
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1990

Specification and Execution of Transactions for Advanced Specification and Execution of Transactions for Advanced

Database Applications Database Applications

Y. Leu

Ahmed K. Elmagarmid
Purdue University, ake@cs.purdue.edu

N. Boudriga

Report Number:
90-1030

Leu, Y.; Elmagarmid, Ahmed K.; and Boudriga, N., "Specification and Execution of Transactions for
Advanced Database Applications" (1990). Department of Computer Science Technical Reports. Paper 32.
https://docs.lib.purdue.edu/cstech/32

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4971585?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

SPECIFICATION AND EXECUTION
OF 1RANSAcrIONS FOR ADYANCED

DATABASE APPLICATIONS

y.uu
A. Elmagannid

N. Boudriga

CSD·1R·1030
Oclober 1990

(Revised December 1990)

Specification and Execution of Transactions for Advanced
Database Applications'

Y. Leu, A. Elmagarmid and N. Boudrigat

Department of Computer Sciences
Purdue University

West Lafayette, IN 47907

Abstract

Autonomous multidatabases, Computer Aided Design (CAD) databases, and Object
Oriented Databases have requirements that cODstitute a few examples of systems where
traditional transactions may not be sufficient. Users of these advanced applications are
more sophisticated than users envisioned for On Line Transaction Processing (OLTP)
applications a few decades ago. The need to relax the properties of complex database
transactions is urgent. Frameworks for fiexible transaction systems are needed. This
paper is a step towards this objective.

This paper addresses the formalization of a new transaction model called Flex along
with execution control and analysis protocols. The algorithm is formalized through the
use of Predicate Transition Nets (PTN) and reachability trees.

-This research was supported, in part, by a gra.Ilt from the Software Engineering Research Center at
Purdue University, a Nalional Science Foundation Industry/University Cooperative Research Center (NSF
Granl No. ECD-8913133).

IUniversity of 'JUnis, Faculty of Science, Tunisia.

1

1 Introduction

A transaction constitutes a unit of work in a database system. Systems that use trans
actions guarantee their basic properties. Atomicity, consistency, isolation and durability
(ACIDity) are basic properties of transaction systems. Most DBMSs strive to guarantee
these properties through the use of concurrency, atomicity, and recovery algorithms. Trans
actions have been a successful technology to build meaningful and extensive applications
over the last few decades.

With the wide spread use of DBMSs in advanced applications, the suitability of these
transaction systems has come under question. It has lately been argued that while it is
proper for the system to guarantee the ACIDity properties, it should be up to the application
to decide which of these properties they need to be enforced and which they can trade for
more flexibility or higher performance.

This paper relaxes two of these properties, namely, atomicity and isolation. While the
paper is written in the context of the InterBase project1 , the model is formulated and is
intended for general use.

The new model outlines three goals: function replication, dependencies (both external
and internal) and compensatability. Alternative ways by which a specific task can be
performed can be stated in the new model. Traditionally, all the tasks stated as a part
of transaction must be performed. Using alternatives more than one equivalent task can
be stated and it may be left up to the application designer to finally choose which one to
commit. Dependencies are another extension provided in the model. The model allows for
specifying functions that can be used to influence transaction execution. These functions are
considered external parameters to the transaction or suhtransaction. Time and other cost
functions are given in this model. The model also allows for specifying dependencies among
the sub transactions of the same transaction. These are stated in terms of either positive or
negative dependencies. Finally, transactions are traditionally non-compensatable and once
they are committed their effects are preserved by the system. Sagas [GMS87], on the other
hand, allow for transactions to be compensated by running other transactions that undo
their effects. In this new model we allow a transaction to include some subtransactions
that are compensatable and others which are not. This results in mixed transactions.
The mixing of both compensatable and non-compensatable subtransactions complicates
the management of these transactions. It also reduces the isolation to the subtransaction
level. Those subtransactions which are non compensatable must run in isolation of the rest
of the system, while the effects of the compensatable subtransactions can be visible to other
global transactions before their composing global transactions commit [ELLR90].

This paper is organized as follows. In Section 2, we present our extensions to the
traditional transaction model. In Section 3, a transaction model, called Flex, which includes
all the proposed extensions is formally defined. In Section 4, we formulate a mapping from
a Flex transaction to Predicate Transition Nets which serves as a basis for execution control
and analysis of Flex transactions. In Section 5, we present an execution control algorithm

IlnterBase is a project in the Indiana Center for Database Systems lhat sludies iSSLles of transaction
management and consistency in the rnllltidatabase area. The InterBase prototype has been built and it
currently includes Sybase, Ingres, Guru, Dbase IV, and Oracle. In addition it also integrates various other
non-database packages.

2

for Flex transactions. We also present a method for analyzing the correctness of the Flex
transactions. In Section 6, we summarize this paper by comparing our work to other related
work and outlining our on-going research.

2 Extending Transaction Models

2.1 Alternatives

Multidatabase users frequently fmd themselves with functionally equivalent alternatives to
reach their objectives. A powerful transaction model must allow the user to express the
various choices by which his request can be implemented. The presence of alternate ways
of achieving a particular objective represent a state of non-determinancy.

An example of these alternatives can be found in a travel agent scenario.
Example 1:

Consider a travel agent (TA) information system{Gra81]; a transaction in this system may
consist of the following tasks:

1. TA negotiates with airlines for flight tickets.

2. TA negotiates with car rental companies for car reservations.

3. T A negotiates with hotels to reserve rooms.

Let us assume, now, that for the purpose of this travel, two airline companies (Northwest and
United), one car rental company (Hertz) and three hotels (Hilton, Sheraton and Ramada)
can be involved in this trip. The travel agent can implement these tasks as

1. Order-a-ticket from either Northwest or United airlines.

2. Rent-a-car from Hertz.

3. Reserve-a-room in anyone of the three hotels.

These three tasks can be decomposed respectively as the three sets {t1 hh {ts} and {t'll
ts, ts}, where the ti's are defined as follows:

tt Order a ticket at Northwest Airlines;
t2 Order a ticket at United Airlines;
t3 Rent a car at Hertz;
t4 Reserve a room at Hilton;
ts Reserve a room at Sheraton;
ta Reserve a room at Ramada.

In the above example, we use the term task to name the specific function that we want
to perform. For example, buying a ticket is a task. Two subtransactions which are used
to implement the same task are called functionally equivalent. In Example 1, t1 and t2

are two functionally equivalent subtransactions for the order-a.-ticket task. We say that a
task is performed successfully if one of its functionally equivalent subtransactions executes
successfully. A transaction is said to be successful if all its tasks are successfully performed.

3

2.2 Dependencies

Let us consider a set T of sub transactions, say T = {tlo t2, .. ', tn }. The execution of
a sub transaction t; can depend on the failure or the success of the execution of another
subtransaction. Furthermore, it can be dependent on some external parameters (such as
time). More precisely, we define:

Positive dependency: A subtransaction t; is positively dependent on subtransaction tj if
t; can be executed only after tj is successfully executed.

Negative dependency: A subtransaction t; is negatively dependent on subtransaction tj jf
t; can be executed only after tj is executed and failed.

external dependency: Let X be a set of parameters (X is disjoint from T). A subtransac
tion t; is externally dependent on X if the execution of t; is dependent on the truth
of a predicate on X.

In the previous example, replace t2, t5 and ts respectively by subtransactions t~, tsand
t6which are defined as follows:

t~ Order a ticket at United Airlines, if tl fails;
ts Reserve a room at Sheraton, between BAM and 5PM;
t6Reserve a room at Ramada, if tl succeeds.

One can see that, in the set T = {tlo t2, t3, t4, ts, t6}, t2is negatively dependent on t lo
tsis time dependent and t6 is positively dependent on tl.

Another example of external dependency is given by sub transactions that have values
associated with them. These values can be cost or time related.

2.3 Compensatability

As has been stated in the previous section, transactions in the multidatabase environment
can be long lived. It ha.'> been shown by Grayet. al. [GraS!] that problems arise when
enforcing strict isolation in long lived applications.

Therefore, the isolation granularity of the global transaction should be reduced. Gray
[GraS!] proposed to associate with each sub transaction a compet13ating stlbtrat13action which
can semantically "undo" the effects of a committed subtransaction, if required. This con
cept allows the global transaction to reveal (partial) results to other transactions before it
commits. By doing so, the isolation granularity of the global transaction is reduced to the
subtransaction level instead of the global transaction level. A global transaction consisting
only of subtransactions which can be compensated is called a saga [GMSB7). However, in
the real world, Dot all sub transactions can be compensated. For example, subtransactioDs
that are accompanied by real actions are typically non-compensatable.

To address the fact that some of the subtransactions may be compensatable, we in
troduce in our model the concept of typed transactions. A global transaction is typed if

4

some of its subtransactions are compensatable and some are not. In a typed transaction,
the subtransactions which are compensatable may be allowed to commit before the global
transaction commits, while the commitment of the non-compensatable sub transactions must
wait for a global decision. When a decision is reached to abort a typed transaction, the
subtransactions in progress and the non-compensatable subtransactions waiting for a global
decision are aborted, while the committed compensatable sub transactions are compensated.
In tills sense, typed transactions are different from s-transactions [EVT88] or sagas [GMS87]
which allow only compensatable sub transactions.

Hence, typed transactions fill the spectrum from sagas, (assuming the compensability
of all subtransactions) to traditional distributed transactions (assuming that subtransac
tions are non-compensatable). Typed transactions are more flexible because they allow
compensatable and non-compensatable sub transactions to coexist within a single global
transaction.

3 Formal Model

3.1 Form of Flex Transactions

In order to capture the notion of compensatability of subtransactions, we use the concept
of type: a subtransaction is said to be of type C if it is compensatable, it is of type NC if
it is non-compensatable.

A Flex transaction model is formally defined as follows:

Definition 1 A Flex transaction T is a 5-tuple (B, S, F, II I f) where

• B= {tIl t21 . ", tTl} is a set of typed subtransactions called the domain ofT

• S is a partial order on B called the success order of T

• F is a partial order on B called the failure order of T

• II is a set of external predicates on B

• f is an n-ary boolean function defined on the set {1, O} and is called the acceptability
function 0/ T

We illustrate the above definition using the example of travel agent transaction intro
duced in the previous section.

Example 2: Consider the travel agent transaction introduced in Example 1. In addition,
we assume the following: (1) the ticket ordering subtransactions are non-compensatablej
(2) ticket ordering subtransactions must run within business hours from 8am to 5pm and
t2 will be executed only after h is executed and fails (3) the rent-a-car subtransaction must
be executed after the order-a-ticket subtransaction and the reserve-a-room sub transaction
must be under the budget of $100j (4) the transaction is successful if ordering-ticket, rent
a-car and reserve-a-room are all successful. We propose the following Flex transaction to
formalize the travel agent transaction.

5

B = {t,(NC),t,(NC),t3(C),t.(C),t,(C),t,(C))

II = { P, Q } where P and Q are two predicates defined by
p = { 8 < lime(t,) < 17, 8 < lime(t,) < 17}

Q = { cosl(t,) < $100, cost(t,) < $100, c081(t,) < $100 }

f(Xt.X2,X3,X4,XS,XS) = (XlI\X3I\x4) V
(XtAxaAxs) V

(XlI\X3I\::I:6) V

(X2I\X3I\X4) V

(X2I\x31\X5) V
(X2I\ x31\ x6)

3.2 Execution States

Definition 2 For a Flex transaction T with m 8ubtmnsaetions, the transaction execution
state x is an m-tuple (Xl, ::1:2, •.. , x m) where

Xi =

N if subtransaction tj has not been
submitted for executioTlj

E if tj is currently being executed;
S if tj has successfully completedj
F if ti has failed or completed without

acheiveing its objectivej

While successfully completed for a compensatable sub transaction means that the sub
transaction is committed, successfully completed for non-cornpensatable subtransactlon
means that the subtransaction is in a prepared state [Gra78]. The transaction execution
state is used to keep track of the state of subtransaction executions of a Flex transaction.
The acceptability function appears as a partial function defined on the set of execution
states. It is computable whenever all XiS occurring in its expression are equal to either
S or F. Hence, the acceptability function reflects the acceptability of an execution state.
Whence the following definltion

Definition 3 Let T be a Flex transaction and X the set of its execution states. The ac
ceptable state set) A, of the Flex transaction is the subset

A = { x E X I f(x) = I}

In Example 2, the set of acceptable states is defined by

6

A = { (S , _, S , S , _, _) } u
{ (S , _, S , _, S , _) } u
{ (S , _, S , _, _, S) } u
{ (_, S , S , _, S , _) } u
{ (_, S , S , S , _, _) } u
{ (_, S , S , _ , _ , S) }

Definition 4 Let T be a Flex transaction and:z: be an execution state of T. T succeeds if
x is an acceptable state.

3.3 Execution of Flex Transaction

Let T= (E, S, F, II, f) be a Flex transaction and ti be an element in B. The set Pdep(ti)
(resp. Ndep(t;)) is the subset ofB constituted by all elements t ofB such that tj is positive
dependent (resp. negative dependent) on t. Let x = (Xli :1:2,"", xn) be an execution state
of transaction T. We say that the subtransaction ti is executable at state x if the following
four assertions are satisfied.

1. Xi = N;

2. For all j such that tj E Pdep(ti), Xj = S;

3. For aU j such that tj E Ndep(tj), Xj = Fi

4. For each external predicate P, P(ti) is true.

Intuitively speaking, a sub transaction ti is executable at a given execution state if it is
not executed and all conditions on which the execution of t; depends are satisfied:

We can now formulate the execution rules of a Flex transaction as follows:

procedure Exec-Flex-trnnsaction(in:T, out:R)
beginl. initialize x := (N, N, "', N), R := 0 and

compute the set EXEC of all executable 8ubtra7Ulactiorn;
2, while R = 0 and EXEC # 0

execute concurrently all elements of EXEC, put the resporne in x
(x; = the execution state oft;) and compute f(x), if f(x) = 1 then R = {x};

3. if R =fi 0 then commit the Flex transaction else get feedback from the user to
determine whether to commit or abort the Flex transaction.

end

According to the above execution rules, concurrent execution of subtransactions is al
lowed if they are executable at the same time. When the result of the execution is known,
we modify the transaction execution state accordingly. After the completion of a subtrans
action, we check whether or not an acceptable state has been reached. If an acceptable state
has been reached, we commit the Flex transaction. When a Flex transaction terminates

7

without reaching an acceptable state (Le. EXEC = 0), then a feedback is required from
the user to decide whether to commit (with partial results) or to abort the Flex transac
tion. The feedback mechanism allows the user to save (and therefore commit) the useful
partial results when the execution of the Flex transaction is not perfect. This is useful when
functions that are not achieved can be performed later when it is more convenient.

To commit a Flex transaction, we send a "commit" message to all non-compensatable
subtransactions which are waiting in their "prepared to commit" states (the compensat
able subtransactions may have been committed earlier). To abort a Flex transaction, send
an "abort" message to all sites in which a subtransaction of the Flex transaction is wait
ing in its prepared state, and issue compensating subtransactions to the sites in which a
compensatable subtransaction of the Flex transaction has been committed.

4 Representing Flex Transaction by Predicate Transition
Nets

Having defined the Flex transaction model, one has to implement tIlls model. Such an
implementation must provide control and analysis tools, and has to support the properties
of Flex transaction (such as alternative, compensability and dependency). Our approach,
in this sense, is to model the (dynamic) Flex transaction in terms of Predicate Transition
Nets (PTN) introduced in [GL81].

We begin this section by presenting the Predicate Transition Nets , and then construct
a mapping between Flex transactions and PTNs.

4.1 On Predicate Transition Nets

We simplify the definition of the Predicate Transition Nets as follows. A predicate transi·
tion net consists of

1. A set H called the set of places;

2. A set IC called the set of transitions;

3. A set L of arcs;

4. A mapping IC of the set of transitions into the set of formulae of the first order logic;
and

5. A marking Mo of the places: it is a mapping that assigns to each place h in If a set
of symbolic characters (called tokens).

To clarify tills definition, we propose the following example.

Example 3: Figure 1 represents the Predicate Transition Nets (If ,J(, L, K, Mo) given
by

8

Figure 1: A Predicate Transition Net

H = {hl1 h2 ,h3 ,h,d
J(= {k"k"k3}
L = {(h" k,), (h" k,), (h3, k3), (k" h3), (k"h3), (k3,h,)}
K:

k, ~ (8 < time(k,) < 17)
k, ~ (8 < time(k,) < 17) A (x, = F)
k3 --+ true

Mo :
hI --+ •

h2 --+ •

Where. is a given symbol.

4.2 Mapping the Flex transaction

Let T = (B, 5, F, IT, f) be a given Flex transaction, we define the associated Predicate
Transition Nets PTN(T)=(H, K, L, IC, Mo) as follows:

IfB is the set {tl,tz,''',t n }, then:
H = {aI, a2, ... , an ,bl , b2,· .. ,bn } where we assume that, for all i and j, the symbol Uj is
equal to the symbol bj iff t; is positively dependent on tj.
K=B
L = { (a;,t;) Ii:> n } U { (t;,b;) Ii:> n}.
K:

K(t;) = (/\ F(t,t;)) A (/\ q(t;))
tENdep(t;) qEn

Mo :
ui --+ ., for each i such that tj has no positive precedence

9

a 4

t
a 5

t
a 6

t
a

z;
a 21

t t 5 t 6 t 1 t 2
4

b4 0 b5 0 b6 0 a g 0

t
g !

bg

Figure 2: PTN for the travel agent transaction

Intuitively speaking, transitions of the associated PTN are the suhtransadions of the Flex
transaction linked with the condition that needs to be executed, places and arcs are phys
ically present to maintain the connectivity. In the above mapping, 1C associates with each
transition a set of predicates, which includes the negative dependence predicates F(t,t;) for
any t in Ndep(ti) and the external predicates q(ti) for any q in II.

Example 4: Consider the travel agent transaction dermed in Example 2, the associated
Predicate Transition Net is represented in Figure 2.

Looklng for the properties of this mapping, the following can be observed:

The construction of the associated PTN can be done automatically,

The execution of the PTN models the execution of the Flex transaction,

The number of places in the associated PTN is equal to the number of sub transactions
plus the number of terminal subtransactions (Le. with no sub transaction positively
depending on it).

5 Execution and Analysis

In this section, we propose an algorithm for the execution control of Flex transactions using
their Predicate Transition Net representation. We then give a method for performing the
analysis of Flex transactions.

5.1 Execution Control of Flex Transactions

The execution of Flex transactions must satisfy the dependency relations and the external
predicates. Because the associated Predicate Transition Net captures these dependency
relations and gives tools to preserve them, our approach consists of executing the <l8sociated
Predicate Transition Net.

10

The following algorithm implements, in a sequential manner, the procedure Exec-Flex
Tmnsaetion defined in Section 3.3, in the sense that the scheduling activity executes all
executable subtransactions, stores its execution state, and then computes the acceptability
function.

In procedure evaluate...PTN, £ is the current enabled set; U is the current executable set
derived from £j and g is the scheduled set that contains the transitions corresponding to
the submitted sub transactions. The algorithm starts from the initial execution state (with
allstate variables initialized to N), computes the enabled set £, calculates U from £, and
submits all subtransactions whose corresponding transitions are in U.

Whenever a subtransaction completes, a new executable set U is determined by the
algorithm. The set U is partitioned into two sets, g and g+. The executable transitions
which are not yet submitted are contained in g+, while transitions in g are the transitions
that are already submitted.

To prevent the loss of responses from the local database systems, the responses are first
buffered in queue Q. Whenever Q is not empty, the algorithm dequeues Q and computes
the new execution state, fires the corresponding transition if the dequeueing response is a
SUCCESS, and computes the executable set U.

The scheduling activity is continued until the termination condition is met. When the
execution terminates, if the final execution state x is acceptable (Le. I(x) = 1) the Flex
transaction is committed; otherwise, it is left to the user to decide whether to commit or to
abort the Flex transaction depending on the current execution state. The feedback allows
the user to commit the partial results of an imperfect execution.

To commit a Flex transaction, for each non-compensatable sub transaction ti whose cor
responding execution state variable Xi is S, send a "COMMIT" message to its local database
system; for each non-compensatable subtransaction tj (if any) in g, send an II ABORT" mes
sage to its local database systemj and then compensate each compensatable sub transaction
in g.

To abort a Flex transaction, each subtransaction ti, whose corresponding execution state
variable Xi is S, has to be aborted or compensated depending on its type.

5.2 Analysis of Flex Transactions

Before a Flex transaction is actually executed, we have to verify that the transaction will
behave exactly as desired. We are especially interested in the following two aspects:

pI. Can each acceptable state be reached from the initial execution state?

p2. Which acceptable states can be reached when some specific failures occur?

To analyze these aspects of Flex transactions, we use the well known techniques of Petri
Nets reachability. The reachability problem is perhaps the most basic Petri Net analysis
problem. Deadlock and failure can be stated in tenn of the reachability problem.

In this sectioD, we present the notion of reachability of an execution state in our Flex
transaction model and show how to capture it when analyzing the associated Predicate
Transition Net. For this purpose, we assume that we are given a Flex transaction T and
its predicate transition net PTN. By pattern of failure X, we mean a state (Xt,X2,"', xn)
where Xi is S if we assume that ti successfully executes, and F otherwise. For the sake of

11

procedure evaluate..PTN(PTN,f, to, R)
r' PTN - the Predicate Transilion Net, "k! is the timeoL1t value and f is the acceptability fundion*/

Initialize timeout mechanism wi~h timeout interval to;
begin

x +- (N, N, N,·· ',N) rno subtransactions ha.s been executed */
on timeout f1.ex.abort:
& r/J, r l- enabled set */
U t/J, r U - executable set */
o+- t/Ji r 0 - schedl1led set */
Q -- empty; r Q - response Queue */
compute.enabled..set l from PTNjr enabled contains transitions which are enabled*/
compute...executable..llet U from the new enabled set &j

repeat
0+ +- U - 0;
r' tT represenls both transition and subtransaction */
For each transition tn E 0+ do

begin
submit subtransaction tT; to the local database system,
o +- 0 u {tT;},
Xi ErE for executing state */

end;
on receiving response enqueue response in Qi
while (Q = empty) do

begin
if (U = 0) then

begin
fiex.abortj
exit

end
end;

RESP_ dequeue(Q);
r'assume that RESP is from 1;*/

9 - 9- {I,; l,
if (RESP = SUCCESS)
then

begin
x; __ S,

nre(tT;)j
compute...enabled..set E

end
e"e

x; -- F
endif,
compute...executable..set Uj

until (check..terminate);
if f(x) 1 then Jlex-.eommitj R == x;
else get feedback; if feedback is ABORT then f1.ex.abort; else Rex..commit;

end.

Figure 3: The execution control algorithm

12

M °--- (1, 1, 0, 1, I, 1,0,0,0,0)

~1' 1, 1,0,0,0,0)

?' 1, 1, 1, 1, 0, 0, 0)

(1,0,0,0, 1, 1, 1, 1,0,0) y= (F, 5, 5, 5, N, N)

Figure 4: A reachable acceptable state

simplicity, we assume that the places of a PTN are ordered as (al,a2,'" ,an). A marking
of a PTN is a representation of the distribution of tokens in the places of the PTN. We
denote a marking by (J.tt,J.t2,···, J.tn) where J.ti is the number of tokens in place ai. Firing a
transition consists of deleting a token from each of its input places and adding one token
to each of its output places.

We suppose in the following that a pattern of failure is fixed. The reachability tree Rt
under the pattern of failure x is given as follows.

Root of Rt is the initial marking of the associated PTN.

A node, in Rt, is obtained from the initial marking by firing a sequence of transitions.

An arc in Rt links a marking J.t to marking J.tl if J.tl is obtained from J.t by firing a
transition in PTN.

Definition 5 A reachable acceptable state Y, under pattern oj failure x, is an execution
state such that f(y) = 1 and there is a sequence of transitions leading to it.

To illustrate the notion of reachability, we consider the travel agent transaction defined
in Example 3.

Example 5: Consider the PTN in Example 4. We show, in Figure 4, the reachability tree
of the PTN with the pattern of failures (F,S,S,S, S,S) (i.e. tt will fails when it is executed).
As shown in Figure 4, the state (F,S,S,S,N,N) can be reached by the ordered execution of
t2, ta, t4· Note that we order the marking in Figure 4 by (at, a2, aa, a4., as, aG, b3, b4, bs, b6).

In performing the reachability tree analysis, we ignore the external dependency and fix
the negative dependency by the use patterns of failure. This analysis allows us to predict

13

the behavior of a Flex transaction according to its specification, which may be useful when
designing a complex Flex transaction.

6 Conclusions

6.1 Related Work

Several extensions to the initial transaction concept have recently been proposed. One
significant extension is the nested transaction [MosBI]. A nested transaction allows a trans
action to be dynamically decomposed into a hierarchy of subtransactions and ensures the
transaction properties for individual subtransactions. The capability of decomposing a
transaction into subtransactions, providing synchronized concurrent execution of subtrans
actions and encapsulating failures in the subtransactions makes the nested transactions
suitable for composing transactions in distributed computing environments. However, the
atomicity and wolation properties are still the same as in the classical transaction model.

Other extensions to the classical transaction model focus on solving the problem of
long lived transactions. For example, a CAD transaction model is proposed [BKK85] to
allow a group of cooperating designers to complete a design without having to wait. CAD
transactions are further classified into five conceptual levels: project transactions, cooper
ating transactions, clients/subcontractors transactions, designer's transactions and short
duration transactions.

A transaction model for software development environment, (SDE) has been proposed
to support the cooperation of a team of programmers in developing and maintaining soft
ware systems. Two salient features of this model are split-transaction operation and the
participation domain. A split-transaction operation can be used to split a long lived trans
action into two new transactions, one contains the completed part of the old transaction
and the other one contains the ongoing part. The one containing the completed part can
be committed and, therefore, releases useful results to other transactions. The participation
domain concept allows a specific set of transactions to form a domain. Inside a domain, seri
alizability is not required for the proper execution of transactions. As a result, transactions
may view uncommitted updates from other transactions in the same domain. Transactions
belong to different domains must be serialized.

Sagas are long lived transactions that consists of a sequence of relatively independent
steps, where each step does not have to observe the same consistent database state. Each
step is a subtransaction associated with a compensating transaction which can semantically
"undo" the effects of this subtransaction [GraS!]. When a sub transaction completes, it can
commit on its own without waiting for its parent transaction to commit, and therefore,
reveals its partial results. When a failure occurs in the middle of an execution, a forward
recovery by executing the missing subtransactions or a backward recovery by executing
the compensating sub transactions for the committed subtransactions can be used. Sagas
su.ccessfully reduce the isolation granularity to the suhtransaction level. However, it may
not he applicable to applications that consists of non-compensatable actions. In contrast,
our approach can model sagas by letting all subtransactions be compensatable. while on
the other extreme, our approach can model distributed transactions (the one proposed by
Gligor) by letting all sub transactions be non-compensatable.

14

6.2 Summary

In this paper, an extension to traditional transactions is described and formalized. Flex
transactions are described in the context of autonomous multidatabase systems. The Flex
transaction model contains features which are esspecially useful for coping with problems
caused by autonomy. A Flex transaction has alternate ways of committing. The external
dependencies associated with sub transactions make the scheduling of Flex transactions more
convenient. The Flex transaction model also supports mixing compensatable and non
compensatable sub transactions, thereby, reducing isolation granularity. The rationale for
several of these extensions are described in the paper. The model has also been formalized,
and several algorithms for controlling its execution has been proposed.

The InterBase prototype is currently being extended to support Flex transactions. We
are also studying transaction management routines to support these new transactions in
the context of both serializability [LE90] and quasi serializability [DE89]. Various other
extensions are also now underway. Among others, we are working on using the logic pro
gramming paradigm to specify Flex transactions [KELB90J, [LBEK), extending the notion
of feedback described in this paper and relaxing the durability property of transactions.

References

[BKK85] F. Bancilhon, W. Kim, and H. Korth. A model of CAD transaction. In Proceed
ings of the International Conference on Very Large Data Bases, pages 25-33,
1985.

[DE89] W. Du and A. Elmagarmid. Quasi serializability: a correctness criterion for
global concurrency control in InterBase. In Proceedings of the International
Conference on Very Large Data Bases, Amsterdam, The Netherlands, August
1989.

(ELLR90] A. Elmagarmid, Y. Leu, W. Litwin, and M. E. Rusinkiewicz. A multidatabase
transaction model for InterBase. In Proceedings of 16th VLDB conference, Au
gust 1990.

[EVT88] F. Eliassen, J. Veijalainen, and H. Tirri. Aspects of transaction modelling for
interoperable information systems. In Interim Report of the COST llter Project,
pages 39-55, 1988.

[GL81] H. J. Genrich and K. Lautenbach. System modeling with high level petri nets.
Theorical Computer Science, 13:109-136, 1981.

[GMS87] H. Garcia-Molina and K. Salem. Sagas. In Proceedings of the ACM Conference
on Management of Data, pages 249-259, May 1987.

[Gra78] J. Gray. Notes on database operating systems. Opemting Systems: An Advanced
Course. Springer-Verlag, Berlin, 1978.

[GraB1] J. Gray. The transaction concepts: Virtues and limitations. In Proceedings of
the International Conference on Very Large Data Bases, pages 144-154, 1981.

15

[KELB90] E. Kuhn, A. K. Elmagarmid, Y. Leu, and N. Boudriga. A parallel logic language
for transaction specification in multidatabase systems. Technical Report CSD·
TR-1031, Purdue University, October 1990.

[LBEK] Y. Leu, N. Boudriga, A. K. Elmagarmid, and E. Kuhn. Logic framework for the
specification of complex transactions. In preparation.

[LE90] Y. Leu and A. Elmagarmid. A hierarchical approach to concurrency control for
multidatabases. In Second International Symposium on Databases in Parallel
and Distributed Systems, July 1990.

[Mos81} J .E. Moss. Nested Tmnsactions: An Approach to Reliable Distributed Comput
ing, PhD thesis, Dept. of Electrical Engineering and Computer Science, MIT,
April 1981.

16

	Specification and Execution of Transactions for Advanced Database Applications
	Report Number:
	

	tmp.1307986960.pdf.i2b_M

