
Purdue University Purdue University 

Purdue e-Pubs Purdue e-Pubs 

Department of Computer Science Technical 
Reports Department of Computer Science 

1989 

A Hierarchical Approach to Concurrency Control for A Hierarchical Approach to Concurrency Control for 

Multidatabases Multidatabases 

Ahmed K. Elmagarmid 
Purdue University, ake@cs.purdue.edu 

Yunhho Leu 

Report Number: 
89-919 

Elmagarmid, Ahmed K. and Leu, Yunhho, "A Hierarchical Approach to Concurrency Control for 
Multidatabases" (1989). Department of Computer Science Technical Reports. Paper 783. 
https://docs.lib.purdue.edu/cstech/783 

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. 
Please contact epubs@purdue.edu for additional information. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4971579?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci


A lllERARCmCAL APPROACH TO CONCURRENCY
CON1ROL FOR MULTIDATABASES

Ahmed K. Elmagarmid
Yungho Leu

CSD-TR 919
October 1989



A Hierarchical Approach to Concurrency Control
for Multidatabases1

Ahmed K. Elmagarmid and Yungho Leu
Computer Science Department

Purdue University
West Lafayette, IN 47907

(317)-494-1998
ahmed@cs.purdue.edu

IThis work is supported by a PYI Award from NSF uncler grant IRI-88579S2
and grants from AT&T Foundation, TeHronix, and Mobil Oil.



Abstract

A multidatabm:;e system is a facility that allows access to data stored in mul­

tiple autonomous and possibly heterogeneous database systems. In order to

support atomic updates across multiple database systems, a global con­

currency control algorithm is required. A hierarchical concurrency control

approach hm:; been proposed for multidatabase systems. However, to apply

this approach, some restrictions have to be imposed on the local concurrency

control algorithms. In this paper1 we identify these restrictions, formalize the

hierarchical concurrency control approach and prove its correctness. A new

global concurrency control algorithm based on this hierarchical approach is

presented.



1 Introduction

A Multidatabase System (MDBS) is a facility that allows access to data

stored in multiple autonomous and possibly heterogeneous database sys­

tems. An MDBS is characterized by strong autonomy requirements [DEL089]

[GK88] [EVS7] of its local database systems implying that operations of each

local database system must be unaffected by the MDBS facility. Moreover,

each local database systems is allowed to leave or join an MDBS without

any reprogramming or loss of data consistency in the MDBS.

Global concurrency control is required in order to allow concurrent global

updates in an MDBS. A general hierarchical approach to concurrency control

has been proposed for the autonomous database environment [GP86]. Many

global concurrency control algorithms have been recently proposed based

on this general approach [Pu88] [AGS87] [Vid87]. However, this general

approach is not suitable for all MDBS environments. In this paper, we will

concentrate on examining the local concurrency control restrictions under

which the hierarchical approach is applicable. A new global concurrency

control algorithm based on this general approach is also proposed in this

paper.

The rest of this paper is organized as follows. In section 2, a transaction

model is introduced, global serializability is defined and an example show­

ing the effect of autonomy on global concurrency control is given. In section

3, the general hierarchical approach is discussed and a static property is

defined. Finally, the general hierarchical approach is formalized and its cor·

rectness is proved. In section 4, a new global concurrency control algorithm

is presented. In section 5, existing global concurrency control algorithms

based on the hierarchical approach are surveyed. A summary of this paper

is given in section 6.
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2 Background

2.1 A Transaction Model for MDBS

AB shown in figure 1, an MDBS is composed of a set of pre-existing local

database management systems, a set of global transactions, a set of local

transactions, a set of Local Transaction Managers (LTMs) and a Global

Transaction Manager (GTM). A local transaction is a transaction which

is issued directly to one of the local database systems. A global transac­

tion consists of a set of subtransactions, each of which accesses one local

database system on behalf of the global transaction. It is assumed that each

global transaction can have at most one subtransaction per local database

system (Tills assumption simplifies the concurrency control problem). The

LTM controls the execution of local transactions and global subtransactions

in the local database system, while the GTM controls the execution of the

global transactions at the global level. The LTMs and the GTM as a whole

are responsible for traIlBaction management in the MDBS. Transaction man­

agement includes the concurrency control, commitment control and recovery

control. Concurrency control is performed by the Local Concurrency Con­

troller (LCC) and the Global Concurrency Controller (GCC) collectively.

2.2 Global Serializability

A transaction contains a set of read and write operations. Two operations

are said to be conflicting if (1) they belong to two different transactions,

(2) they access the same data item and (3) at least one of them is a write

operation. A concurrency control algorithm controls the execution order of

the conflicting operations such that the serializability property of the history

is maintained. Serializability is used as the correctness criterion for the

MDBS in this paper, therefore, an LCC has to maintain the serializability
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Figure 1: A Transaction Model for MDBS

for the execution oflocal transactions and global subtransactions. While t.he

LeCs and Gee, as a whole, have to maintain the sedalizability of glohal

and local transactions.

An execution of a set of transactions can be described by a history

[BG8S]. A hlstory contains the read and write operations of the involved

transactions and, especially, their order of execution. The execution of the

local transactions and the global 5ubtransactions at LDBS j constitutes the

local history hi. Let 9 denote the set of all global transactions and I:- de­

note the set of all local transactions at all local database systems. A global

history 1f. over gU.c js the set of aU local histories, Le. 1i = {hl • h2 , ••• , hll}

(assuming that there are n LDBSs). The global serializability of a globa.l

history is defined as follows:

Lemma 2.1 Let T be the set of all global transactions and local transactions

(i.e. T = Q'U £). The execution of the set of transactions in T is seriali::able

if there exists a total ordering on the transactions in T such that for each pair
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of conflicting operations 0; and OJ from transaction T; and Tj respectively,

OJ precedes OJ in any history hI, h2 , •••, hn if and only if T; precedes Tj in the

total ordering.

An easy way of checking the serializability of a history is to use the serio

alization graph. Global serialization graphs in an MDBS environment are

defined as follows:

Definition 2.1 A global serialization graph (CSG) of a global history 1i

is a directed graph, whose nodes are global and/or local transactions (i.e.

transactions in T). V Ti' Tj E T there is an arc from T; to Tj if there

are conflicting operations 0; and OJ in To and Tj respectively such that 0i

precedes OJ in 1l.

The global serializability theorem can then be stated as follows:

Lemma 2.2 (The Global Serializability Theorem) If the global seri­

alization graph of a global history 1t is acyclic then 1-£ is serializable.

The proof of this theorem is similar to the serializability theorem in

centralized database systems (see [BGS5]) and is not given in this paper.

2.3 Autonomy

The difficulty in doing the global concurrency control in MDBSs is mainly

due to local autonomy. The autonomy requirement significantly aggravates

the concurrency control problem in an MDBS. The local autonomy require­

ment entitles the local database systems to refuse to supply local information

to the Gec. Therefore, the GCC has to perform its concurrency control

with incomplete local information. The difficulty of doing global concur­

rency control with incomplete local information can be illustrated by the

following example.
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Example 1: Consider an MDBS with two local. databases LDBS1 and

LDBS2. Where data item a is at LDBS1 and band c are at LDBS2 . The

following global transactions are submitted to the MDBS:

(I" ,"g,(a)rg,(b)

(I" ,"g,(a)rg,(e)

Let L be a local transaction submitted to the LDBS2:

Let hI and h2 be local histories at LDBS1 and LDBS2 , respectively:

h1 : wgI(a)
h" ,",(b)

,"g,(a)
rg,(b) rg,(e) ,",(c)

to t, "
-- •time

A scenario of the activities of the GCe and LeCs is as follows: Assuming

that at time t2, wgI(a), wg2(a), wI(b) and Tg1(b) have been executed in the

order as shown in the local histories. Let's further assume that G1 has been

committed and G2 has just finished its last operation which is Tg2i the global

history at time t2 is serializable so that GCe chooses to commit the global

transaction G2 • At time t3 the local transaction L issues its last operation

w/(c), then the LCe at LDBS2 commits L because the local history h2 is

serializable at that time. The GSG of this execution (Figure 2) contains a

cycle. In other words, the global history is not serializable.

The problem in the above execution is that when GCC made its decision

to commit G1 and G2 , it did not know that the operation w/(c) will be

processed later (this is due to the local autonomy). Local transaction L

introduces an invisible indirect order (can not be seen by the GCC ) between

subtransactions G1 and G2 • This determines the serialization order between

G1 and G2 after G1 and G2 are committed.
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Figure 2: The GSG of a simple execution

3 The Hierarchical Approach

3.1 The General Approach and Restrictions

.AJ; suggested by GIlgor and Luckenbaug [GL841, one way to design global

concurrency control algorithms without violating local autonomy is to im­

pose a control hierarchy between the Gee and the LeG. The idea of the

hierarchical approach is that each Lee controls the execution of the local

transactions and subtransactions on its local database system to ensure the

serializability of their execution; while the Gee controls the execution of

the subtransaction so that the serialization orders (see [BGS5]) of the sub­

transactions are compatible in all local database systems. Many proposed

global concurrency control algorithms [PuBS] [Vid87] [AGS87J are based on

this approach. A major part of this paper is concerned with studying the

required restrictions the local concurrency control algorithms so that a hier­

archical approach can be imposed. We identified those concurrency control

algorithms to which the hierarchical concurrency control approach is appli­

cable. We call this class of concurrency control algorithms static concurrency

control algorithms. Before we define static concurrency control algorithms,

we introduce the following notations. The lifetime LTi of a transaction Ti
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is the time period after a transaction starts its execution and before it ter·

mlnates (either commlts or aborts). A domain set V is a total order set. In

other words, there is an irreflex.ive, transitive binary relation < on V such

that for any a,b E V, either a < b or b < a. H a < b we say that a precedes

b and vice versa. A concurrency control algorithm is said to be static if it

has the following properties:

1. For every successfully executed transaction Ti, there exist a corre·

sponding dj E V, such that

2. For any two different transactions Tj and Tj , dj t- dj;

3. 3 a timestamp tj E LT; such that d j will be determined when time tj

is reached; and

4. If Ti conflicts with Tj and is serialized before! Tj, then d j < dj .

The set V is called the order domain; and di is called the serialization

order of transaction Tj • The time tj when the transaction 1i is serialized is

called the serialization point of Tj. The order set V can be any countable or

uncountable set, if only a total order can be defined on it.

3.2 The Static Properties of the Existing Concurrency Con­
trol Algorithms

Most of the existing concurrency control algorithms are static. Moreover,

most of their order domain are the same as the time domain. For example,

in the two phase locking algorithm [EGLT76], locking is used to resolve the

execution order of the conflicting operations. The time when a transaction

acquires the locks for all data items it needs is called the lock point of the

transaction. Lock point can be used as a serialization order of a transac­

tion. Since for any two transactions Tj and Tj, if Tj reaches its serialization

IFor a serializable history, T; is said to be serialized before T; if Ti conflicts with T;
and the confliding operations of Ti are executed before those of T,.
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point before Tj, then Ti must be serialized before Tj. Moreover, the lock

point occurs within the lifetime of the transaction. In other words, the

two phase locking algorithm is static. Furthermore, the serialization point

and serialization order of a transaction are the same in a two phase locking

algorithm.

For timestamping concurrency control algorithm [BHG87], a timestamp

assigned at the beginning of a transaction is used to resolve the conflicts.

All conflicting operations must be executed according to their corresponding

transaction timestamps. Since the transactions are serialized by their times­

tamps, the timestamp of a transaction can be used as its serialization order.

This order is determined at the beginning of the transaction which is within

the lifetime of the transaction. Therefore, the timestamping algorithm is

static.

For optimistic concurrency control algorithm[KR8l], a transaction num­

ber is assigned to a transaction at the end of its read phase. The transaction

is then validated using this number. It can be reasoned that transactions are

serialized according to their transaction numbers. Therefore, the transaction

number can be used as its serialization order. Furthermore, a transaction

number is determined at the end of a transaction read phase which occurs

within the lifetime of the transaction. Due to these observations, we con­

clude that the optimistic concurrency control algorithm is static.

A newly developed concurrency control algorithm is the value dates con­

currency control algorithm [LT88]. In the value dates concurrency control

algorithm, a transaction must specify the time (or date) when it is going

to finish. The algorithm then uses these value dates to resolve conflicts. If

a data item is not available to a transaction ( the operation of the trans­

action is late), then the transaction can either be undone or access other

data item if possible. Since only the transaction with later value date can

be scheduled to wait until the other terminates, the algorithm will serialize

the transactions according to their value dates. Therefore, the value date
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Figure 3: The serialization point and the serialization order

can be used as the serialization order. It is obvious that the order domain of

the value dates algorithm is the same as the time domain. It is noted that

the value date is determined within the lifetime of the transaction. Based

on discussions, the value dates algorithm is static.

The occurrences of the serialization point and the serialization order for

the timesta.mping (TSO), value date (VD), two phase locking (2PL) and the

optimistic (OP) concurrency control algorithms are shown in figure 3. In

figure 3, the serialization order is shown only for those concurrency control

algorithms whose order domain is the time domain. It is interesting to see

that for the TSO, 2PL and OP algorithms, the serialization point and the

serialization have the same ordering. This means that for these algorithms,

if transaction Tj is serialized before Ti' then the serialization order of T;

must precede the serialization order of Tj. This feature is very useful for

designing a global concurrency control algorithm. A global concurrency

control algorithm which uses this feature is presented in a section 4.
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Not all of the existing concurrency control algorithms are static. For ex­

ample, the serialization graph testing algorithm [CasSI] is not static. Even

though the serialization graph testing algorithm maintains the serializabil­

ity property of the transaction execution, there is no specific time for which

the serialization order of a transaction can be determined. The serializa­

tion order of a transaction is affected by the execution of the concurrent

transactions in such a way that it may not be determined.

3.3 The Importance of the Static Properties on Global Con­
currency Control

Two important static properties are

• Serialization order is determined within the lifetime of a transaction;

and,

• The serialization order is a total order.

The first property enables us to obtain the serialization order without vio­

lating local autonomy. If a transaction is not serialized in its lifetime, then

other transactions must be consulted in order to determine the serialization

order of it. Among them there may be some local transactions. To access

information about local transaction is a violation of local autonomy. The

second property is needed to prevent the invisible indirect serialization order

between subtransactions introduced by the local transactions. One of the

invisible indirect serialization order is shown in example 1. The invisible in­

direct serialization order will not occur if the concurrency control algorithm

is static. This can be argued by using example 1. Consider local history

hz. If the local concurrency control algorithm in LDBSz is static, then the

orders of G1 and Gz at LDBSz must be determined when both the G1 and

Gz finish. If G1 precedes Gz, then there is no valid serialization order for

L. since according to the conflicts, serialization order of L must precede G1

10



and be after Gz, which is not possible. In this case L will be aborted by

the LCC. If the serialization order of Gz precedes the serialization order of

GI , then the indirect serialization order introduced by L is the same as the

order between G I and Gzi therefore is visible to the GCC.

3.4 Correctness of the hierarchical approach

Under the assumption that local concurrency control algorithms are static,

it can be shown that the global concurrency control problem turns out to

be a problem of maintaining the compatibility of the serialization orders of

the global subtransactions. In this section, we formalize the hierarchical

concurrency control approach and prove its correctness. To facilitate the

discussion, we define a serialization function Sk for the local history hk . Let

STk denote the set of all the successfully executed global sub transactions

and/or local transactions in hk. The serialization function Sk is defined as

follows:

Definition 3.1 A serialization function Sk for the local history hk is a map­

ping, where

Sk: STk-+ V

A serialization function maps successfully executed transactions in a local

history into their corresponding serialization orders.

Now, we define the compatibility of the serialization orders of the sub­

transactions of a set of global transaction y as follows.

Definition 3.2 The serialization orders of the subtmnsactions of a set of

global tmnsactions 9 in an MDBS with n LDBSs are compatible if there

exists a total order on 9 such that V GiJ Gj E Y, if G. precedes Gj in the

totalorderJ then for any k from 1 to n, Sk(Gik) < Sk(Gjk) if both Gik and

Gjk exist.
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The correctness of the hierarchical approach is stated in the following

theorem.

Theorem 3.1 (The hierarchical concurrency control theorem) A global

concurrency control algorithm is correct if the following conditions are sat­

isfied.

Condition 1 The local concurrency control algorithms are static

and maintain the serializability of their corresponding local his­

tories.

Condition 2 The set of the serialization orders of the subtransac­

lions of global transactions are compatible.

In order to check the compatibility of the serialization orders, we propose

the Serialization Order Graph (SOG) which is defined as follows.

Definition 3.3 A serialization order graph is a directed graph in which the

vertices are the set of all global transactions, and there is an arc from Gi to

Gj for any pair of global transactions Gi, Gj E g, if and only if 3 k such

that both Gik and Gjk exist and Sk(Gid < Sk(Gjk) is true.

Example 2: Let Gt , G2 and G3 be three global transactions executed

in an MDBS with three LDBSs. Suppose we have Sl(G3d < Sl(Cn ) <
S,(G21 ), S2(G,,) < S2(G22 ), and S3(G.,) < S3(G23). G, does not have

a subtransaction at LDBS2 , and G3 does not have any subtransaction at

LDBSa. The serialization order graph of this global history is shown in

Figure 3.

Lemma 3.1 The serialization orders are compaHble if and only if the SOG

of the set of the global transactions is acyclic.

Proof: (=» Assuming that the serialization orders are compatible, if Sk(Gik)

< Sk(Gjd for some k then, according to the definition of compatibility,

12



Figure 4: The serialization order graph for a global history

SP{Gip) < Sp(Gjp) for any p from 1 to n. Now assume that the SaG is

cyclic, let's assume the cycle is G1 --+ G2 -) ... --+ Gk --+ G1. Since G1 pre­

cedes G2, there exists a number k such that Sk(G1k) < Sk(G2k). Because

the serialization orders are compatible, we have Sp(G1p) < Sp(G2p) for any

p from 1 to n. Shnilarly, Sp(G2p) < Sp(Gap) for any p. Because the '<' re­

lation is transitive, we conclude that Sp(G1p) < Sp(G1p) for any p, which is

a contradiction2 • In other words, if the serialization orders are compatible,

there should be no cycle in the SaG. 0

({=) If the SaG is acyclic, a total order on r;; which satisfies the condi­

tion in definition 3.2 exists and can be obtained by using topological sort on

the SOG graph [Deo74]; therefore, the serialization orders are compatible. 0

Proof of theorem 3.1:

According to theorem 2.1, a global history is serializable if its corresponding

GSG is acyclic. Now let's assume that the global history is not serializable,

then its corresponding GSG must contain a cycle. IT the cycle contains only

one global transaction and some local transactions, then the cycle must also

be present in a local history. But condition 1 states that the local history

2We assume tha.t there must be at lea.st one subtransaction for each global lransaclion.
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is serializable, so that a cycle should not exist in a local history. Now let's

assume that the cycle contains n global transactions and a couple of local

transactions, where n is greater than 1. Let the cycle be Gi- Li,I-Li,2-,· ..

,-Li,pO-Gi+l- Li+t,t-, .'., -Li+l,pl-tGi+2 -, ... , -+Li+2,p2 -Gn ­

Ln,l-Jo, ... ,Ln,pn-tGi. From Gi-tLi,t we deduce that there are con:fl.ict

operations between Gj and Li,ti furthermore, the conflicting operations of

Gi precedes those of Li,l. if Li,t is at LDBSk, then we have Sk(Gik) <
Sk(Li,t ). From Li,l- L i ,2' we have Sk(Li,t} < Sk(Li,2), and so on. Finally

we have Sk(Gik) < Sk(Gi+t,k). Similarly, we have Ski (Gi,kJ < SkI (Gi+t,kJ,

Sk2(Gi+l,k2) < S'\:2(Gi+2,k2 ), ••• , Skn_I(Gn-I,kn_l) < Skn_I(Gn,kn_l) and

Skn(Gn,kn) < Skn(G1,kn) for some kt , k2, ... ,kn E (1, ..., n). In other words,

we have a cycle in the corresponding SOG of the history. By lemma 3.1,

the serialization orders are not compatible, which contradicts condition 2 of

the theorem. In conclusion, we have shown that jf the global history is not

serializable, then the two conditions of the theorem do not hold. That is, if

the two conditions in the theorem hold then the global history is serializable.

o

3.5 Limitations of the Hierarchical Approach

The hierarchical approach is very restrictive in the sense that it only allows

a small subset of all serializable histories. It is possible for a serializable h..is­

tory not to satisfy the two conditions of the theorem 3.1. This is illustrated

by the following example.

Example 3: Consider the MDBS in example 1, suppose now we have

the the following local histories:

hI: wgI(a)
h" T,,(b)

14



According to the local histories, we have SI(On) < Sl( GI2 ) at LDB81 (since

wgI(a) conflicts with wg2(a) and precedes wg2(a)) and possibly we may also

have S2(G22 ) < 82(012) (this depends on which sub transaction is serialized

first) at LDBS2• In this case, the serialization orders are not compatible.

However, the global history is serializable. This is because the fact that

the subtransactions Gl2 and 0 22 at LDBS2 do not conflict is not taken

into account in the conditions of theorem 3.1. Based on this observation, it

seems that the two conditions in theorem 3.1 are too restrictive. However,

due to the lack of local information3 , we do not know whether the local

transactions at the local database systems will introduce the indirect order

between two non-conflicting subtransactions or not. The only thing that

we can do is to assume that they do conflict, even though they may not

conflict at all. In facts, the impossibility of detecting the conflict between

subtransactions is the major obstacle which hinders the design of an efficient

global concurrency control algorithm.

4 The Site Queue Algorithm

Using the assumption that local concurrency control algorithms are static,

the Gee is reduced to maintaining the compatibility of the serialization

orders of subtransactions. In this section, we present an algorithm for main­

taining the compatibility of the subtransaction serialization orders. The

proposed algorithm is a top down approach in the sense that the Gee de­

cides the serialization orders of the subtransactions at the global level and

then enforces them at the local level. In this section, we will also discuss a

way of simulating the prepared state for the basic two phase commit protocol

[G"79].

3A limitation due to the local autonomy requirement

15



4.1 Assumptions

Before we outline the site queue algorithm, we first state our assumptions

as follows:

Al For all local concurrency control algorithms, the serialization point of

a transaction is the same as its serialization order.

A2 The communication network is capable of maintaining the order of the

messages it sends such that the order of the messages received at the

destination site is the same as the order of the messages sent from the

source site.

The first assumption is used to simplify the algorithm. This assump~

tioD can be relaxed by some minor modifications to the algorithm (see next

section). The second assumption can be relaxed by appending with each

message the message identifiers of those messages which are sent ahead of

it. The LDBS can then use this information to restore the order of the

messages.

In addition to these two assumptions, we also assume that the serializa­

tion point of a subtransaction is visible to the GCC. One way of exposing

the serialization point without violating the local autonomy is discussed a

latter section.

4.2 Site Queue Concurrency Control Algorithm

A server is created to maintain a subtransaction queue (Figure 5). The

server and the queue constitute the global-local interface between the LDBS

and the GTM. Each global transaction is decomposed into a set of subtrans­

actions. The GCC first determines an order among the global transactions,

and then submlts the subtransactions of global transactions to the proper

servers according to the pre-determined global transaction order. If a server

16
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Figure 5: The Site Queue of an MDBS

receives a subtransaction, it will insert the sub transaction to the rear of

its queue. The server continuously submits a sub transaction to the LTM

according to the following submission rule.

Submission Rule The server can submit a subtransaction to the LTM for

execution only when the subtransaction is in the front of the queue

and the previously submitted subtransaction is serialized or aborted.

An outline for the server is shown in figure 6.

It is noted that since a sub transaction may not be serialized before it is

aborted, an ABORT message has to be sent to the server if a sub transaction

is aborted. Since the sub transactions of global transactions are queued one

after the other, and are then serialized in the local database system accord­

ing to their positions in the queue, the site queue algorithm maintains the

17



LOOP,
do forever
begin

on receiving a subtransaetion
begin

insert the subtransaction into the rear of the queue;
go to LOOP;

end;
if the queue is not empty then

begin
submit the first subtransaction in the queue to the LTMj
wait for SERIALIZED or ABORT from the previously
submitted subtransaction;

end;
end;

Figure 6: Pseudo code for the server

compatibility of the suhtransaction serialization orders. According to theo­

rem 3.1, the site queue algorithm maintains the serializability of the global

history.

For some local concurrency control algorithms, the order domain is the

the same as the time domain. However the serialization point may nbt he

the same as the serialization order (as in YO). In this case, the server has

to wait for the previously submitted subtransaction to reach its serializa­

tion order rather than its serialization point, before it can submit the next

subtransaction.

18



4.3 Exposing Serialization Points and Simulating Prepared
States

It is discussed in [GL84] that the major problem of implementing the two

phase commit protocol in an MDBS is the lack of prepared state in the

local database systems. A prepared state is one in which a transaction

finishes all of its read and computation operations and has all of its updates

stored in a stable storage. A transaction in prepared state is able to commit

or abort according to a global decision. Since a prepared state may not

be supported by the local database systems, we simulate a prepared state

for a subtransaction by properly restructuring the subtransaction. This

restructuring also makes the serialization point of a subtransaction visible

to the outside world.

In the proposed format (Figure 6), a subtransaction contains database

operations, communication primitives and control statements. All of them

are enclosed within a BEGIN_TRANSACTION and an END_TRANSACTION.

It is assumed that the local database system buffers the write operations in

the private working area of the transaction until the transaction issues its

commit operation. It is also assumed that the local database system sup­

ports a rollback operation which can recover a failed transaction. Every

database operation is embedded within a conditional statement which will

take a proper action when the execution of the database operation fails. At

some point in the transaction when the subtransaction is first serialized, a

send operation is inserted, which will report a SERIALIZED message to an

agent of the GCC. If all the database operations are successfully executed,

the subtransaction will wait for a PREPARE message from the coordinator

of the two phase commit protocol. Subsequently, if a PREPARE message

is received, the transaction will respond with a READY message to the

coordinator, and then waits for a COMMIT or ABORT message from the

coordinator. If a COMMIT message is received, the subtransaction will

commit the sub transaction by issuing a commit operation. Otherwise, the

19



BEGIN_TRANSACTION
First database operation;
if (EXEC-CODE = ERROR) then go to FAILED;
Second database operation;
if (EXEC-CODE = ERROR) then go to FAILED;

send(transJd, server, lISERIALIZED")j

Last database operationj
if (EXEC-CODE ~ ERROR) then go to FAILED;

WAIT,
receive(trans...id, coordinator, message);
if (message = "PREPARE") then go to PREPARED;
go to WAIT;

PREPARED,
send(transjd, coordinator, "READY");
receive(transJd, coordinator, message);
if (message = "COMMIT") then commit
else rollback;
go to END;

FAILED,
send(trans...id, server, "ABORT");
send(transJd, coordinator, "ABORT");
rollback;

END:
END_TRANSACTION

Figure 7: A format for subtransaction

20



sub transaction will abort itself by issuing a rollback operation. In case

there is any failure in executing a database operation, subtransaction will

abort itself and respond with an ABORT message to both the GCC agent

and the coordinator. All of the above stated communications is done by

using the send and receive primitives.

By restructuring a subtransaction as above, we simulate a prepared state

into the subtransaction without violating the local autonomy. The role of

the participant of the two phase commit protocol [BHG87J is assumed by

the subtransaction, while the coordinator is the same as usual and must

be implemented in one of the local database systems. Since the two phase

commit protocol with simulated prepared state is very similar to the basic

two phase commit protocol\ it will not be further detailed in this paper.

It is worth noting that since the updates are not stored in a stable storage,

the two phase commit protocol with simulated state can not tolerate site

failure. However, it can tolerate the subtransaction failure.

5 Survey of the Existing Global Concurrency Con­
trol Algorithms

Most of the proposed global concurrency control algorithms can be classified

into the hierarchical concurrency control approach. Depending on how the

compatibility of the serialization orders is maintained, most of the global

concurrency control algorithms can be further classified into one of the two

classes. In the first, a global transaction is first executed without any global

control. At commit time, the execution of the global transaction is validated

against the set of committed global transactions. The validation is done by

the GCC by comparing the serialization orders of the subtransactions with

the serialization orders of a set of recently committed global subtransactions.

This is the bottom up approach. In the second, GCe controls the execution

'lIt is similar to the basic 2-PC except the logging activity.
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ofthe subtransactions such that serialization orders are prevented from being

incompatible. This is the top down approach.

The superdatabases approach proposed by [PuSS] is an example of the

bottom up approach. In this approach, the LDBSs report to the superdatabases

the serialization order of each subtransaction under its control. The serial­

ization order of a subtransaction is called the O..element ( order-element).

The O..elements of the subtransactions of a global transaction is then used

to construct an O_vector. The superdatabase then searches for a consistent

position for this O_vector in the set of 0 _vectors of the recently committed

global transactions. If a consistent position can be found, then the global

transaction is committed, otherwise, it is aborted.

Altruistic Locking protocol [AGS87] and Non-two-phase Locking proto­

col [Vid87] are examples of the top down approach. In these protocols, lock­

ing is used to maintain the compatibility of the serialization orders. Before

submitting a subtransaction to an LDBS, the global transaction must lock

the intended LDBS. A sub transaction can be submitted to a local database

system only when the lock of the LDBS is available (not locked). The way

that the LDBSs are locked and released must follows some correct proto­

cols to guarantee the compatibility of the serialization orders. The Altruistic

Locking protocol is a variant of the two phase locking protocol, which allows

early release of locks. In the Non-two-phase Locking protocol, the LDBSs

are first ordered as a rooted tree, then the tree protocol [KS86] is applied

on this rooted tree. Both of these two protocols can be used as the global

concurrency control protocol. It is to be noted that the static property is

also required for the top down approach. The static property is needed to

guarantee that the submission order of the subtransaction is the same as its

serialization order. As shown in example 1, since the local concurrency con·

trol algorithm in LDBS2 is not static, even though the subtransaction ofG I

is submitted before that of G2 , the serialization order of the subtransaetion

Sit is a global transaction manager.
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of G2 precedes that of G1 •

An example of a protocol that does not follow the the hierarchical ap­

proach is the site graph algorithm proposed by Breitbart [BST87]. In this

algorithm, a site graph is constructed in which nodes are sites (LDBSs), and

edges are global transactions. If a global transaction accesses two data items

on two different sites, an edge which is labeled by this global transaction

is added between these two sites. The global serializability is main tained

by retaining the acycliclty of the site graph. A database operation can be

executed only if it does not create a cycle in the site graph. This approach

allows low degree of concurrency for global transactions, since it does not

allow any two global transactions to concurrently access more than one com­

mon site. Furthermore, it is not easy to purge the graph.

Generally speaking, the bottom up approach suffers from a high abor­

tion rate of the global transactions. This can be illustrated by the following

simple analysis. Let us assume that a bottom up approach is used for

global concurrency control. Because of local autonomy, every pair of sub­

transactions executed on the same LOBS are assumed to conflict with each

other. Consider an MOBS with three LOBSs. Suppose that there are two

global transactions. Each global transaction has one subtransaction on each

LOBS. Let us further assume that for any pair of subtransactions on the

same LDBS, the probability for the serialization order of one to precede the

other is ~. Then the probability for these two global transactions to have

compatible serialization orders is t. If the number of global transactions

increases to three in the above example. Then the probability for the se­

rialization orders to be compatible becomes 316' which is very low. It can

be shown that when the number of concurrent global transactions becomes

large, the completion rate in the bottom up approach will be small. Since

aborting global transactions is costly. We conjecture that the top down

approach is more efficient.
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6 Conclusion

One way of doing global concurrency control in an MDBS is to impose a

control hierarchy on the Gee and LeGs. In a hierarchical concurrency

control, Lees control the execution of local transactions and global sub­

transactions to retain the serializability of the local executions; while Gee
controls the execution of global subtransactions to maintain the compatibil­

ity of the subtransaction serialization orders. However, this approach is not

applicable to all MDBS environments. In this paper, we identify a class of

local concurrency control algorithms on which the hierarchical concurrency

control approach can be applied. This class of local concurrency control

algorithms is characterized by having the static property. One contribution

of this paper is to highlight this property. Other contributions are (1) to

formalize the hierarchical approach and prove its correctness; (2) to propose

a new deadlock free global concurrency control algorithm; and (3) to suggest

a way of implementing the two phase commit protocol.
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