B;_;, B; and B;, be

constrained minimum cost bases with i—1, { and i+1 red elements, respectively. Then

B = Biy) £¢’ Biup) — ¢ (By). O

The following result is implicitly stated in [G]. We supply an explicit proof,

using Lemma 2.

Lemma 3. Consider a matroid with elements of two colors, red and green. Consider any
positive, real-valued cost function ¢’ (-). Let B; be a constrained minimum cost base with
I red elements. There exists a uniform cost adjustment that makes the cost of B; less

than or equal to the cost of every other cost base.

Proof. Let ! be the smallest index such that B, exists, and u the largest index

such that B, exists. It is observed in [GT] that B; exists foreach i,/ <i < u. Assume
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as boundary conditions that (B} =2B)) - B,) and (B,)
=2¢"(B,) — ¢’ (B;). Take 8,4 =c'(B;_)) — ¢’ (B;) and §,., =0. It follows from
Lemma 2 by induction that ¢'(B;) 2 ¢’ (B;_1)-=¢"(B;) <c’(B;») for I <i” < i and

[ <i”u. O

The following lemma, which is a variation of a lemma in [F.S], establishes a fun-

damental property of bases in matroids.

Lemma 4. Let B be a base and e, e,, f, f, be distinct matroid elements. Suppose
B —-e;+f,and B — ey + f, are bases, but B —e; —eq + f + [ is not a base. Then

bothB —e; + foand B — ¢, + f are bases.
Proof : The proof is similar to that of Lemma 3 of [FS]. O

We next present some lemmas that will be useful in the proof of the overall
minimum cost and dominance theorems for matroids with elements of d > 2 colors.
Lemma 5 establishes that if an overall minimum cost property holds for constrained
minimum cost bases, then the convexity property holds. Lemma 6 shows that if an
overall minimum cost property holds for a certain subset of constrained minimum cost
bases centered on a negative tight set, then a stronger version of an overall minimum cost
property holds. Lemma 7 establishes how the overall minimum cost property for a nega-
tive, tight set of constrained minimum cost bases impacts the connectedness of the
corresponding swap graph. Finally, Lemma 8 uses the connectedness of the swap graph
to establish the exact relationship between two neighboring constrained minimum cost

bases for which the overall minimum cost property holds.

Lemma 5. Consider a matroid with elements of d > 2 colors. Let By, B, and B3 be
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constrained minimum cost bases with respect to cost function ¢ (), such that B, is B;’s
(/1, jo) neighbor and B is B,'s (Jy, f2) neighbor, for some j,, j;. Suppose each of B,
B, and B; can be made an overall minimum cost base through some uniform cost adjust-

ment. Then ¢(B,) —c(B)) < ¢(B3) — c(By).

Proof : Suppose in coniradiction that ¢(B,) — c(B;) 2 ¢ (B 35-— c(B,). Since B,
B, and B4 are distinct, this inequality must be sirict, by definition of the modified cost
function. Without loss of generality, suppose that Bl is an overall minimum cost base.
Let 3 be any cost adjustment vector that makes B, an overall minimum cost base. (By
our initial assumption, 3 exists). Make all the adjustments of 8 except those for colors J1
and j,. Note that the new costs ¢"(B ), ¢"(B5), and ¢’ (B3) have the same relative values
as ¢(By), c(B4), and ¢ (B3). Now make the adjustments for colors j, and j,, yielding
costs ¢’ (B ), ¢” (B4), and ¢”(B5). Since B, becomes an overall minimum cost base, we

must have ¢"(By —c¢’(B) <3; -8,

We also get ¢”(B3)— ¢”"(Bp = ¢'(Bs) -
¢’(B2) = (§;, — §;,), which by the preceding argument is less than ¢"(By) ~ ¢’ (B}) -

&;, — 8;,), which is at most d;, — 6;

iy T (81. - 5‘“) = (. Thus C”(Bg') < C”(BQ), which

contradicts our assumption that a suitable § exists. O

Note that Lemma 5 will hold for any cost function ¢’ (-} derived from ¢(-) by a

uniform cost adjustment.

Lemma 6. Consider a matroid with elements of d > 2 colors. Let D be a negative, tight
set of constrained minimum cost bases for cost function ¢ (-). Suppose for each base B in
hspan (D), there is a uniform cost adjustment that makes B an overall minimum cost

base. Then there is a uniform cost adjustment that simultaneously makes every base in D
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of overall minimum cost, and every base in hspan (D) — D not of overall minimum cost.

Proof : The proof is by induction on p = [D |. The basis case for p = 1 follows
from our assumption that every base in kspan (D), and therefore every base in D, can
individually be made of overall minimum cost -r.hrough a uniform cost adjustment. For
the inductive step, with p > 1, assume that the lemma holds for any‘l-lcgative tight set D’
of cardinality less than p. Let B be a base in D, of hue j;. L_e.t B4 be a second base in
D, with hue j, # j,. Consider the negative, tight set of bases Dy = D — {B;}, which is
of size p—1. Since |D;| < |D], by the induction hypothesis there is a uniform cost
adjustment § that makes every base in D, but no other base in hspan (D), of overall
minimum cost. We next decrease the cost of color j, so that the B, and B, are of the
same cost, yielding uniform cost adjustment & with respect to the original costs. This
does not affect which bases in Aspan(D;) are of minimum cost among those in

hspan (D ,), since all bases in sispan (D) have the same number of elements of color Jp-

With respect to adjustment &, all bases in D have identical, though not neces-
sarily overall minimum, cost. We claim that with respect to &, the bases in D are the
only bases in hspan (D) that are of minimum cost within Aspan (D). To prove the claim,
we consider two cases. For |D | =2, the claim follows dj.rectl.y from Lemma 5. For
[D]| =p > 2, consider the following. For any color & in hue (D), let j, be the minimum
number of elements of color k£ in any base in D. (Note that the base of hue k in D will
have j,+1 elements of color k, and all other bases in D will have j, elements of color £.)

Let c,, be the cost of each base in D,

Suppose there is some base B, in Aspan(D) — D with ¢(B;) < ¢,,. For some r

in hue (D), B4 has j,* < j. elements of color r. Let D’ be the set of all constrained
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minimum cost bases in D with exactly j, elements of color r. We assert that with
respect to adjustment & all bases in hspan(D*) — D’ have cost greater than ¢,,. We
apply the inductive hypothesis to D ” to prove the assertion. With respect to cost function
c(-), there is a uniform cost adjustment 5" that makes every base in D’ of overall
minimum cost, and every base in hspan(D ") — D’ not of overall .minimum cost. We
argue as follows that 3 has the same effect as & over the set of bases in hspan(D’). The
adjustments in §” for colors not in kue (D do not affect the rlelative costs of bases in
hspan(D”) and can thus be equal to the corresponding values in &. Since bases in D’
have identical cost under &, and also identical cost under &7, then for any pair of colors
ki, ko in hue(D"), &, ” — &, ' = 8, — &, /. Subtracting 8, ” — 6, * from the adjustment
8;” for each k in hue(D”) does not affect the relative costs of bases in kspan (D), and
gives &’. Thus the adjustment & has the same effect as 8" over the set of bases in
hspan (D). We have proved the assertion that with respect to &, all bases in hspan(D ")

have cost greater than ¢, .

Now collapse all the hues in D except r to a new color s. Consider the setJ of
constrained minimum cost bases in this new matroid that have 1+ Y. pue(n) Ji €le-
ments of colors r and 5 combined. The base in J with j, elements of color r has cost
Cm, since the bases in Aspan (D) — D’ have cost greater than ¢,,. The base in J with
Jr + 1 elements of color r has cost at most ¢,,, since the base of hue r in D has cost ¢,
By induction one can show that each base in J that has fewer than j, elements of color r
has cost greater than c,,, using Lemma 5. But the base in J with j.” < j, elements of
color r has cost at most ¢,,, since B 3 has cost at most ¢,,. Thus we achieve a contradic-

tion, and prove the claim that with respect to §, the bases in D are the only bases in
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hspan (D) that are of minimum cost within hspan (D).

Finally, we make all colors in kue (D) red, and the rest green. Note that one of
the constrained minimum cost bases B, in this new problem is one of the bases of
minimum cost in Aspan (D) under adjustment 37 By Lemma 3, there is a uniform cost
adjustment (Y..4, Ygresn) that makes B 4 of overall minimum cost. We define the desired
adjustment 5 from & and (Y,e1, Ygreen) by adding ¥,.4 to 8, for each k in hue (D), and
adding Y,,en to 8, for each & not in hue (D ). The adjustment 8™ will not alter the rela-
tive costs of any bases in hspan(D) under &', but will ensure that B, and thus all the

bases in D, will be of overall minimum cost. [J

Lemma 7. Consider a matroid M with elements of 4 = 2 colors. Suppose that for any
matroid M’ with elements of &’ < d colors, and any constrained minimum cost base B
in M’, there exists a uniform cost adjustment that makes B of overall minimum cost with
respect to ¢(*) in M". Let D be a complete negaﬁvc tight set of constrained minimum
cost bases with respect to ¢ () in M. Let D be a negative tight subset of D such that
every base in hspan(D ;) can be made of overall minimum cost through a uniform cost
adjustment, and every base in D — D, cannot be made of overall minimum cost by a uni-

form cost adjustment. Then the swap graph Gp| is connected.

Proof : The proof is by induction on d. The basis is with 4 = 2. From Lemma 1,
it is clear that the swap graph is connected. For the induction step, with 4 > 2, assume
that for any matroid M” with elements of & < d colors, and sets D” and D’ as specified,

the swap graph Gp - is connected. If |D,| = 1, then Gp is connected. If |D4] > 1,

then consider a connected component D, in Gp .
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We first argue that [D 5] > 1. Suppose |D;| = 1. Let B eD,, and without loss
of generality assume that Aue(B) = greern. Since B,eD,, we can adjust costs uni-
formly so that B, is a base of overall minimum cost. Temporarily change every color
other than green to red, so that the resulting matroid has only red and green elements.
Note that B is the minimum cost base for its colors vector. By Lemma 1, B is related
by a swap to some constrained minimum cost base B, with one fewer green element than
B,. If we restore the original element colors, it is apparent that By isin D, — {B}, since
these are the only green-negative minimum cost neighbors of B ;. By the definition of

swap graphs, D, should then include B4, a contradiction. Thus |[D4] > 1.

By Lemma 6, we can perform a uniform cost adjustment such that every base in
D, is of overall minimum cost, and no other base in kspan (D) is of overall minimum
cost. We then change to green all colors in Aue (D). One of these bases, say B, will
represent the component D, as a constrained minimum cost base in a matroid M" with
d — |D,| +1 < d colors. Clearly, D’=D =D, {B,} is a complete negative tight
set of bases M’. By assumption, for each constrained minimum cost base B in M’, there
exists a uniform cost adjustment that makes B of overall minimum cost with respect to
c(-yin M’. Take D;"=D’. Thus D,  is a negative tight subset of D’, and no base in
D’ — D" can be made of overall minimum cost. Note that two bases in the same con-
nected component of Gp - will be in the same connected component of Gp,. By the
inductive hypothesis, Gp is connected. Since the bases in D—Dy _{B,} are in the

same connected component of GD,' and the bases of D, are in the same connected com-

ponent of Gp , Gp is connected. [
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Lemma 8. Consider a matroid M with elements of 4 2 2 colors. Suppose that for any
matroid M’ with elements of & < d colors, and any constrained minimum cost base B
in M’, there exists a uniform cost adjustment that makes B of overall minimum cost with
respect to ¢ () in M’. Let B, and B, be any two constrained minimum cost bases in M
with respect to ¢(-) such that B, is B,’s j-negative neighbos, for some j. Let
ByeD,c DB, j). Suppose any base in hsparn(D,) can individually be made of
overall minimum cost through 2 uniform cost adjustrment, and nlo base in D (By, j) =D,
can be made of overall minimum cost by a uniform cost adjustment. Then B, and B,

are connected by a regular swap sequence of length at most d-1.

Proof : Since D; ¢ D(B, j), the swap graph Gp, has at most d veriices. By
Lemma 7, Gp_ is connected. Thus there is a simple path p of length at most d—1 between
B;and B, in Gp . LetS be the corresponding swap sequence relating B, and B,. Since
p is acyclic and of length at most d—1, so is S. Since D, is tight and negative, S is
color-conserving. Finally, since all bases in D ; are constrained minimum cost bases, S is

optimal. [

We now establish the overall minimum cost and dominance properties.

Theorem 1. (Overall Minimum Cost) Let M be a matroid with elements of d colors,
d > 1. Let B be a constrained minimum cost base with respect to cost function ¢ (-).

There exists a uniform cost adjustment that makes B of overall minimum cost.

Proof : The proof is by double induction, with the outer induction on d. The
basis case, in which d = 2, follows from Lemma 3. For the inductive hypothesis, assume

that the theorem is true for all matroids that have elements of at most 4—1 colors. For the
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inductive step, consider a matroid of 4 > 2 colors. We prove the inductive step by

induction on k, the number of elements of color 1. We will refer to color 1 as green.

For the inner basis, in which ¥ = 0, we increase the cost of green elements by an
amount sufficient to ensure that no constrained ﬁ]inimum cost base contains a green ¢le-
ment. This is clearly equivalent to deleting every green element in‘the original matroid,
obtaining a (d-1)-color matroid. The Inner basis then follows _from the outer inductive
hypothesis. For the inner inductive hypothesis, assume that the theorem is true for all
constrained minimum cost bases with at most £—1 green elements. For the inductive

step, suppose £ > 0.

Suppose the overall minimum cost property did not hold for some base B, with k
green elements. We proceed to establish a contradiction. Consider the complete, nega-
tive, tight set D (B4,1) and the negative, tight set D, =D (B,1) — {8,}. Every base in
D, has k-1 green elements. By the inner inductive hypothesis, every base in ispan (D ;)
can be made of overall minimum cost. Thus by Lemma 6, we can adjust costs uniformly
such that every base in D is of identical, overall minimum cost in M, and no other base
in hspan(D,) is of overall minimum cost. By temporarily changing every color other
than green to red and applying Lemma 1, we conclude that for every base B in D there
is a base mate (B ) with k& green elements such that B and mate (B) are related by a swap.
By Lemma 3, the cost of green elements can be uniformly adjusted, without disturbing
the overall minimum cost property of any base in D,, such that every base in
D4 ={mate(B)|BeD,} is also of overall minimum cost. We have thus succeeded in
uniformly adjusting costs such that every base in Dy D, is of identical, overall

minimum cost. We now restore the original colors to the elements.
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Now consider any base B, in D,. Suppose B, is B|’s (green ,red) neighbor, and
mate (Bo) is By’s (blue ,green) neighbor. (Since, by our assumption, B ; cannot be made
of overall minimum cost and mate (B,) can, B, # mate (B ,) and therefore mate {B,) can-
not be a (red ,green) neighbor of B,). Let s, be the (blue ,green) swap that transforms
B, to mate (B,). Since B, and mate (B4) are of identical cost by our earlier cost adjust-

ment, ¢(s,) =0.

We claim that swap s, is available in any base in D 1~ In particular, s, is avail-
able in B,’s (green ,blue) neighbor (and B,’s (red ,blue ) neighbor) B4. This provides the
desired contradiction: B; @ s has the same color combination as B and the same cost
as B3, which 1s of overall minimum cost. Thus ¢(B,) < ¢ (B1), i.e., B, can be made of

overall minimum cost through a uniform cost adjustment.

To prove the claim, we consider the regular (red,blue ) swap sequence S , that, by
Lemma 8, transforms B, into B4, (The conditions of Lemma 8 apply by the inner and
outer inductive hypotheses, and the assumption about B;). Let |S;] =p. Note that
every base in the sequence of bases induced by B, and S, is in D, and therefore every
swap in S is of zero cost. We establish by induction on p that s remains available in a
base B that is obtained from B, as a result of performing a sequence of p zero-cost

swaps from a regular swap sequence.

The basis case for p=0 is trivial. For the inductive step, let §, = §,5,, where S5
is a regular (red ,purple) swap sequence of length p—1 consisting of zero-cost swaps, and
2 is a (pwrple blue) zero-cost swap. By the inductive hypothesis, 5, is available in
By=B,® §, which is in D;. Now suppose s, is not available in B; =B, @ s,.

Then, by Lemma 4, a (blue ,blue) swap s,” and a (purple ,green) swap s, are available
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in By Since ByeD,, it is of overall minimum cost. Therefore ¢(s,") 2 0. Since
cEN+cN)=cl)+c(s9 =0, c{s7)<0. Since B, @ s, has the same color
combination as B, it follows that ¢ (B,) S c(B4 @D s;) £ ¢ (B4), which is of overall
minimum cost. By our assumption about B, this is impossible. Thus s, is available in

B,

This completes the inductive step for & and the proof. OJ.

Theorem 2, (Dominance) Let M be a matroid with elements of d colors, d > 1. Let By
and Bz be constrained minimum cost bases with respect to ¢ (), such that i j-dominates

i”. Then every j-colored element in B is in By

Proof: If d = 2, then the theorem follows from Lemma 1 and the fact that each
constrained minimum cost base with respect to ¢ (*) is unique for its colors index. If
d > 2, we can construct a sequence of k =; —i{;’+1 constrained minimum cost bases
By, - -, By, such that each base in the sequence is a j-negative neighbor of its predeces-
sor. Consider any two bases B and B, that are consecutive in this sequence, with B, the
J-negative neighbor of B,. By Theorem 1, every constrained minimum cost base can be
made of overall minimum cost by a uniform cost adjustment. By Lemma 7, B and B,
are connected by a regular swap sequence S. Since S is regular, it is acyclic, which

implies that every element of color j in B, is in B 1. The theorem then follows by induc-

tiononk. OJ

To illustrate the properties of Theorems 1 and 2, we give an example of a graphic
matroid. The edges of the graph will be of three different "colors”, solid, dotted, and

dashed. Figure 1 gives the graph in terms of the three subgraphs of each color. Each
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edge is labeled with its cost. In Figure 2 we list the solutions to all possible subproblems,
each labeled with its cost. For example, the solution with one solid, one dotted, and two
dashed edges is the third solution in the fourth row, and is labeled with the cost 16. We
illustrate the overall minimum cost property by making base B be the unconstrained
minimum-cost base over all bases, where i is for example (1, 1, 2).-"This can be done if
we add 6 to the cost of every dotted element, and 4 to the cost of every solid element, To
illustrate dominance, consider the solutions for { = 0, 1, 3) Iand ir= (1,2, 1). (We
assume that solid is color 1, dotted is color 2, and dashed is color 3.) Here j; =3, ie,

there are fewer dashed elements in B> than in By, and at least as many elements of every

other color. Thus the one dashed edge (of cost 5) in Bzisin Br.

We next examine the impact of changing the cost of a single matroid element on
a constrained minimum cost base. We begin as before with an earlier 2-color result, and
proceed to generalize the result to d > 2 colors using the characterizadons just

developed.

Lemma 9 [FS, Thm, 2]. Let M be a matroid of red and green elements, with costs
extended lexicographically to break ties. Let B;_;, B; and B;,; be the constrained
minimum cost bases with {1, / and i+1 red elements, respectively. If one element in M
changes cost, then B;’, the new minimum cost base with i red elements, will result from
either B;_, B; or B;,, with at most one element replaced in the appropriate base.
Specifically, if a red element r, increases in cost, then B;’ is the minimum cost base

among the following three bases:

0. (or3). B;.
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L. B;—r +r,, where r, is the smallest cost red element that can replace r, in B;.

2. B;y1—11—8,, Where g, is the smallest cost green element that can replace r; in
Bis1-

If a red element r, decreases in cost, then B;’ is the minimum cost base among the fol-

lowing three bases:

0. (or 3). B;.

1. Bj~r,+r;, where r, is the greatest cost red element that r, can replace in B;.
2. B;_j~g,+r,, where g, is the greatest cost green element that r, can replace in
Bi_l.

The cases for a green element changing in cost are analogous. [

We now give the generalization of the above result from 2 colors to d colors.

Theorem 3. Let M be a matroid with elements of d colors, d > 1. Let By be 2 con-

strained minimum cost base with respect to cost function c¢(-). If one element in M

changes cost, then the new minimum-cost base B; will result from either By or one of its

neighbors, with at most one element replaced in the appropriate base. Specifically, if a
basic (resp., nonbasic) element e (f') of color j, increases (decreases) in cost, then one of

the following cases holds:

0. The new base B = Br.

1. B =By —e +f , where e, f both have color j; and f (e) is the least

(greatest) cost element of color j, that can replace e (be replaced by f) in By .

2. There is a color j,#j, such that B =Bz—e +f , where i"is a
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{color (f ), color(e))-neighbor of i and f (e) is the least (greatest) cost element of color

Jo that can replace e (be replaced by f)in By .

Proof. We first con-sidcr the case where a basic,melemcnt e of color j, increases in cost.
By Theorem 1 we can make By the unconstrained minimum-cost base, and therefore also
the minimum-cost base over all bases with exactly {; elements of color j;, by uniformly
adjusting the costs of all elements of colors j # j;. '}‘cmporaril'y change the color of all
Ji~colored elements to red and all other elements to éeen, so that By corresponds to red-
green base B;. We can then apply Lemma 9 with ¢ in the role of r,. If case O or 1 of
Lemma 9 holds, then the corresponding case of our theorem holds. If case 2 of Lemma 9
holds, then there is a red-green base B; ., that differs from B ,-J_" by one element g,. Let f
be the element corresponding to g, in the original matroid, and let j, = color (f ). Since
8. is the least cost replacement element over all green elements, f is certainly the least

cost replacement element of color /.

The symmetric case of a nonbasic element f decreasing in cost is handled simi-

larly. O

Note that Theorems 1, 2 and 3 hold if cost function ¢, (*) replaces cost function
¢(-) in the statement of the theorem. The use of ¢; () has the advantage that arbitrarily
many updates can be performed. This is not true for ¢ (), since changing the cost of one

element can affect the value of ¢, which will alter the cost of every element.

4. Efficient solution of the static problem

We show how to find the constrained, lexicographically minimum cost base B‘f
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consisting of q; elements of color f, for j =1,2,---, d, along with a uniform cost
adjustment vector & that makes B of overall, unconstrained minimum cost. For
matroids satisfying certain desirable properties, the time to do this will be
Od Tom,n)+ (d !)2 T (n,2)), where Tqy(m, 1) is the time to solve an uncolored, or
monochromatic, problem, and T (n,2) is the tirne to solve a 2-color problem, given the
constrained minimum cost bases for each color. Our algorithm DCOLOR first augments
the set of elements with elements of large cost as necessary so ﬂ;at there is a base of each
color, and finds monochromatic minimum cost bases for each color. This step accounts
for the first term of the running time expression. Algorithm DCOLOR then calls a recur-
sive routine DREC that is supplied with the 4 monochromatic bases and finds the desired
base and associated vector 8. The call to DREC accounts for the second term in the run-

ning time expression.

Our presentation is organized as follows. We first review the 2-color algorithm of
[GT], and explain how 3 can be computed in this case. We then augment the 2-color
algorithm of [GT] with lexicographic cost comparisons to help handle calls from our d-
color recursive routine. We finally present our recursive routine DREC to find a d-color

base.

The 2-color algorithm in [GT] is designed to find a minimum cost base con-
strained to have exactly 5 red elements, for some s. The algorithm calls a recursive rou-
tine to identify what is called a restricted swap sequence, which transforms a constrained
minimum cost base of green elements to a constrained minimum cost base of red ele-
ments. The restricted swap sequence contains swaps in order of nondecreasing cost of

the red element in each swap. The algorithm then sorts the swaps in order of nondecreas-
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ing cost of the swaps to yield an optimal swap sequence. The algorithm forms the
desired base by taking the first portion of the swap sequence and applying it to the green
constrained minimum cost base. Since the cost of a minimum cost base with i red ele-
ments is 2 convex function of i, the vector 5 can be readily determined by comparing the

cost of swaps adjacent to the desired base.

We augment the algorithm to enforce a lexicographic tie-breaking scheme. In
addition to its color, let each element have a unique index. Assign a tag to each element
consisting of the pair (f, index), where j is the original color of the element. Ties in ele-
ment costs are broken lexicographically using element tags. Ties in the costs of swaps
are broken lexicographically as follows. Consider two swaps (e, ) and (e, f") of equal
cost. Swap (e, f) will be lexicographically less than (e”, f ) if and only if either f ore’
has the lexicographically smallest tag from among e, f, ¢”, and f’. We can incorporate
this lexicographic tie-breaking scheme into the 2-color algorithm of [GT] at constant cost

for any comparison of two elements or two swaps.

We now describe our recursive routine DREC 10 find a d-color base. The input
to this routine is a vector 8 and the set of dn elements that is the union of the d mono-
chromatic bases. The routine uses a divide-and-conquer approach, recursing first on
fewer colors, and then again on fewer elements. The basis cases occur when either d = 2
orn < 2d%d-1). Ifd =2 we use the angmented 2-color algorithm. We will discuss the
other basis case later. Ifd > 2 and n 2 2d%(d-1), we do the following. Order the colors
so that ¢; < g4, for j =1, 2,-+-, d=1. Find the constrained minimum cost base B;
where i; = q;+| (gu+/-1)/(d-1)] for j=1,2,---,d-l, and iy = 0. This is a prob-

lem in d—1 colors, and is solved recursively by our routine. Note that i is defined so that
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for each color j *# d, By has at least| n/(d(d—1))] more elements of color j than B.
Along with determining B, the recursive call will supply the corresponding values (),
for j =1,---, d-2 that make By of minimum-cost among bases with no elements of

colord.

Once By and 8 have been determined, temporarily add 8(/) tc; the cost of each ele-
ment of color j in By, forj =1,---,d-2. Define f such that for any d-tuple i’, 0
= ]ij'— i; |, for j =1,--,d. Note that by their det:mition the functions fj(-) are con-
vex. For any choice of 7, By will be the minimum cost base among those with no ele-
ments of color 4, with respect to the adjusted version of the cost function ¢; (), defined

earlier,

Relabel the elements of base By with the color green, and label with the color red
the elements in the constrained minimum cost base of color d. Now use the 2-color algo-
rithm of [GT], augmented to use tags lexicographically to break ties in the costs of ele-
ments and swaps, to find the constmained minimum cost base B’ which has
| g4/(@d—1)] —1 red elements and the rest green. Even though colors are reordered to
satisfy g; < ¢;,, a permutation & can be chosen that undoes this reordering, and hence
makes the use of the tags enforce ¢;,(-). Thus any base generated by the augmented 2-
color algorithm will be a constrained minimum cost base with respect to ¢, (-), and thus

also ¢ (), in the original d-color matroid.

If we switch the elements in B back to their original colors, we get a base By in
which k; =| g4/(d-1)| -1 and kj2gtlforj=1,2,---, d—1. It is clear that the set

of color vectors consisting of § and its immediate neighbors dominate £ with respect to
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color d. By our dominance theorem, every element of color 4 in B is in BE’ and also
in every constrained minimum cost base that is an immediate neighbor of Bq-,. Let D be
the set of these elements of color d. Contract the matroid on set D, and decrease g, by
|[D]. Since g; 2[ n/d]|, the number ot.' elements is reduced by at least
L[ »/d] Kd-1)] — 1, which is at least [n/d%] if n = 2d%d-1). For d >2 and
n 2 2d%*(d-1), note that the new value of gq will be greater than 0. Solve the resulting
smaller d-color problem recursively, vielding B and 5. Form Bu D, and return this set

with 3 as the solution to the call on DREC.

We justify the contraction and union steps in the previous paragraph as follows.

Let M/D be the contracted matroid. Note that D < BE' and Bq-r-— D isabasein M/D.
Let B be a base in M /D with the same index vector as BE — D but not equal to BE -D.
Nowc(@B) > C(BE — D), since otherwise B{_) D would be a base of M with index vec-
tor ¢ but of smaller cost than B‘-?-, a contradiction to the definition of B 7 ‘We make use of
the requirement that D be a subset of each neighbor of BE in the following way. IfB’is
a neighbor of Bt? - D in M/D, then U D will be the corresponding neighbor of BE in
M. This guarantees that the uniform cost adjustment § that makes B; — D of overall

minimum cost in M /D will also make Bc? of overall minimum cost in M .

We now discuss the other basis case, when n < 2d2(d—1). Here we use the

weighted matroid intersection algorithm [BCGI] to find BE directly. We also need to
determine the 8(j) values. This can be done by considering each of the elements not in

Bé-. For each such element f, find the best swap in B i for each color j = color(f). We

infer the values of &(j) from the thresholds of these swaps as follows. Each best swap
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(e, f) yields a constraint d(color (¢)) — d(color(f)) < c(f) — ¢(e). Choosing the 8(j)’s
then reduces to the following shortest path problem. Consider 2 graph with 4 vertices
labeled from 1 to 4. For each constraint 8(j,) — 8(f,) < ¢; ;, there is an edge from j, to
Jy of cost ¢ ;.. In the case of multiple edges, 6n1y the shortest edge is retained. Then
choosing 8(j) to be the shortest distance from vertex d to vertex j, for all j, will give a
consistent set of deltas. The shortest distances can be determined in O (4%) time using
the Bellman-Ford algorithm in [L1]. This completes our presentation of the recursive

routine DREC for the d-color algorithm.

Lemma 10. Let M’ be a matroid of elements of d > 2 colors, that is comprised of the
union of 4 monochromatic bases. Let 4 be a valid index for a base in M’. Routine

DREC correctly computes a minimum cost base B 7 and a uniform cost adjustment 3 that

makes Bt? of overall minimum cost in M”,

Proof. Correctess can be established with a proof by induction. That the two basis
cases are correct follows from the correctness of the algorithms in [GT, BCG1] and the
additional comments in the text. The correctess of the routine for the non-basis case
follows from the arguments that the set D of elements contracted is nonempty and is con-

tained in BE and each of its neighbors. Thus the solution (5, 3) to the contracted prob-

lem can be augmented o (B U D, 5), the solution to the given problem. [

We next discuss the running times of DREC and DCOLOR. The efficiency of
DREC (and thus DCOLOR) depends on whether the mawoid M under consideration
possesses certain nice properties. Let T(n, 2) be the time to solve the 2-color problem in

M with elements recolored to just 2 colors, when the minimum-cost bases of each of the
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two colors are given. We identify the-following properties as desirable.
1. Independence testing in M is polynomial,
2. The time to contract dn elements in M is. O (d T(n, 2)).

3. For89<a <landn 24/(1-a),T(lan],2)<a T(n, 2).

We note that the matroids handled in [GT, G] pbsscss the desirable properties. In
particular, we discuss the motivation for assuming the bound of d T (, 2) on the time to
contract O (drn) elements in 2 matroid. By assigning color 4 + 1 to each element to be
contracted and solving 4 2-color problems involving color d+1 and each original color,
we can determine the elements in each monochromatic base in the contracted matroid.
The correcmess of this reduction follows from the definition of matroid contraction. It is
also necessary to determine the new atiributes of each element (e.g., endpoints of an
edge in the case of a graphic mamroid) in the contracted matroid. For all the matroids dis-

cussed in [GT), this can be done for each new base within time proportional to T (n,2).

Theorem 4. Let M be a matroid of rank n with m elements of 4 > 2 colors. Let
To(m, n) be the time to solve the uncolored (monochromatic) problem in M. Let
T(n, 2) the time to solve the 2-color problem in M with elements recolored to just 2
colors, when the minimum-cost bases of each of the two colors are given. If M has the
desirable properties, then the tme to solve a d-color problem in M is

Od Tolm, n) + (@1)? T(n, 2)). The space required is O (d>n).

Proof. Let T(n, d) be the time to solve a d-color problem in a matroid of rank n, given
that the monochromatic bases are provided. The intersection algorithm in [BCG1] uses
O (nm(n+I (mY+Hogm)) time, where [ (m) is the time to test independence. By assump-

tion, [ (n) = m* for some k. Since m = nd, this takes O (d*n (d>+d**)) time, which is
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O @4 (d>+d*) T(n, 2)), since T(n, 2) > n. Finding the swaps to identify 5(j) values
involves examining O (@) elements f,at0 (d3) time per element f, or O (d7) time alto-
gether. Forn 2 2d2(d—1), all work except for the recursive call on d—1 colors and the
recursive call on fewer elements is O (d T (n, 2)). Thus ford > 2 we have the following
recurrence.

T(n,d) S c,d+d*™¥)T(n,2) for n <2d4%d-1)

T(r,d) € cod T, )+ T(n,d-1)+T(|n(l ~/d®)|,d) for n =2d%d-1)
where the ¢;’s are constants, We claim that
T(n,d) < (c3(.:z'!)2 —c4d)T(n,2)

for ¢, = 2c, and ¢35 = (cy+cy)cs, where ¢ is the maximum value of (d7+d*H¥)/(d1)?

when 4 is chosen over the positive integers.

The proof is by double induction, with the outer induction on d, and the inner
induction on #. For d =3, we prove the claim by induction on n. For n < 2d%(d-1),
T(n, 3) < ¢,(34+3%%) T(n, 2) < (c5(3)%3¢,) T(n, 2), for the choices of c5 and ¢,
For n = 2d*(d-1),

T(n,3) £ 3¢,T(n,2)+T(n,2)+T(|8r/9],3)
which by the induction hypothesis is
< (Begtl) Tin, 2) + (c3(30% = 3¢y T(|8r/9], 2)

< (B¢c#+1) T(n, 2) + (36c3 —3cy) (8/9) T(n, 2)
< (36c3—3c) T(n, 2)

for the choices of ¢5 and ¢y.

For d > 3, we assume as the outer induction hypothesis that the claim is true for
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all &’,3 € d < d. We prove the claim by induction on #. For n < 24%d-1), T(n, d)
< e ( dHdY™Y T(n, 2) < (c4(dD*cqd) T(n,2), for the choices of ¢; and ¢, For
n 2 2d*(d-1), we assume as the inner induction. hypothesis that the claim is true for all

# < n. Wehave

T(r,d) € cod T(n,2) +T(n,d=1) +T(|n(l -1/d%)], d)

which by the inner and outer induction hypotheses is

< cqod T(n, 2) + (c5((d-1N2 = c4(d-1)) T(n, 2) +_(c3(d!)2 —cd) T n(1 -1/d%)], 2)
< cod T(n,2) + (c3@Vd)? = ca(d=1) T(n, 2) + (c3(d1)? = c4d) A -1dAT (n, 2)
< (c3d1)? = c4d + Cod+ + 4~ cyd(l =1d*NT (n, 2)

S (cy(d)? ~ c d)T(n, 2)

for the choice of ¢4. This completes the inner induction, and then the outer induction.

As for the space required, either basis case will take O (dr) space. For the non-
basis case, the space will satisfy the recurrence

S(n,d) < max{n,d +S(n,d-1),dn +S(|n(1-1/d?)], d)}

The second term represents the space to store the color requirements for the base with
d-1 colors and then to compute the base., The third term represents the space to
represent the contracted mairoid and then to compute a base in it. The solution to this

recurrence is O (d3n). O

Even though the running time involves factorials in terms of 4, it is better than
the running time for the weighted matroid intersection algorithm of [BCG1] whenever 4
is o ((log n)/(loglog n)).

We suggest a modification to the algorithm that may yield a faster algorithm in

practice. The 2-color algorithm in [GT] generates in succinct form the sequence of
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constrained minimum cost bases between the base of all one color and all the other color.
Instead of specifying the number of elements of color 4 that we want in B’, we take the
swap sequence generated, switch back to original colors and find the furthest base By
represented in the swap sequence such that ; > gj+l, for j=1,---,d-1. Atleastas

many elements will be contracted as before.

Finally, as an illustration, we apply the above algorithm to graphic matroids.
Here Ty(m,n) is O (m log B(m,n)) by the algorithm of [GGST], where B(-, -) is a certain
slowly growing function [FT]. T(n,2) is O(n logn) by the algorithm of [GT].
Independence is equivalent to acyclicity, and thus independence can be tested in O ()
time. Contracting O (dr) elements can be implemented in O (dn) tme. Therefore the
time to find a constrained minimum cost spanning tree  is

O (dm log BGn.n) + (dD?n log n).

5. Basic on-line update strategy

In this section we give a basic description of our data structures for on-line updat-
ing of a constrained minimum cost base in a d-color matroid. This work is an extension

of the updating approach in [FS] which handled 2-color problems. Let B;(") represent the
minimur cost base for colors vector i after h element cost updates have been per-

formed. We first discuss data structures that allow us to find quickly base B;“‘“) given
B;(”) and all of its neighbors after 2 updates. This operation, which relies on Theorem 3,
is crucial to our on-line update technique. However, to compute B;(’”'z) by this method,

we need to have B;("“) and its neighboring bases after A+1 updates, which in worst case
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means we must have B;("’), its neighbors after 2 updates, and also the neighbors’ neigh-
bors after 2 updates. We therefore discuss how to maintain larger groups of neighboring
bases, and introduce the notion of an arrangement of bases, generalizing the sequences
employed in the 2-color algorithm. Since updating large groups of bases directly would
be quite inefficient, we then discuss maintaining arrangements in an implicit form, which
allows for efficient updating. Finally, we illustrate the technique with the example of a
graphic matroid. Although our presentation of the d-col(;r update technique is
sufficiently detailed to be self-contained, familiarity with the 2-color update technique of

[FS] will greatly help in understanding the details.

We recall from [FS] the definition of an update structure for a base in a matroid
with uncolored elements. An update structure for a base B is a data structure which sup-

ports the following operations:

maxcire (f ,B): finds the maximum cost element in the circuit C (f, B).
mincocirc (e B): finds the minimum cost element in the cocircuit C (e, B).
swap(e.f ,B): convents the update siructure for B into an update structure for
B —e + f (assuming thatfef?andeeC(f, B)).
Let U (m ,n) represent the maximum of the execution times of these three operations for a
particular matroid. Thus 2 minimum cost base in a matroid with uncolored elements can
be updated in time at most 2U (m,n) when the cost of a single matroid element is

modified. Let S (m,n) be the space required by the update structure.

In the case of a matroid with elements of 4 colors, the update smucture is general-
ized to allow the color of the appropriate element to be specified. Thus for

;=12,---,d, the operation maxcirc (j f ,B) finds the maximum cost element of color
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J in C(f, B), and mincocirc(j,e ,B) finds the minimum cost element of color j in
C (e, B). The operation swap (e .f ,B) is as before. The generalized update structure for
d-colored matroids can be derived from the corresponding structure for uncolored
matroids in a straightforward manner. For each field relating to costs in the uncolored
update structure, maintain 4 fields in the new structure, with the j-~th field accessed for
operations on color j. The values in the fields should be such that the cost of an element
not of color j should be treated as — in handling a maxcirc(i;-,-), and oo in handling a
mincocirc(f,.;’). The space requirement of the generalized update structure is then
O (dS (m n)).

Using Theorem 3, a generalized update structure can be used to find an updated
base B from Br?(h) and its neighbors after 4 updates. For instance, if z basic element
e increased in cost, then BE(HD would be the least cost base in the set consisting of Bg‘)
and B;(") — e + mincocirc(j e ,B;("')), where either the color of ¢ is not j, and By is a
neighbor of BE containing one fewer element of color j, or j is the color of ¢, and Bris
BE' If a cobasic element f decreased in cost, then B‘T(’”l) would be the least cost base in
the set consisting ofBE(") and B#*) — maxcirc (j .f B + f, where either the color of f
is not j, and By is a neighbor of Ba containing one more element of color f, or j is the

colorof f, and Byis B - The update is concluded by performing the appropriate swap .

As stated at the beginning of the section, maintaining just BE(") and its neighbors
after » updates is not enough, since there is not sufficient information to compute

efficiently all neighbors of BE(’”'” after z+1 updates. For [ > 0, let Ry, be the set of
bases {B7| iJ-' < £j+l -1,j=1,2,---,d}. We shall represent groups of bases in sets

such as Ry, which we call arrangements. We say that arrangement Ry, is centered on i
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and has radius . Our update procedure is periodic with period z. By this we mean that
for the z-th element cost change the update procedure handles data in the same form
(e.g., radius of arrangement) as the data during the (2+z)-th element cost change, for any
h > 0. Here, z is a parameter that will be specified later, when we discuss the running
time. Our update procedure consists of three parts. For claﬁry, we will uncover the parts

one by one.

Consider £ to be an integer in the range from 0 to z. Suppose after the A-th
update we kecp an arrangement Aé") = Ra(flz)—h- The superscript on R and on A, indi-
cates how many element cost changes have been supplied, and will be omitied unless the
context demands it. As long as h < z, there is sufficient information to generate
Ré";ﬂ}_l , no matter what type of element cost change occurs. Thus z—1 element cost
changes can be successfuﬂy handled, but when the z-th update occurs, JS"i is lost. This

follows, since A§*~D

is an arrangement consisting of one base BE(“‘D, so there is
insufficient information remaining in order to compute Baﬁz). We say that Ay decays dur-
ing this sequence of z updates. Of course, for large z, explicitly maintaining and updat-
ing the arrangement A, requires considerable time per cost change. In due course, we

will show how to circumvent this problem by introducing an implicit representation for

Ag.

When Ay has completely decayed, we need to replace it by an arrangement con-
taining many bases. But this means that certain work must be done in advance. We
therefore discuss the second part of our solution. We thus now consider unrestricted
values of . Whenever A is initalized, i.e., A mod z = 0, we initiate a computation to

solve a number of d-color problems on the current matroid, in order to generate a new
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arrangement of bases, given the minimum cost base after & updates containing only ele-
ments of color j, for j =1,2,--+, d. Note that any constrained base after # updates
contains only elements from the union of these monochromatic bases. Let P (n,d) be the
tiroe required to determine for 2 given d-color problem an arrangement of bases in an
appropriate form. Assume that copies of the d monochromatic bases are maintained
from one update to the next. Since just one of these monochromatic bases changes, a
cost of I/ (m ,n) is charged to the update. Each static d-color prc;blcm will be solved dur-
ing the time in which Ay decays, by performing O (P (n,d)/z) work over each of z update

steps.

However, when all static 4-color problems are completed, after # = kz updates,
we cannot just reconstitute A p with the appropriate bases. This is because each such base
will be out-of-date by z clement cost changes, since the element costs used in solving the
static problems were exiracted after (k—1)z updates, and z further element cost updates
have been applied to the matroid in the meantime. Thus we introduce the third part of
our update strategy. We use a second arrangement A ;, centered at B and initially with
I = 3z, which is extracted from the out-of-date solution to the static d-color problems.

Thus when A is created after h = &z updates have occurred, we have A 1(") =R E(f‘S'z'z ),

Since the bases in A {%) will initially be out-of-date with respect to A§#? by z
element cost changes, we need to bring them up-to-date over the next z update steps of
Ay, using the z element cost changes that have not yet been applied to A;. These previ-
ous element cost changes can be saved in a queue as the static 4-color problems are
being solved. Thus, when AI(""“’) is created, the queue will contain element cost changes

numbered (k-1)z + 1, (k—1)z +2,...,kz. Consider the A-th update step, that
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transforms A *~1 to A{"). Let & = kz+r, where 0<r<z. We first add the k-th element
cost change to the rear of the queue. We then delete the two element cost changes
(namely, those numbered 2—z+r—1 and 2—z+r) from the front of the queue and apply
them both to A {*~V, obtaining A {*), Thus A{") will be the arrangement RYGED. A,
will then become up-to-date with respect to Ay, and also be of the correct radius, pre-
cisely when A g has completely decayed. We then replace A 4 by the current arrangement

Al" h

We can view our three-part update technique as three concurrent processes going
on at once. Times at which # > 0 and # mod z =0 are regarded as rernewal points for
Ag. At arenewal point, Ay has completely decayed, A, has caught up with A4 4 and can
rcp‘I.ace it, the static d-color problems have completed from which a new A, can be con-

stituted, and new static problems can be initiated.

We now discuss how to avoid the expense of repeatedly updating each base in the
arrangements Ag and A;. We do this by maintaining an implicit representation of each
arrangement. An extremal base of color j of arrangement Rz; is a base By where
i; =q; — @-1)(-1) and ijz=¢qp+1-1for j*# j. We denote this base as BEJJ‘ We

also use the base B~ and call this a near-extremal base of color j. Forg =0, 1 and

qd-14

0sr <z leta=g(z—r), and b =z-r+g(2z-r). For each arrangement Asf") with

h=kz+r,0<r <zandg =0, 1, except for when g =0 and r = z—1, we maintain for

(h—a)

75-1; and its j-negative neigh-

each color J, Bi(f‘b‘j) and its j-positive neighbors, and B
bors. For d = 3, this amounts to four bases near (and including) each of three extremal
bases, for a total of twelve bases. Ford > 3, there will be 2d bases near (and including)

each of 4 extremal bases, for a iotal of 242 bases. We call the set of these bases the
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extreme bases. For each extreme base we maintain its update structure. Using the algo-
rithm from the previous section, each of the 242 bases can be found in T'(x,d) time, and
thus P(n,d) is O(d*T (n.d)). (We provide a better bound on P(n.d) in the proof of
Theorem 5). A symbolic representation of solutions to all problems for a matroid with
d =3 and n = 24 is given in Figure 3. An arrangement centered at the base marked with
an "X" and with radius / = 4 is shown in bold, with the extreme bases shown as the bold-

est. The extremal bases are the bases at the corners of the arrangement.

We now describe how the %4-th element cost change (involving an element of
color j) is applied to the implicit representation of an arrangement Ag("_l) to obtain the
implicit representation of the updated arrangement A 8("). We first update the mono-
chromatic base of color j, and suitably modify the update structures of the exmeme bases
to reflect any change in this monochromatic base. We then compute new versions of a
particular set of 4 extreme bases, one corresponding to each color, that we call the cardi-
ral bases of the arrangement. We then compute a contracted matroid associated with the
cardinal bases that is significantly smaller than the original matroid, but one that includes
all the necessary elements. We finally extract and solve several static -color problems
in the contracted matroid; each static problem generates one extreme base in the implicit

representation of the new arrangement.

The cardinal bases are chosen depending on the type of element cost change. For

each color j, either the extremal base Bg;)_r ; and its j-positive neighbers, or the near-

extremal base BE(";)_ rel, and its j-negative neighbors are used to compute the cardinal

bases. If the cost of a basic element of color j” increases, then the cardinal bases are gen-

erated using extremal bases and their j-positive neighbors. In this case the cardinal bases
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will be B ., and the (j’, j)-neighbor of Bf*) . forall j # j’. We have previously

discussed how B%) .. may be obtained from BY:~V . and its j*-positive neighbors.
When j = j’, let B denote BE Zr and B’ denote B's (', j)-neighbor. Since the com-
plete, positive, tight set consisting of B’ and its: J’-positive neighbors is identical to the
complete, positive, tight set consisting of B and its j-positive neighbors, the sparse
representation of the arrangement has sufficient information to generate the updated ver-
sion of base B’. If the cost of a nonbasic element of color j” decreases, then the near-

extremal bases and their j-negative neighbors are used. In this case the cardinal bases

will be Bgy_,_l j+ and the (j, j*)-neighbor ofag;lr_l jforallj = j’.

The details of how the cardinal bases and their associated contracted matroid are
computed depends on the type of matroid. There are certain matroids (for instance,
graphic matroids) for which update strucrures for bases in a contracted matroid can be
maintained efficiently when elements are inserted into or deleted from its associated con-
traction set (the set of elements contracted). In such cases, we can save both space and
time if we maintain a contracted matroid associated with the extremal bases of each
arrangement. The contraction set consists of the union, over all colors j, of the j-colored
elements in the extremal base of color j. Note that each element in the contraction set is
common to all bases in the arrangement. In the contracted matroid associated with the
cardinal bases, cardinal bases play the roles of extremal bases in the above definition.
Once the cardinal bases are determined, the contracted matroid associated with the cardi-
nal bases can be derived from the contracted marroid associated with the extremal bases
by performing, for each color j, insertions and deletions corresponding to all elements of

color j in the symmertric difference between the extremal and cardinal bases of color j.
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The time to compute these elements is charged to the cost of (subsequently) solving the
static d -color problems. For matroids where efficient maintenance of contracted bases is
not possible, we instead explicitly maintain the contraction set, and contract the elements

each time the contracted matroid is required.

We discuss further the case in which the contracted matroid is explicitly main-
tained. If the update potentially involves a change in the conl:rz_lction set, the contracted
matroid associated with the extremal bases must be modified before computing the cardi-
nal bases. Suppose an element ¢ of color j in the contraction set increases in cost. If ¢
remains in the monochromatic base of color j, then e should be deleted from the contrac-
tion set (yielding a contracted matroid of rank one greater), and the update structures for
the extreme bases modified accordingly. If e is replaced by an element ¢’ in the mono-
chromatic base of color j, then e should be deleted from the contraction set, and then
replaced by ¢’ in the contracted matroid, with the update structures for the extreme bases
modified accordingly at each step. When an element ¢ is removed from the contraction
set, not only does ¢ return to the contracted matroid, but also one element of each other
color, which were deleted in various previous contractions. To facilitate identifying
these other elements that should also return to the contracted matroid, we maintain for
each color j’ a base B"; The base B ;- is the union of the contraction set with the ele-
ments of color j” in the contracted matroid. When element e of color j is removed from
the contraction set, then for each j* = j perform a mincocire (j', e, Efj:) to identify the

element of color j* that should return to the contracted matroid.

Suppose an element f of color j decreases in cost. If f is in the monochromatic

base of color j, but is in neither the contraction set nor the contracted matroid (such an
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element would have been deleted when some element in the contraction set was con-
tracted), then there is some element ¢ in the contraction set, which if deleted in the con-
traction set would cause f to be in the contracted matroid. The element ¢ is found by
performing & maxcirc(f, f, B ;), and is then deleted from the contraction set, with the
update structures for the extreme bases modified accordingly. Finally, if f is not in the
monochromatic base of color j and replaces an element £’ in the monochromatic base of
color j, then we handle £’ as though it were an element that iI.lcreascs in cost and was
replaced by f in the monochromatic base of color j. The cardinal bases can now be
selected from the bases obtained by performing the appropriate update operatons on the

extreme bases, and the associated contracted matroid obtained as previously described.

Each extreme base in the new arrangement is then generated by extracting and
solving a d-color problem in the contracted matroid associated with the cardinal bases.
We also derive the contracted matroid associated with the extremal bases of the new
arrangement from the contracted matroid associated with the cardinal bases of the old
arrangement. As before, this is done by computing symmetric differences. The size of

the contraction set associated with the extremal bases of an arrangement of radius / is

d
2. (g; — @-1)(-1)) =n —d(d-1)(!-1). Since the contracted elements are indepen-
J=1

dent in the original matroid, the resulting contracted matroid will have rank d(d—1){({—1).
We also note that since the original matroid has a monochromatic base of each color, so
will the contracted matroid; thus the contracted matroid, like the original matroid, can be
viewed as the union of 4 monochromatic bases. In what follows we will assume that,
whenever appropriate, update structures are maintained for these smaller monochromatic

bases in the contracted matroid.
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To summarize, each update step 4, where & = kz+r and 0 £ r < z, involves the
following operations. The monochromatic minimum cost base is updated for the color of
the element whose cost has changed. The arrangement A §*~1) is transformed to A §{® by
applying the k-th element cost change to it as follows. The cardinal bases are computed.
Either the-contracted matroid or the contraction set is updated, and in the latter case, the
elements in the contraction set are contracted. Let the computation of the cardinal bases
and the appropriate contraction structures be completed in Q(.n ,d,z) tme. A total of
2d%+1 static d-color problems of rank n’ = ©(d?z) are then extracted in the contracted
matroid and each solved in T (d%z,d) time, generating B E"') and the extreme bases for the
new arrangement Aé"). For those matroids in which the update structures for the con-
tracted matroid can be maintained efficiently under element insertion and deletion, the
update structures for the extreme bases in Aé"‘” are modified via swaps to yield update
structures for these new bases, resp. We then have the implicit representation for Aé")

after the update step.

Finally, A #~1 is transformed to0 A {#), The #-th element cost change is added to
the rear of the queue of element cost changes that we maintain for A;. Two element cost
changes from the front of the queue are then deleted and each is applied to A {*"V in the

same manner as the cost changes were applied to A o, obtaining A {#7

Theorem 5. Let M be a martroid of rank n with m elements of d colors. Consider con-
strained minimum cost bases with respect to cost function ¢y (-). The on-line update
problem for such bases can be solved in O(d*U(m,n) + Q(n.d.z) + d*T (d*z,d)

+d T(n,d)z + d%T (d%2,d)iz) time and O (dS (m ,n) + d>(d%z+n)) space.
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Proof. For each of the O (d2) extreme bases of each arrangement, an update-operation
will be performed. Then d cardinal bases in each arrangement are selected from these
O (d?) updated bases. An updated arrangement A *) is generated by solving O (d?) staric
d-color problems. This can be done by finding the new extreme bases of the arrange-
ment for each color on a contracted matroid of rank n° = O (d?%z). Tle space required for
computing one of these bases is O (d3(d%z)), which is O (dsz) for computing all them,
since they are computed one at a time. The space required for ‘storing the update struc-
tures for each of the extreme bases will be O (d 3z), or O(d 5z) overall. Solving the static
d~color problems will take time O (d2T(d%z, d)). Thus each update step in A or A ; will

take O (d%U (m,n) + Q(n,d z) + d*T(d% ,d) time.

In addition, O(dz) static d-color problems of rank » must be solved over z
updates in order to regenerate the arrangements. For each color j, compute the extremal
bases of color j. Then contract the matroid to one of rank n” = O (dzz ). The remaining
extreme bases can be found in the contracted matroid. Thus the time spent per update
step on solving these static d-color problems is O ((d T (n.d+d*T (d%*z d))/z). The
static d-color problems of rank » will be solved one at a time and thus require O (d°n)

space overall. []

To illustrate the above technique, we describe the construction of update struc-
tures for graphic matroids and analyze their efficiency. The update structure for a
minimum spanning tree uses dynamic tree data structures [ST] and two-dimensional
topology trees [F]. The former allows us to perform the operations maxcirc and swap in
time O (log n). The latter allows us to perform the operations mincocirc and swap in

time O (¥m ). Thus for this update structure U (m,n) = O (Nm'). The space used by the
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A contracted matroid is maintained in the form of a contracted graph. A topology
tree [F] is used to maintain a heap of the edges incident on each vertex of the contracted
graph. Each such vertex comesponds to a tree--strucrured connected component of con-
tracted edges from the current constrained minimum spanning tree. "Since topology trees
of size d2z support insert, delete, split and merge operations in O (log(dzz )) time, updat-
ing the contracted graph can be implemented efficiently. Given the monochromatic
bases, the time to solve a static d-color problem is T(z,d) = O ((d !)2 nlogn). We

therefore have the following theorem.

Theorem 6. Let G be a graph with n vertices, and with m edges of d colors. Consider
constrained minimum spanning trees with respect to cost function ¢; (). The on-line
update problem for such spanning trees can be solved in O (d%¥m + dXd1)*\n log n)

time and O (dm + d°n) space.

Proof. We have U(m,n) = O(Nm), T(n,d) =0 (d!)?n log n) and Q(n,d,z) will be
0 (d*Ud?*z.,2) + d¥og(d*z ), which is O (d%z1/%). Each update step in the arrangements
will take O@2¥m + d*(d)? z log(d?z)) time. We must also replenish the second
arrangement by solving a number of static problems of rank n, which will cost
O((d(@")’n log n + d*(d1)*zlog(d%z))z) time per update. We choose z = O(n1%/d>?),

The space bound follows from our choice of z and S (m, n). O

6. A recursive representation of arrangements

We can achieve better update times by using a more complex representation of
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arrangements. Consider the example in the last section involving graphic matroids. We
can use a two-level approach for representing A g and A ;. Consider update step #, where
h =kz+r and 0 €£r < z, Recall that Aé") = 'Rc?(-}:r)—h' where I{t‘.-‘f is the set of bases
{BE—,lij’ SiH-1,j=1,2,---,d} Arrangcmént Ag was represented implicitly by the
extreme bases, their associated data structures, and either the contracted matroid or the
contracton set corresponding to the extremal bases. On an upda_Lte step in A, d cardinal
bases were determined, the contracted matroid (or contracton set) was updated using
them, and 2d%+1 static problems of rank n” = O(d%z) were solved to find the new

extreme bases.

In our modified method, a base at each extreme is computed as before. However,
instead of solving a number of static problems with respect to A, on each update step in
Ag, we do the following. We maintain smaller arrangements Ag;, j =2, 3, -+, d+1,
centered near the extreme bases of A, and two smaller arrangements A gy and A cen-
tered at B 7 We call these smaller arrangements subarrangements. Only when the subar-
rangements Ag;, j =2, 3, -+, d+, decay to single bases are a number of static prob-
lems solved with respect to Ag. Agg and Ag; are maintained to be able to access B

meanwhile,

Let loj be the radius of subarrangement Aoj, j=0,1,---,d+l. For
J=2,-+-,d+], Ag; will be centered on q-'; where ¢ = q,—(d—-1){{o~lg;) for k =
and gy = qp+lo-lg; for k = j. Lety be a parameter to be specified subsequently. Ata
renewal point for Ag;, loj=y if j=0, lo=3y if j=1, and [p; =2y if
j=2,3,"-+, d+l. Each subarrangement is represented implicitly by its 2d? extreme

bases, their associated data structures, and the contracted matroid (or contraction set), If
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the contracted matroid is maintained, the extreme bases are of rank n° = &(d%z); other-
wise the bases are of rank n. Afterthe Ag; ,j =2, -, d+1, have decayed to radius 1,
2d3 static problems with n* = d(d-1)(I—{y;) will be inidated to determine the extreme

bases for the new A, j = 2, -, d+1.

At a renewal point for Ag, Agy will be up-to-date with ;cspcct to Ag, Ag; »
j=1,2,---, d+l, will be out-of-date with respect to Ay (and therefore Ay) by y ele-
ment cost changes. Times at which # mod z > 0 and % mody =0 are regarded as
renewal points for for Ag;, j =0, 1, - -+, d+1. Atarenewal point for A o, A gg has com-
pletely decayed. Ay, has caught up with Agy and can replace it, arrangements Agy; ,
j =2,---, d+1, have caught up with A o, but have decayed to single bases, the (d+1)24%
static problems have completed, which yield the extreme bases for the new arrangements
Ag; ,j=1,---,d+], and a new set of static problems can be initiated using the single
bases from the previous Ag; , j =2,- -, d+1. As before, two update steps in an out-
of-date arrangement will be performed for every update step in A;. We will assume that
zmody =0,s0that Ag;, j = 1,2, - -+, d+], will catch up with A, precisely when A
reaches its next renewal point. Arrangement A, is represented in a similar fashion.
Subarrangements Ay; , j =1, -, d+1, will initially be out-of-date with respect to 4,
by y element cost changes. Since A is itself out-of-date with respect to A, four update

steps will be performed in eachof Ay; , j =1, -+, d+1, for every update step in A .

We discuss how to perform an update in A, The update for A, is similar. For
each of the extreme bases of A, an update operation is performed. Then the d cardinal
bases are selected from those O(dz) updated bases. The contracted matroid (or contrac-

tion set) corresponding to the cardinal bases is computed. In addition, for all extreme
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bases of Ag; that are not extreme bases of Ay, an update operation is performed. For
each group of d bases in this set, a cardinal base is computed. Then, for each
j=0,1,---, d+], the contracted matroid (or contraction set) corresponding to the car-
dinal bases of Ag; is computed. A total of 24%+1 static d-color problems of rank
n’ = ©(d%) are solved for each of the d+1 subarrangements of A’ From the extrerne
bases of the AOJ- that correspond to extreme bases of Ay, swaps that transform the old
extreme bases of A ( into the the new extreme bases can be infer;‘ed. The new contracted

matroids (or contraction sets) for A ; and its subarrangements c¢an then be determined.

In addition, the following static problems must be solved over a sequence of
updates. To generate the extreme bases for 4, O (d?) static d-color problems of rank n
must be solved over z updates. To generate the extreme bases for A,;, ¢ =0, 1 and
j=1,2,---,d+l, O(d> static d-color problems of rank n’ = ©(d%z) must be solved

over y updates.

Theorem 7. Let G be a graph with n vertices, and with m edges of 4 colors. Consider
constrained minimum spanning trees with respect to cost function ¢ (*). The on-line
update  problem for such  spanning trees can be solved in

O (@ Nm + d"P(d)? nPlog n) tme and O (dm + d°n) space.

Proof. For each of the O(d?) extreme bases of arrangements Ag and A;, an update
operation will be performed. Then 4 cardinal bases in each arrangement are selected
from these O (d2) updated bases. The time required is O (d%U (m,n)). For each of the
O (d>) extreme bases of subarrangements Ay; and 4 ;, an update operation will be per-

formed. Then d new extreme bases in each subarrangement are selected from its O (dz)
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updated-bases. The total time required is O (4°U (d%,1)). An updated arrangement Ay
is generated by solving O (d?) static d-color problems. This can be done by finding the
extreme bases for each color on a contracted matroid of rank n” = O (d zy ). Thus solving
the static d-color problems will take time O (d>T (d%, d)). Thus each update step in the
arrangements and subarrangements will take O (dzU mn)+O(nd,z) + d3U(d2z,n)

+ d? T (d% ,d)) time.

In additdon, O(d?) static d-color problems of rank n must be solved over z
updates. As in the proof of Theorem 5, this will take O ((d T (n,d Hd T (d2z.,d))/z) time
per update step. Also, O (d°) static d-color problems of rank ©(d 2;) must be solved over
y updates. The time spent per update step on solving these static d-color problems will
be O ((d3T (dzz ,d)/y). The time spent handling each element cost change is O (dzwlr_n_
+d(@!? ((n log n)z +d%Gz log z)y + d* logy)). Choosing z = ©@(n?/d*?) and

y = ©(n'31d*?) yields the time claimed by the theorem.

For the space, proceeding in a fashion similar to that in the proof of Theorem 3,
we obtain a bound of O(dS(m, n) + d3(n + d°z)), which is O(dm + d>n) for our

choice of z and S (2, n). O

For fixed d, the ;imc for the above approach is limited by the O (¥m ) time to
update a minimum spanning base in an uncolored graph. If the graph is planar however,
then the update time in an uncolored graph has been shown to be O (log n) in [GS], and
hence not a limiting factor. We thus extend recursively the implicit representation of
arrangements. The representations will be of two types, centered and uncentered. Let
a(d) be a value depending on d, which we shall specify subsequently. An arrangement,

centered or uncentered, of radius at most a(d), is the set of extreme bases, their
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associated data structures, and the contracted matroid (or contraction set) corresponding
to the extremal bases. Let f (-) be a function to be defined subsequently. For an arrange-
ment A, of radius /4 initially equal to z > a(d), a centered representation consists of the

above items, plus:

1. a centered representation of a subarrangement A ;5, which is centered on the
same position as Ay, with radius ;4 initially equal to f (z), and which is up-to-date with

respect to A 4.

2. a centered representation of a subarrangement A4 5y, which is centered on the
same positon as A,, with radius [, initially equal to 3f (z), and which is out-of-date

with respect to A; by [, element cost changes.

3. uncentered representations of subarrangements Alj yJj =2,--+,d+l, which
are positoned at the exremes of A,, with radius /,; initally equal to 2f (z), and which

are out-of-date with respect to A, by [;5 element cost changes.

4. 24 static problems which have just been initiated. Of these, 2d will be of rank

n’ = ©(d?z), and the remainder of rank ©(d%f (2)).

An uncentered representation consists of all items in a centered representation

except items 1 and 2.

Let fOU) =x and FDx) = f (F¥V(x)), for i > 0. Then we choose the func-
tion f (-) such that £ “*z) mod f®n) = 0 for i > 0. This can be done easily by forc-
ing f (-) 1o be a power of 2. This choice of f (-) ensures that each ({-+1)-st level arrange-
ment will have caught up with the appropriate i-th level arrangement at an {-th level

renewal point.
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Let T¢(z) and Ty (z) be the update times for centered and uncentered arrange-

ments of radius z, respectively. The update times are described by the recurrences:

Ty(z) = cd>(dN)? (z log z)If (z) + 24Ty (2f (2))

To(z) = cd>(d")y? (z log z)if (z) + 2dTy (2f (2))

+2TcGf @) +Tc(f ()

where ¢ is a constant. The first term in each recurrence represents the tirne spent per

update step on solving the static problems of rank ©(d%z) and updating the data struc-
tures. The remaining terms represent the time for recursively updating subarrangements
of radius &(f (z)), and reflect the fact that two updare steps are required for out-of-date

subarrangements for each update step in the primary arrangement.

Theorem 8. Let G be a planar graph with » vertices, and edges of d colors. Consider
constrained minimum spanning trees with respect to cost function ¢; (-). The on-line
update problem for such spanning trees can be solved in O(d3(d!)?(logd)™?

221y g™ (160 11132) time and O (dn) space.

Proof. We have U(n,n)=0(logn), P(n)=0(n logn) and Q =0. If we choose
fx) =02 2leld) g and observe that NTog f (x) =

Vlogx — V2 iogd) log x < Ylog x — (log(2d))/2, then both Ty (n) and T (n) are
O (d3(d)*(ogd V2 272 Re@) loe 7 (165 1 )372), provided a(d) is small enough, so that
the basis of the recurrences satisfies these bounds.

For the space, the recursive representation has at most (d +2)' subarrangements

each using data structures of size @(f(”(n)) at level . With

d+2 <24 <22 Teed) log , the sizes of these structures sum to O (z) over all levels.
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Solving for n in the above inequality suggests the choice of a(d)=+2d. Since
arrangements of radius at most a (d) are represented explicitly, the space for representing
arrangements is O (n), aside from the space for the static problems being solved. At
level i, there are ©(d! **) static d-color problems of rank &(f X)) and O@?* l') static
d-color problems of rank &(f “*(n)) being solved. These static .problems are solved
one at a time, and the space requirement for computing and recording their solutions

sums to O (d>n) over all levels.

If the general matroid intersection algorithm is used for updating arrangements of
radius at most a(d) in the centered and uncentered representations, then the basis in the
recurrences is polynomial in d. Thus the basis satisfies the claimed bounds on Ty (n)

and Te(n). O

7. An Applicaiion

The techniques of section 4 can be used to solve the minimum spanning tree
problem when 4 vertices have degree constraints. Assume that the vertices with degree
constraints are indexed v,, v, ' -, V4. Label each edge incident on two constrained
vertices with color 0. Label each edge incident on exactly one constrained vertex v; with

color i. Label each edge incident on two unconstrained vertices with color d+1.

Since there are d constrained vertices, there are at most d(d—1) / 2 edges of color
0. In turn we consider every subset of edges of color O that is a forest, such that the
degree of each v; in the forest does not exceed its degree requirement 7;. We generate a

candidate solution for each such forest. The idea is to include all the forest edges in the
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solution and then choose remaining edges so as to satdsfy the degree constraints in a
minimum cost fashion. The minimum cost solution over all such forests is then the

minimum spanning tree satisfying the degree constraints.

For each forest, we generate a reduced -graph as follows. Make a copy of the
graph, and initialize r] to be r; for i=1, 2,-- -, d. Delete from the graph all edges of
color O which are not in the forest. For each edge (v;, v;) in the forest, decrease by 1 the
degree requirements r; and r}. Then contract the remaining edges of color 0 in the graph.
To get the candidate solution corresponding to this forest solve a (d+1)-color static prob-
lem on the reduced graph, where r{ edges of color i are desired, for i=1, 2,--+, d, and

the remaining edges are of color d+1.

Theorem 9. The time to solve 2 minimum spanning tree problem with degree con-
straints on d of the vertices is O(Ty(m, n) + ((a’+1)!)2 dd_lT(n 2)), and the space is
O (d*n).

Proof. For each forest, the set of edges of any color j > 0 in the corresponding (d+1)-
color problem is the same. The only monochromatic minimum spanning tree that cannot
be inferred by definition is the one of color d+1. Thus the first term reflects the time to

solve a minimum spanning tree problem on edges of color d+1.

We next derive a bound on the number of undirected labeled forests, and thus the
number of (d+1)-color problems that must be solved. We first count directed labeled
graphs in which each vertex has outdegree 1, with self-loops allowed. This quantity is an
upper bound on the number of directed labeled forests, and is a loose bound since it
allows directed cycles other than self-loops. The edge directed out of each vertex can be

any one of d vertices. Hence at most d¢ such graphs are possible. To obtain a slighty
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- tighter bound for undirected labeled forests, observe that at least one vertex in a directed
labeled forest is a root. In counting undirected labeled forests, it makes no difference
which vertex this is. So in generating the above directed labeled graphs we arbitrarily
choose vertex v, to be a root. Thus we choose from among d possible edges out of each
of the remaining 4—1 vertices, which means at most d%~! undirected labeled forests are

possible.

The space required is dominated by the space needed to find one (d+1)-color

spanning tree. O
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Figure 1. Subgraphs of a weighted graph with edges of three colors:
a. subgraph of solid edges
b. subgraph of dotted edges
¢. subgraph of dashed edges
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Figure 2. Solutions to all minimum spanning tree problems from Figure 1:
The tree with i solid edges, j dashed edges, and 4—i—j dotted edges
is the (j+1)-st tree in the (i +j+1)-st row from the top.



)
OO0
00O
O00O0.
O000O0
Q00000
O00000O0
O000000O0
O0000O000O0
O00000000O0
O000000000O0
O00000000O0O0O0
OC00000000DO0O00O0
COoO0O0QOO00000000OC
oNoNoNeXoJoYoXoNoXoRoXo o NoNo
oNoNoNoRoNoNoXoNoNoNoNoNoNoNO NG
eNoNeNoNeNeoRoYo Yol XoNoNeRoNoNoNo)
cNeNoNoNeNoNeNoXoNoXoXoXoNoNoReoNoNe)
oNoNoNeNoNoNoNeNoJoXoXoXoNoRoNoNeNoXe)
el oNeNoNoNoNeNoNoRoYoYoNoNoNoNeNoRoNoXe)!
oNeNoNoNoNoNoNeNeNoNoloXoNoRoNoNoNoNoNeXo!
O0000000000000O0O0D0O00O0OO0
cNoNoRoNoRoNoRoRoNoNoNoX o JoReRoNoRoNoRoNoNeoNo)
cNoNoNoNoNoNoRoNeRoNoNoNeNoNoNoNeNoRoRoNe RoNoXo)
O0000000000D00ODOOOOOOOO0OO

Figure 3. Symbolic representation of solutions to all problems
in a matroid with 3 colors and rank 24. An arrangement centered
at the base marked with an "X" and with radius / = 4 is in bold,
and the extreme bases are the boldest of the bases.
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