
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1993

A Taxonomic and Analytical Survey of Multidatabase Systems A Taxonomic and Analytical Survey of Multidatabase Systems

Tony Schaller

Omran A. Bukhres

Jiansan Chen

Ahmed K. Elmagarmid
Purdue University, ake@cs.purdue.edu

Report Number:
93-040

Schaller, Tony; Bukhres, Omran A.; Chen, Jiansan; and Elmagarmid, Ahmed K., "A Taxonomic and
Analytical Survey of Multidatabase Systems" (1993). Department of Computer Science Technical Reports.
Paper 1056.
https://docs.lib.purdue.edu/cstech/1056

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

A TAXONOMIC AND ANALYTICAL SURVEY
OF MULTIDATABASE SYSTEMS

Tony SchaUer
Omran A. Bukhres

Jiansan Chen
Ahmed K. Elmagarmid

CSD·TR-93-o40
July 1993

(Revised November 1993)

A Taxonomic and Analytical Survey of Multidatabase Systems

Tony Schaller
Molecular Design Ltd.

2132 Farallon Drive
San Leandro, CA 94577

tonys@molecular.com

Omran A. Bukhres, Jiansan Chen, and Ahmed K. Elmagarmid
Department of Computer Sciences

Purdue University
West Lafayette, IN 47907

{bukhres, jchen l ake}@cs.purdue.edu

1

•,
r,

,

I•

Contents

1 Introduction

2 Major Issues of Multidatabase Integration

2.1 System Architecture .

2.2 Schema Integration .

2.3 Multidatabase Transaction Management

2.3.1 Global serlalizability .

2.3.2 Global atomicity and recovery .

2.4 Global User Interfaces and Multldatabase Interfaces

3 Taxonomy

4 A Review of Current Research Prototypes and Commercial Systems

4.1 A Review of Academic Research Prototypes

4.1.1 IMDAS .

4.1.2 lnter13ase

4.1.3 NDMS ..

4.1.4 MRDSM

4.1.5 OMNIBASE

4.1.8 PRECI* ...

4.2 A Review of Industrial Prototypes

4.2.1 ADDS

4.2.2 DATAPLEX

4.2.3 Mermaid ..

4.2.4 MULTIBASE.

4.2.5 TDIE

4.3 A Review of Commercial Systems.

4.3.1 Ingres/STAR

4.3.2 Oracle V5

4.3.3 SUPRA

4.3.4 Sybase .

5 A Review of Object-oriented Prototypes and Commercial Systems

5.1 A Review of Academlc Research Prototypes

5.1.1 A la carte Framework

2

.
4

,
~

6

7

10

12

13

14

15

17

18

19

19

20

21

22

22

23

24

24

25

26

27

28

29

29

30

31

32

33

34

34

5.1.2 FBASE 35

5.1.3 Thor. 36

5.2 A Review of Industrial Research Prototypes . 37

5.2.1 Camot . 37

5.2.2 CIS .. 38

5.2.3 DOM 39

5.2.4 EIS/XAIT . 40

5.2.5 OIS .. 40

5.2.6 Pegasus 42

5.2.7 ViewSystem . 42

5.3 A Review of Commercial Systems. 43

5.3.1 UniSQL/M 43

6 Summary 44

3

1 Introduction

The successful integration of computational process and data from dlsparate sources is a complex

process. An integrated system interconnects pre-existing systems to support global applications ac­

cessing more than one component system. For many global applications which require simultaneous

access to multiple systems, such an integration presents an attractive alternative to a single system

and offers enhanced performance and flexibility. Unlike traditional distributed systems, an inte­

grated system interconnects component systems in a bottom-up fashion, thereby allowing existing

applications developed on the component systems to remain executable without modification.

A multidatabase system is such an integrated system, in which heterogeneous and autonomous

component database systems are unified on a global level so as to support global applications access­

ing more than one component database. A multidatabase interoperation provides an integra.ted

view of the data. and resources of these applications and presents global users with transparent

access to the information stored in component databases, without violating the local autonomy

or independent administration of these component databases. The multidatabase architecture is

typified by the French Teletel system which allows 1.8 million users to access over 1000 sepa­

rate databases. Modern information-dependent technologies requires that pre-existing information

sources and systems be interconnected to allow users to access these resources in a unified format.

As the number of multidatabase prototype and commercial systems expands, the need for a

comprehensive research analysis of these systems becomes more pressing. Such an analysis would

examine the nature of multidatabase systems, summerize the findings gleaned from current devel­

opments, and provide suggestions for the future research in tIllS area. Researchers involved with the

development of multidatabase systems could draw upon this analysis for the guidelines when for­

mulating new theoretical models and practical products, while end-users could employ these results

as standards in assessing the required functions provided by different multidatabase products.

Several investigations along this line have already appeared in literature. In [SL90], multi-

4

database systems are classified as non-federated and federated. A non-federated database system

is an integration of non-autonomous component database, presenting to its users the appearance

of a distributed database system. A federated database system consists of component database

systems that, while still autonomous, nonetheless participate in a federation to allow partial and

controlled data-sharing. A federated database system can be loosely coupled or tightly coupled. A

tightly coupled federated database system has at least one global schema which is maintained by

the federation, while a loosely coupled federated database system has no global schema.

In [TTC+90], the capabilities of multidatabase systems are described as including schema in­

tegration, distributed query processing, distributed transaction management, administrative func­

tions, and accommodating different types of heterogeneity. Several multidatabase systems, includ­

ing Ingres and Sybase, are analyzed in accordance with the listed capabilities.

In [BHP92J, multidatabase systems are classified along a continuum from tight to loose cou­

pling, in the following categories: distributed databases, global schema multidatabases, federated

databases, multidatabase language systems, homogeneous multidatabase language systems, and

interoperable systems. A distributed database system is equated with a non-federated database

system as classified by [SL90], while a global schema multidatabase system is tigbtly coupled with

a single global schema, and a federated database system js tightly coupled with several global

schemas. A multidatabase language system provides no global schema, leaving its users to rely on

query language tools to access component systems. A homogeneous multidatabase language sys­

tem is a special multidatabase system with homogeneous component systems and an interoperable

system acts as a front-end to component systems.

Although the above-mentioned analysis of multidatabase systems has provided much useful

information, a more in-depth investigation which would offer more comprehensive insights has yet

to be attempted. The present research attempts to redress that lack.

In this paper, we first construct a logical architecture of multidatabase systems and explore the

major issues related to multidatabase integration. These tools are then applied to the analysis of

some existing multidatahase systems. The features of these systems are then summarized according

5

to the following criteria: 1) integration of disparate systemsj 2) provision of schema translation

and schema integrationj 3) support of various local data modelj 4) transactions supportj and 5)

maintenance of autonomy of component systems.

2 Major Issues of Multidatabase Integration

The principle obstacle to multidatabase integration lies in the autonomy and heterogeneity of com­

ponent systems. The autonomy of component systems, which renders the multidatabase system

unable to modify, control, and closely monitor these component systems, may arise from a va­

riety of causes. The owner of a component system may be unequipped to make modifications.

Also, the component system may belong to a different organization than the one developing the

multidatabase system. Furthermore, alterations to well-established software systems would create

incompatibilities with the many application programs which they service. The retention of local

autonomy is therefore of utmost importance in multidatabase system integration. The second char­

acteristic of component systems, heterogeneity, may be manifested in a variety of aspects, including

query language, data model, concurrency control, and atomicity control.

The heterogeneous and autonomous nature of component database systems greatly complicates

the theoretical foundation of a multidatabase system. For example, consider a multidatabase

transaction that transfer data from one component database system to another. Because these

component systems are autonomous, they can unilaterally commit or abort their section of the

operation after it is completed or failed. In this instance, if one of these two component database

systems has committed while the other one has aborted, the data transferred may be either lost

or duplicated. Many approaches have been proposed in the literature to address such problems,

which arise from the heterogeneous and autonomous nature of the component database systems in

a multidatabase system.

In general, multidatabase integration occurs on four levels, the user interface level, the

schema level, the transaction level, and the interface level. The user interface provides

6

users with a global query interface employing a unified format. It may also provide a programming

interface which allows users to embed multidatabase operations into other programming languages,

permitting more flexible applications. The schema integration of a multidatabase system pro­

vides global schemas and views into tile scllemas of underlying component database systems. This

level serves to mask the details of data stored in component database systems and to provide a

uniform view of these data. The transaction level of a multidatabase system builds upon the

transaction management facilities of component database systems to support transaction applica­

tions. Finally, the interface level transforms command text and data between the multidatabase

format and that of individual component database systems. The four levels of multidatabase inte­

gration will now be discussed in further detail.

2.1 System Architecture

A logical multidatabase architecture is graphically presented in Figure 1, which clarifies the re­

lationship among the four levels of multidatabase integration. In this figure, Query; indicates a

query originated by a user of the multidatabase system, while G; is a global transaction which is

the consistent and reliable execution of Query;. G; accesses Component Database System} through

Component Database Systemn. G;,m (1 :::; m :::; n) indicates a global subtransaction which consists

of all the operations of G; on Component Database Systemm. Lj,m (1 ::; m ::; n) indicates a lo­

cal transaction on Component Database Systemm which is transformed from Gi,m' Li,} and Lk,n

indicate local transactions submitted directly from the user to Component Database System} and

Component Database Systemn, respectively.

A user caD initiate a query through the global user interface provided by a multidatabase system.

After decomposition and translation with the aids of the global schema, the query is submitted to

the Global Transaction Manager (GTM) as a global transaction (G j). The GTM then surveys the

dependencies among tile subtransactions of G j (Gi,}, Gi,2' .. " and Gi,n) as the basis for selecting

one to be submitted for execution first. Without loss of generality, let us assume (Gi,m, m::; n) is

submitted first by the GTM. Gi,m is received by an interface superimposed on Component Database

7

n Level

Level

Interface Level

ace Level

User
query

Global
User Inter!

lJser Interface(s)

.............
QuerYi.............

Global
I--

Query Decomposition
Schema

Schema(s) and Translation

.......
G,.......

Glohal
Transaction Manager Transactio

(GTM)

.......

~~
.......

Li,1 .~k!~.--- ---

c- -, r- -, c- -,
I Interface I I Interface I I Interface I

-J-- -J- J-
£-1 £-, Li,n
-~f- ~f- ~.. -

Component Component Component
Database Database Database
System! System2 • • • Systemn

I I I
I I I

Component Component Component
Database!

,
Database2 Databasen,,

'--- --" L ___ --" L ___ - -"

Figure 1: A logical multidatabase architecture

8

Systemm • This interface, which is a special designed agent of the rnultidatabase system, performs

all necessary format transformations and sends the transformed Gi,m as a local transaction Lj,m to

Component Database Systemm. At the same time, Component Database Systemm can also accept

local transactions from users directly. The result of Li,m is sent to the interface, which translates

the result into a uniform format defined by the multidatabase system. The results are then sent to

the GTM as the result of Gi,m. The GTM continues to execute other subtransactions of G j until

it is able to decide and act to commit or abort Gi, the final result of which is sent to the user.

Tills logical architecture can be readily tailored to meet the requirements of various multi­

database systems. For example, if each multidatabase interface is embedded in its associated

component database system, the multidatabase system can then be seen as a non-federated or a

distributed database system, as defined by [5L90] or [BHP92], respectively. If only multidatabase

interfaces are provided for each component database system, the multidatabase system can be cate·

gorized as interoperable. If all component database systems are identical, the multidatabase system

is simply a homogeneous multidatabase system. If the global user interface provided is simply a

database query tool, the multidatabase system is a multidatabase language system.

The above discussion pertains to the logical architecture of the system. The physical design

of a multidatabase system falls along a continuum defined by two extremes. At one extreme is a

centralized system in which all global queries are sent to a central node, where they are processed,

executed as global transactions, and their subtransactions submitted to appropriate component

database systems for execution. While such system is easy to design and implement, its central

node becomes a hot-spot, the failure of which immobilizes the entire system. At the other extreme

is a totally decentralized system in which each node can independently process global queries

originated at that location. As all the nodes work independently, the failure of a single node js not

propagated to other nodes. The successful design of such a decentralized arch.itecture has become

a central aim of multidatabase system designers.

9

2.2 Schema Integration

Mueb of the early investigation into multidatabase integration concentrated on global schema de­

sign, and in particular, on schema translation. A good review of some of the early work on schema

translation can be found in [HF83, Lar83], while the entire topic of schema integration is covered in

[BLN86, SL90]. Many different approaches for schema integration have been discussed, and some

are presented in [BL84, DH84, NSE84, NEL86, SL88, LNE89, SG89J.

Schema translation involves translating the schemas of component systems into a common (or

canonical) data model format. The output of this process will typically consist of common data

model schemas and data mapping and query translation rules. Schema integration addresses the

integration of multiple component system schemas into unified global (or partial global) schemas.

Figure 2 provides a pictorial representation of these two integration phases. Several variations of

the figure shown are possible:

• No integrated views are provided. The purpose of the database then is to provide a common

query language. Navigational queries can he performed, or keywords and partial matching

can be used in queries to attempt to retrieve the desired data.

• A single integrated view is provided that represents tIle entire glohal database status.

• Each component system has its own integrated view, ~ described in [HM85].

• Multiple local views or multiple views of integrated schemas are supported.

• Multiple global query processors (or other applications) access the integrated views. In the

federated approach, each component system is in effect a global query processor.

While schema translation to a common data model overcomes the heterogeneity of data models,

many other obstacles to schema integration stiU remain. If the objects in the different database are

all semantically unrelated, there may be a:

• Naming Conflict; two databases may each have classes bearing the same name but repre­

senting different concepts.

10

Global

Query Processor

..............................;;-- ...~~............................

Integrated View1 Integrated View2

.................~......... ---.................'""-..............

Local View Local View Local View

............. \..........................

Component Component • • • Component

Database Database Database

Systeml Systern 2 System"

(CDBS,) (CDBS,) (CDBS n)

SCHEMA

SCHEMA

INTEGRATION

TRANSLATION

Figure 2: Multidatabase Integration

Such conflicts can be resolved by simply renaming one of the classes in the integrated view.

However, if some of the objects are semantically related, many conflicts can occur, including:

• Structural Conflict; data may be structured differently in each component system. Objects

in different component systems that represent the same semantic concept may have a different

number of subobjects or may include subobjects with no semantically corresponding subobject

in the system.

• Unit Conflictj objects may use different units. For example, two databases might include

"car" objects with an attribute called "length" of (primitive) type float, but one database

may store lengths in feet and the other in meters.

• Type Conflictj two attributes that represent the same concept in related objects may be

declared as different types. For example, one component system may store a social security

number as a character string in an "employee" object, while another stores it as an integer.

• Name Conflictj two database systems may have classes that are semantically equivalent

11

but use different names, such as "customer" and "client." In addition, attributes that are

semantically equivalent may be named differently.

A more detailed discussion of data and schema conflicts that can occur in multidatabase systems

is presented in [KS91) and [BLN86).

2.3 Multidatabase Transaction Management

Ideally, multidatabase transaction management should enforce the ACID properties (atomicity,

consistency, isolation, and duration) on multidatahase transactions (termed global transactions).

However, because data in a multidatabase system are maintained by component systems, multi­

database transaction management is only responsihle for controlling global concurrency and global

atomicity and recovery.

Global concurrency control is necessary even though all component systems maintain serial­

izability [DEL089, OV91]. Concurrency control improves the response times of database queries

and prevents longer transactions from delaying shorter transactions. Traditionally, serializability

is used as the correctness criterion for concurrency control; it requires that a concurrent execution

of a set of transactions be equivalent to a serial execution of these transactions.

Global atomicity and recovery control is a prerequisite for the enforcement of the atomicity

of global transa.ctions in a multidatabase system. Even though all component systems support

atomic transactions, an atomic commit protocol is still required. For example, consider a global

transaction G which submits a subtransaction G1 at component database C1 and a sub transaction

G2 at component database C2• If both G1 and G2 are committed or aborted, G can be said to be

atomic. However, if one subtransaction js committed while the other one is aborted, G is terminated

in an unacceptable state.

The problems involved in multidatabase transaction management were first raised in [MB81],

and a more detailed discussion was represented in [GPZ86]. In the following years, multidatabase

transaction management has been the subject of extensive investigation. Examples of proposed

12

algorithms growing out of these research efforts include [AGMSS7, BS8S, PuSS, KLS90, BST90,

DEK91, GRS9l, MRB+92, ZE93]' In [BGMS92], an overview of multidatabase transaction man­

agement is presented.

Traditional transaction management strategies, which presume full knowledge and control by

the transaction manager over the managed transactions, are best suited to database systems built

from scratch. The assumptions upon which they are based do not extend to multidatabase environ­

ments, which integrate existing systems in which transactions aTe scheduled independently by the

autonomous transaction managers of component systems. Global serializability and global atom­

icity and recovery have therefore become central to the successful development of multidatabase

transaction management schemas.

2.3.1 Global serializability

An execution is serializable if it is semantically equivalent to a serial execution in which transac­

tions are executed sequentially. Global serializability implies that all local executions on component

database systems are serializable and that the serialization orders of transactions at different com­

ponent database systems are consistent. These conditions are not readily met, as the serialization

orders are generally not known to the multidatabase transaction manager. Serialization orders

may also differ from the ordering of physical events, such as the beginning or end of an execution

(submission or commitment), which are controllable at the multidatabase level. Two approaches,

among many proposed algorithms, appear most promising to address this problem.

The first approach may be applied in those multidatabase environments in which the serializa­

tion order is consistent with some physical event order. For example, if the transaction manager

of each component database system is rigorous [BGRS91], in that it does not begin the execution

of a transaction until all previous conflicting transactions have committed, then the serialization

order will be consistent with the commitment order.

An alternative approach would involve first relaxing the requirement of global serializabillty

and then resolving any inconsistencies by controlling other (non-scheduling) aspects of execution.

13

Typical of this method is the quasi-serializability (QSR) approach [DES9]. Instead of coordjnat­

ing serialization orders at different component database systems, QSR ensures only a consistent

execution order. That is, if two transactions access more than one component system, they are

executed sequentially in a consistent order at all component systems. Possible inconsistencies due

to non-serializable executions are prevented by controlling the flow of information among global

subtransactions.

The first approach offered above is particularly applicable to the integration of database sys­

tems, as most existing commercial database systems are rigorous. With problems of more general

integration, where not all component systems are rigorous, the second approach would be appro­

priate.

H the serialization orders of component systems can be obtained by the multidatabase transac­

tion manager, global serializability can be easily achieved. This situation forms the basis of several

optimistic algorithms, such as the SuperDatabases approach [PuSS]. When a global subtransac­

tion is completed, the corresponding component system reports the local serialization order to the

multidatabase transaction manager. The multidatabase transaction manager compares the serio

alization orders of each committing global transaction with those of all other recently committed

transactions, and issues a verification if the orders are compatible at all component systems.

2.3.2 Global atomicity and recovery

A greater challenge is presented by the requirement, arising from the properties of atomicity and

durability of global transactions, that all the subtransactions of a global transaction either commit

or abort. The traditional approach (two-phase.commit) relies on the prepare-to-commit state

provided by all component systems to prevent unilateral commit/abort and to survive failures.

Such an approach may not be feasible when integrating existing systems that do not all support a

prepare-to-commit state.

One solution to this difficulty would be to apply a transaction model, such as Flex Transactions

[ELLR90], which permits a more flexible commitment protocol. It is also possible to redo or retry

14

unilaterally aborted sub transactions or to semantically undo (compensate) unilaterally committed

subtransactions [Gra78, GM83, KLS90, BGMS92}.

In summary, despite a flurry of research activity on the subject, the maintenance of global

consistency within a multidatabase and of the atomicity of global transactions are still challeng­

ing problems to which no satisfactory solution has yet been found [CAC91]. Furthermore, most

investigations have concentrated on the theoretical aspect of these problems, very little attention

to practical concerns.

2.4 Global User Interfaces and Multidatabase Interfaces

Global user interfaces permit access to the multidatabase system as a whole. Unlike the problems of

schema integration and transaction management, very little research has been specifically targeted

toward global user interfaces, although they often constitute a sidebar to a discussion of schema

integration and the description of prototype multidatabase systems. This may be attributable to

the highly practical nature of the question of user interfaces, rendering it a time-consuming and

potential under working area for exploration.

Traditionally, there have been three levels of user interfaces for database systems. User inter­

faces designed for specific application environments usually take the form offill-in tables [Row85] or

pull·down menu [KM89]. Users of such user interfaces must follow a pre-set format, with guidance

provided by the interface itself. While user interfaces of this type are easy to use, they are fixed

for specific applications and therefore inflexible. A second variety of user interfaces, typified by

SQL (Structured Query Language), is designed for non-experts. Users can make ad hoc queries

to database systems, where they are processed, run against the data, and the desired results re­

turned. The most sophisticated user interfaces are interface primitives that can be embedded in

a programming language such as C or COBOL. User interfaces of thls sort provide a flexible and

efficient, although more demanding, methods to use the data stored in a database. In fact, most

fill-in table format user interfaces are built on such sophisticated user interfaces.

15

At present, most existing multidatabase systems employ SQL or similar interfaces. because SQL

is popular among traditional database users and all commercial database systems are equipped with

an SQL user interface.

Multidatabase interfaces perform the mapping between a multidatabase and its component

systems. This area is also frequently addresses along with the issues of schema integration and

transaction management. Like the question of global user interfaces, the problem of rnultidatabase

interfaces is also far more a practical than a theoretical issue.

Many of the functions of schema integration and transaction management can be performed

through multidatabase interfaces. The translation of local schema of a component system into

the global schema format specified by the multidatabase system can be performed by each multi­

database interface. The complexity of a multidatabase interface is dependent largely on the compo­

nent system integrated. If all the component systems are relational databases, the commonality of

their features simplifies the construction of these interfaces. On the other hand, if the component

systems are heterogeneous, involving a mixture of both database and various non· database systems,

the resulting heterogeneous interfaces are more difficult to construct.

Not only the nature of component systems themselves but also the standard user interfaces

provided by these component systems play an important role in the development of multidatabase

interfaces. To preserve local autonomy, a multidatabase interface must be tailored specifically

for compatibility with the standard interfaces provided by its associated component system. For

example, some systems, such as the Sybase and Ingres DBMSs, provide both a query (command)

and a programming interface; other systems, such as the UNIX shell, provide only a command

interface. The nature of the multidatabase interface to be developed is shaped by the particular

component system interface involved. The development of multidatabase interface to accommodate

query (command) interfaces brings with it the following problems:

• because component systems tend to output a mixture of useful and auxiliary data, output

interpretation is complex;

16

• the multidatabase interface may be unable to properly interpret error messages sent to an

error file by a component system; and

• different versions of a component system may use different output and error message for­

mats. These difficulties can be bypassed by formulating a multidatabase interface to suit the

programming interface of its component system whenever possible.

Furthermore, the programming interface of a component usually provides more functions than

its query (or command) interface, allowing the rnultidatabase interface to support more applications.

A global user interface and a multidatabase interface for each component system may be con­

sidered to be the minimum requirement of a multidatabase system.

3 Taxonomy

The following five taxonomic categories form the basis of our review of the characteristics of mul­

tidatabase systems:

• Integration of Disparate Systems. A rnultidatabase system may include only databases as

its component systems, thus severely restricting the scope of multidatabase integration. Since

many non-traditional distributed transaction applications demand the integration of non­

database systems such as CAD/CAM packages, multidatabase systems are now frequently

required to incorporate various non-database systems.

• Provision of Schema Translation and Schema Integration. Schema translation de­

scribes the process of translating the heterogeneous data models of component systems into

a common data model, such as an object-oriented model. Schema integration, as described

in Section 2.2, addresses semantic issues that are not encompassed in the process of schema

translation. The provision of schema integration reinforces the tightly coupled architecture

of the multidatabase system.

17

• Support of Various Local Data Models. Many different data models may be employed

by component systems. For example, a component database system may employ either a

relational, network, hierarchical, entity-relationship, or object-oriented data model, while a

non-database component system may use any format to store and process data. A flexible

multidatabase system must support a variety of local data models.

• Transaction Support. A global transaction manager for a multidatabase system enforces

the ACID properties (atomicity, consistency, isolation, and duration) on global applications

over the system. For many applications, it must be at least semantically guaranteed that

either all or none the operations of these applications will execute. For example, a customer

who requests a flight ticket and a hotel room would like either both or none of the requests

to go through.

• Maintenance of Autonomy of Component Systems. A multidatabase system should

require no modification ofits component systems. The owner of a component system may be

unequipped to make such modifications. Moreover, the original developer of the component

system may not be involved in the development of the multidatabase system. The retention

of local a.utonomy is therefore of utmost importance in multidatabase system integration.

4 A Review of Current Research Prototypes and Commercial

Systems

In this section, we review many of the multidatabase projects currently reported in the literature.

These projects originate in a variety of countries and institutions. Some are academic and industrial

prototype which serve as research vehicles to study specific problem areas, while others are fully

commercial systems. The range of organizations involved and the number of projects reported are

a testimony to the importance of this field, and both academic and industrial research institutions

have invested heavily in multidatabase development. The reported functional content of each

project is based on published reference materials.

18

4.1 A Review of Academic Research Prototypes

In this subsection, we discuss various multidatabase research prototypes developed in academic

institutions. These prototypes are mainly research vehicles to study specific problem areas and

usually provide only minimal system capabilities, includlng relatively user-unfriendly interfaces,

simple security control, and incomplete error handling.

4.1.1 IMDAS

IMDAS is a tightly coupled federated system [I<SL+87] developed by National Institute of Standards

and Technology and University of Florida; it has a single schema. The integrating data model is a

semantic network data model capable of representing the complex structures and relationships and

many integrity constraints found in a manufacturing enterprise. A fragmentation schema maps

the global schema model to the underlying databases, supporting both horizontal and vertical

partitioning of a given object class.

Existing database systems are front-ended by IMDAS modules supporting an internal query in­

terchange form, which is an extended algebra of generalized relations corresponding to the modeled

object classes, and a corresponding data interchange form, expressed in Abstract Syntax Notation

1 of ISO Standard 8824 and 8825. This common interface is readily mapped onto underlying rela­

tional and navigational databases. A library of supporting routines minimizes the effort involved

in integrating new data systems and databases.

The user program phrases queries in an SQL-like language adapted to the model. The query

is passed to the IMDAS in string form, rather than precompiled, to permit access by controllers

programmed in non-standard languages. This mechanism call support an interactive interface,

although none has yet been built. IMDAS supports both distributed updates (transaction man­

agement) and distributed retrievals (query management). The fragmentation schema does not

currently support replication, however, which forms a signifLcant limitation upon the system.

19

4.1.2 InterBase

The InterBase System is a multidatabase prototype developed at Purdue University [BCD+93]

which is designed to provide a tool-based interface that facilitates application development in a

distributed environment of heterogeneous software resources such as databases, toollihraries, and

application programs. InterBase has been designed to manage the details of locating and starting

remote services, transferring and transforming data among different services, managing failures,

and controlling parallelism between multiple global applications running concurrently.

InterBase provides two different levels of user interfaces. A SQL interface, currently under­

going development, forms the higher level, permitting users to input ad hoc queries to InterBase.

The InterBase Parallel Language (IPL) (CBE93], at the lower level, supports application program

integration and distributed transaction processing and acts as an application programmer inter­

face to InterBase. In this language, subtransactions of global transactions are executed in parallel

whenever possible. IPL allows system programmers to specify all actions associated with a global

transaction, such as control flow and data flow among subtransactions. A graphical interface is

also provided over InterBase which aids users in writing and executing IPL programs.

InterBase employs Remote System Interfaces (RSIs) superimposed on each component systems

to deal with the problem of heterogeneity. The RSIs are responsible for transforming commands

and data between global transactions and component systems. RSIs therefore form a "homoge­

neous" interface toward these heterogeneous component systems, greatly reducing the complexity

of the specification and execution of global transactions, while preserving the autonomy of these

component systems.

One of the strengths of this architecture is its decentralized nature, The DFTM (Distributed

Flex Transaction Manager) is distributed over all the machines from which global transactions

are executed. As a result, a DFTM replica, which is invoked from the machine where a global

transaction is generated, is responsible for the consistent and reliable execution of its associated

global transaction. Exchange of information within Interbase is performed via computer network,

so that each module of InterBase has location transparency. Each global transaction consists of

20

subtransactions, each of which must be executed on a component system through its associated

RSI. As the first step of its execution, a global transaction G j must communicate with the relevant

RSIs to arrange a consistent execution order of its sub transactions relative to those of other global

transactions on these RSIs. In this way, correct execution of global transactions is guaranteed. The

RSIs then execute the subtransactions of G; in the specified order.

Distributed updates in InterBase are allowed as long as the global transactions are specified

using Flex Transaction Models {ELLR90].

4.1.3 NDMS

NDMS (Network Data Management System) is a system developed at CRAI, Italy [ea85]. It

includes support for IDMS, ADABAS, and RODAN database management systems hosted on IBM

hardware and Ingres on DEC VAX hardware.

NDMS uses a relational data model as its global data manager. It involves three levels of

abstraction: the NDMS internal schema, the application schema (conceptual schema), and end­

user views (external schema). The NDMS internal schema is comprised of base relations which

are defined as aggregations over the local database schema. The definition of these base relations

require a data mapping to be specified for each local database, depending on its DBMS data model.

The interface of a local DBMS is made up of NDMS control software and a System Encyclopedia.

This System Encyclopedia contains all information pertaining to a particular component system,

including user, database mapping, and transaction definitions, as well as the complete NDMS

internal schema definition.

A node data administrator is responsible for NDMS applications at each component system.

Using SEQUEL view definition mechanism, it defines relational views as a collection of data ab­

stractions (aggregations and generalizations) over the NDMS internal schema. The NDMS version

of SEQUEL includes modifications to handle generalized abstractions. Predefined relational views

are available to users for characterizing their specifLc data abstractions.

21

4.1.4 MRDSM

MRDSM, developed at INRIA (France) [Lit85], extends the MRDS relational database management

system of HONEYWELL to support multiple databases. The goa! of MRDSM is to accommodate

semantic heterogeneity and thus provide uniform access to these databases. MRDSM operates

on a specialized domain of multiple MRDS relational database management systems running on

a. HONEYWELL system. The query language is MDSL (similar to SQL), which is also the data

manipulation language for MRDS. A global schema does not exist in MRDSM. Instead, users can

create a conceptual schema, known as a multischema, with elements from local database schemas.

Multischema is also associated with one or more dependency schemas which provide details such as

inter-database dependencies, which include manipulation, privacy, and equivalence dependencies.

Equivalence dependencies handle data incompatabilities and semantic mismatches.

After the removal of interdatabase dependencies that cannot be processed locally, a query on

the multischema is decomposed into queries on local databases. A working database schema is

then created to collect data from different databases, using an optimized collection strategy, and

queries are then generated on these working classes. Finally, all data streams are combined and

dependencies resolved.

MRDSM operates within a specialized domain, rather than a 'true' heterogeneous environment.

Heterogeneity is dealt with at the semantic level by providing uniform access to all the databases

encompassed under a single DMDS.

4.1.5 OMNIBASE

OMNIBASE is a multidatabase prototype developed at the University of Houston [REC+S9]. It

consists of a Global User Interface which utilizes a knowledge base to analyze queries sent by users

and when necessary, remove ambiguous references. The analyzed user query is then sent to a Global

Query Parser and Decomposer which decomposes the query into a set of subquerles. Next, a query

evaluation plan is constructed, in the form of a program expressed in a Distributed Operation

Language (DOL). The use of DOL allows the specification of complex multi-site data processing

22

requests that may involve not only multiple databases but also other software packages. The query

evaluation plan is subsequently executed under the control of the Query Evaluation Supervisor

(QES), which directs the subqueries to their respective local systems. For each subquery, a Local

Access Manager (LAM) translates the query into the local database language and submits it to the

Local Database Management System (LOBS). An intermediate result of a local query produced

under the control ofa LAM may be then directed to some other site. LAMs are used to protect the

local autonomy of the LOBSs participating in the multidatabase system and act as local agents of

the MOBS. The results of subqueries are then combined to produce the final answer to the global

query.

Because of the lack of centralized control in the design of LOnSs, different databases may use

dissimilar data types to define data objects that logically belong to the same domain. Furthermore,

data representation and precision may vary even for data of the same type. To accommodate this

heterogeneity and possible inconsistency among databases, a multidatabase dictionary service must

be provided either as a part of the MOBS or as an independent directory server. Whenever a new

LOBS joins the MOBS or a member database is modified in a manner affecting its export schema,

the appropriate schema information must be made available to the MDBS. The Knowledge Base

serves this purpose.

4.1.6 PRECr*

PRECI* is a prototype of a generalized distributed database system developed at the University of

Keele and the University of Aberdeen in collaboration with a number of research centers, mainly in

Britain [DAODT8S]. It is a generalized distributed heterogeneous DBMS with retrieval and limited

update facilities. The local schema of each existing database is redefined, and each 1s then referred

to as a node, with access to other databases, or nodes, accomplished via a relational algebraic

interface.

The designers of PRECI* refer to their global data model as a canonical data model. It uses

extended ANSI/SPARe architecture, and its conceptual schema (or canonical schema) is written

23

in a relational form. The principal data manipulation language is the PREel Algebraic Language

(PAL), which offers such commands as Alteration, Rename, and Change Scale for data integration.

Each nodal database in PRECI* is fully autonomous, with its own nodal DBMS (NDMS) and

nodal external schema (NES). The latter provides a PAL interface to the distributed database

which uses PAL as the standard language for communications.

PRECI* permits a large number of local database management systems to participate as nodes,

either as inner or as outer nodes. The inner nodes contribute to the global conceptual schema

definition. IT the number of participating nodes is large, some are designed as outer nodes, which

do not contribute to the global database schema (CDS). The users at these nodes can achieve a

partially integrated view by defining their own mappings. Queries from users at the outer nodes are

dealt with in a similar manner to those from inner-node users. This strategy reduces the overhead

involved in creating a CDS and GES (global external schema) for a large number of nodes.

The local database schema must be redefined to support a relational algebra or PAL. PRECI*

allows global updates to be made to base relations only; global update requirements are submitted

to local database management systems on an individual database basis. If the data are replicated,

an update is performed only on the original copy and the result is propagated to other copies.

4.2 A Review of Industrial Prototypes

In this subsection, we discuss various rnultidatabase research prototypes developed in industrial

research institutions. Like their counterparts in academic institutions, these prototypes are also

mainly research vehicles to study specific problem areas and usually provide minimal system capa­

bilities, including relatively user-unfriendly interfaces and simple error handling.

4.2.1 ADDS

The Amoco Distributed Database System (ADDS) [BT85] provides uniform access to preexisting

heterogeneous distributed databases. The ADDS system is based on the relational data model

and uses an extended relational algebra query language, as well as supporting a subset of the

24

ANSI SQL language. ADDS supports multiple federated schemas. Local database schemas are

mapped into multiple federated database schemas, called Composite Database (COB) defmitions.

These mappings are stored in the ADDS data dictionary, which is fully replicated at all ADDS

sites to expedite query processing. A COB is usually defined for each application, but multiple

applications and users may share COB definitions. Users must be authorized to access specific

COBs and relational views that are defined against the COBs.

The COBs support the integration of hierarchical, relational, and network data models. Local

DBMSs currently supported include IMS, SQL/DS, DB2, RIM, INGRES, and FOCUS. Semanti­

cally equivalent data items from different local databases, as well as appropriate data conversion

for these data items, may be defined.

The ADDS system includes geographically distributed mainframes running the VM and MVS

operating systems and Sun and Apollo workstations running the UNIX operating system. A uniform

network interface to these systems is thererore of great importance, and ADDS provides the Network

Interface Facility for this purpose.

ADDs maintains the autonomy of its local database systems and does not require any modifi­

cations to local DBMS software. The only communication between ADDS and the local DBMSs is

in the form of query submission and data retrieval.

4.2.2 DATAPLEX

DATAPLEX is a heterogeneous distributed database management system developed at General

Motors Corporation [Chu90]. It allows queries and transactions to retrieve and update distributed

data managed by diverse data systems in such a manner that the location of data is transparent to

requesters. In this environment, different data management systems can run on several operating

systems that may be connected by a variety of communication protocols.

DATAPLEX employs a relational model as its global data model. Since the data models found in

dissimilar database systems structure data differently, the data definition for each sharable database

in the heterogeneous distributed database system is transformed into an equivalent relational data

25

definition or conceptual schema. The conceptual schema is implemented as a set of overlapping

relational schemas, one for each location. The relations at each location represent data objects to

be accessed by users at that site. Consequently, conceptual schemas are neither centralized nor

replicated.

A prototype DATAPLEX system incorporates an IMS hierarchical DBMS running under the

MVS operating system and an Ingres relational DBMS running on a VAX computer under the

VMS operating system. This prototype system provides users with the following capabilities:

• SQL queries to 1M3

• Distributed SQL queries to IMS and Ingres

• Distributed SQL queries embedded in a C language program

All modules of DATAPLEX are independent of the local database systemj the only exceptions

are the translator and local DBMS modules, which perform mapping between DATAPLEX and local

database systems. Thus, any component system can be incorporated into DATAPLEX through the

construction of these two modules. This open and modular architecture permits functionality and

performance to be gradually increased.

4.2.3 Mermaid

Mermaid, developed at Data Integration, Inc., is a multidatabase system supporting multiple fed·

erated schemas [TBC+S7]. It is a front-end system that locates and integrates data maintained by

local DDMSs, parts of which may be shared among global userS.

A single database view is presented to users of the multidatabase system through two-stage

process. First, a. federated schema. encompassing either complete or partial component databases

must be defined. Second, at run time, the federated schema is translated into the actual data

storage format.

Users are able to employ a single query language, SQL, to access and integrate data from

several databases. The system automatically locates the required data, opens connections to the

26

backend DBMSs, issues queries in the appropriate query languages, and integrates the data from

multiple sources. This integration may involve translation into a standard data type, translation of

units, combination or division of fields, unification of horizontal fragments, the joining of vertical

fragments, and/or the encoding of values.

Mermaid also has the capability to retrieve data from files, which may be defined as a typed

object with associated retrieval and display methods. The user selects a set of mes of interest by

searching on structured fields and displaying structured fields and files in the target list. The report

resembles the standard output of a relational system, with files given a symbolic name. New me

types can be supported by providing the retrieve and display methods.

Error handling has posed a significant challenge to the developers of Mermaid. Since Mermaid is

superimposed on many layers ofDBMSs, operating systems, and network protocols, error conditions

in any layer may generate errors in other layers. The totality of potential errors and inter·layer

responses has not been clearly defined, leaving Mermaid with little guidance in the event of the

occurrence of an error.

4.2.4 MULTIBASE

MULTIBASE, developed by Xerox Advanced Information Technology, provides a uniform inte­

grated interface for retrieving data from preexisting, heterogeneous, and distributed databases

[SBD+Sl]. It was designed to allow the user to reference data in such databases with a single

query language over one database description (schema). By presenting a globally integrated view

of information. MULTIBASE facilitates rapid and straight forward user access to data in multiple

databases. The integrated schema and single query language (DAPLEX) simplifies the knowledge

necessary on the part of the user.

The MULTIBASE view mechanism is also used to resolve data incompatibilities that frequently

arise when separately developed and maintained databases are accessed conjointly. When defining

a view, the database administrator applies knowledge of the local databases to predict possible

incompatibilities and devise methods for their reconciliation. The methods are then included in

27

the view definition and are followed automatically by the system in generating answers to future

queries.

A MULTIBASE prototype system has been implemented in Ada, where it executes on a VAX

under the VMS operating system. Local Database Interfaces (LDls) have been developed for five

DBMSs, providing access to Oracle and RIM systems executing under the VMS operating system

and to FOCUS, System 2000, and DMR (a hierarchical DBMS developed by the U.S. Army)

systems executing under the VMS operating system. To minimize the cost of adding a new DBMS

to MULTffiASE, a set of LDI building blocks has been created. These building blocks implement

LDr processing that is common to all LDls and greatly reduce the amount of new software required

to create an LDI.

A number of difficulties experienced during the implementation of this project would provide a

direction for future enhancements to MULTIBASE. Two important points relate to the challenges of

handling local system particularities and the need for automated tools to support the creation and

maintenance of MULTIBASE schemas. Automated methods are essential to the administration of

the dictionary of a system that integrates databases from many different organizations. Such tools

would assist both in creating MULTIBASE schemas and in maintaining consistency as changes

occur to the local databases.

4.2.5 TDIE

TDIE is a data integration engine developed at TRW in Redondo Beach, California. Unlike con­

ventional efforts which use a gateway with query language mapping, TDIE has no global data

manipulation language. A local DBMS is used on each computer system and a connection to a

remote DBMS is triggered when a user jssues a demand requiring data integration.

An integrated schema performs uniform query processing for hierarchical, relational, and net­

work data models. TDIE does not support global updates; users at other systems are informed of

an update in one local system by polling the potential source files at a rate of their choosing. Types

of data that are frequently accessed and must be current are polled at short intervals. This ap·

28

proach eliminates extraneous activity and avoids unnecessary copying of bulk data by transferring

only the changes in data.

TDIE is comprised of a data. transform manager and a host interface manager which can reside

on a single processor or be partitioned across multiple processors. The data transform manager

contains the centralized dictionary which defines the global conceptual schema. This knowledge­

based dictionary supplies scripts, translation software, and data locations for full data integration.

Scripts are instructions for data transfer which are sent to the host interface manager, while the

translation software directs the translation from one query language to another. The incorporation

of another local DBMS involves the addition of the appropriate translators and scripts to the dictio­

nary. TDrE provides a front-end tool, termed the Integration Advisor, for interactive construction

of a global integra.ting schema..

The host interface manager forms a bridge to the host applications, providing automatic up­

dating and data retrieval. Time-critical applications in transaction processing or realtime control

are not supported, although TDIE does support global updates and enables the integration of

hierarchical, relational, and network data models.

4.3 A Review of Commercial Systems

In this subsection, we discuss various commercial multldatabase systems. Unlike their counterparts

in research institutions, these commercial systems are designed to be used by non-database experts

for the maintenance and process of relevant information. They must therefore provide all necessary

system capabilities, including user-friendly interfaces, a reliable recovery mechanism, well-written

documentation, and complete error handling, and must maintain a high performance standard.

These criteria may not be met by many research prototypes.

4.3.1 Ingres/STAR

The IngresjSTAR system allows users to access a distributed database which is defined as a collec­

tion of tables from one or more Ingres databases. Any set of tables from any set of lngres databases

29

can be combined to form a new distributed IngresjSTAR database. Such tables can be obtained

not only from databases under an Ingres DBMS but also from databases accessible via an Ingres

Gateway and, in the near future, other IngresjSTAR databases. A single IngresjSTAR server may

service multiple distributed databases, and multiple Ingres/STAR servers may exist in the network.

Access to an IngresjSTAR distributed database is transparent in that once the distributed

database has been created, its users need not be aware of the existence its component Ingres

databases. IngresjSTAR appears to front-end programs as if it were a centralized Ingres DBMS.

The functioning of front-end programs is unaffected by the distributed nature of the database being

accessed.

IngresjSTAR does not itself deal directly with the physical storage and retrieval of data, re­

lying instead on the IngresfDBMS and/or Ingres/Gateway components for this purpose. The

Ingres/STAR component communicates with these Ingres data managers (either Ingres DBMSs or

Gateways) in one manner and regarding the same information as a front-end program. IngresjSTAR

sends a query language representation of the desired task, and the data manager replies with the

requested data.

Some of the available IngresjGateways are put into a production mode for RMS files and RDB

databases on a VAX computer under the VMS operating system and for DB2 databases on IBM

mainframes under the MVS operating system. One of the biggest challenges in designing gateways

has been to understand the capabilities required of the local data managers for participation in

distributed operations. A subset of SQL that is supported by all gateways has been designed, and

this common SQL is used in the Ingres/STAR product. This common subset is expected to evolve

over time.

4.3.2 Oracle V5

In its version V5.1.17, Oracle has become a multidatabase management system. It permits the

creation of several databases at the same site and the formulation of elementary multidatabase

queries. The Oracle multidatabase language is termed SQL*PLUS. The database name (or even

30

the site name) does not prefix the table name but postfixes it after the character@. This capability

facilitates the resolution of name conflicts. The user also has a repertoire of statements with which

to define aliases for table and database names. This capability, called database linking, should not

be confused with the different meaning of this term in the Ingres/STAR system.

The Oracle language also offers statements for interdatabase queries unknown in other commer­

cial systems but largely similar to those of MRDSM. Multidatabase manipulations for distributed

databases are also available through a distributed database management component SQL*STAR.

It is likely that the latter will become a permanent feature of Oracle, so that it will cease to be a

centralized and monodatabase system. Transaction processing in Oracle uses two-phase locking and

variants of the two-phase commit protocol. This newest version of the system should be capable

of coordinating Don-Oracle databases as well as participating in the commit protocols coordinated

by other DBMSs.

4.3.3 SUPRA

SUPRA, a product of Cincom, provides a commercial implementation of the ANSI/SPARe three­

schema architecture. The initial development of the precursor to the current product was performed

in Germany.

The SUPRA system integrates distributed heterogeneous databases and manages distributed

processing by placing a locally resident SUPRA kernel within each host machine or database. This

has the effect of making the hosts aware of the integrated database network, and, in essence, creates

a "standard protocol" through which the databases communicate.

The SUPRA kernel consists of two basic engine components: the distributed relational data

manager (DRDM) and the heterogeneous data management processor (HDMP), along with a por­

tion of the global directory. Using the kernel on each local host, the requesting node coordinates

the entire unit of work, including the decomposition of the query into separate neutral protocol

requests and the determination of where they should be sent. The local/receiving nodes, each with

its own kerneJ, translate these requests into the appropriate local data manipulation languages,

31

gather the data, perform calculations, and return the results to the requesting node.

SUPRA provides fOT the use of synonyms and the resolution of scale conflicts. The decentralized

approach permits the formulation of a synonym table oriented to each user's particular application

and working language. The global dictionary has the ability to retain rules for performing scale

translation and calculation before data integration. A unique "trigger" feature alerts the user to

the possibility of a data conflict.

SUPRA utilizes a two-phase commit procedure which provides good concurrency control. While

assuring secure updates for SUPRA and other database management systems which support two­

phase commit, the product currently supports updates from join views to SQL-based distributed

databases only.

4.3.4 Sybase

Sybase attempts to open the architecture as widely as possible to allow any database, application,

or service to be integrated into the client/server architecture in a heterogeneous environment.

No global data model or schema is enforced. Rather, distributed operations can be supported via

application programming or database-oriented RPCs between SQL Servers, providing a high degree

of site autonomy. At the same time, the SQL Server provides full DBMS support at each location

and "prepare to commltn support for a two-phase commit protocol that guarantees recovcrability

for multi site updates.

Sybase is based on the relational model and supports both interactive and programmed access to

the SQL Server or any Open Server application. The basic query language is SQL. The SQL Server

also supports triggers as independent objects in the database. These triggers have the capabilities

of procedures, with these important extensions:

• They cannot be directly executed, but rather are executed as a side effect of an SQL delete,

insert, or update .

• A trigger is an extension of the user's current SQL statement. It can roll back or modify the

32

results of a user's transaction.

• Triggers can view the data being changed.

The Sybase Open Server provides a consistent method of retrieving SQL requests or remote

procedure calls from an application which is based on the Sybase SQL Toolset or which uses the

Sybase Open Client Interface and passing them to a non-Sybase database or application. While

Open Client gives users the flexibility to employ a variety of front· end packages or applications

for accessing and updating data, the Sybase Open Server allows access to and updating of foreign

(non-Sybase) databases and applications.

At run time, an application program issues a database RPC (Remote Procedure Call) to the

distributed database system, which may consist of any combination of SQL Servers or Open Servers.

If the data are stored in non-Sybase sources, the Open Server provides the necessary data type and

network conversions to allow the Open Client to process the returned data.

Sybase supports distributed updates that span multiple locations. A two-phase commit proto­

col, coded in the application, enforces distributed transaction control across multiple SQL Servers.

5 A Review of Object-oriented Prototypes and Commercial Sys­

tems

The benefits of using an object-oriented data rnodelinclude, but are not limited to:

• a richer data model which closely matcl1es applications,

• typing and inheritance facilities that promote reuse of software components,

• data abstraction and encapsulation,

• facilitating modular development,

• simplified management of policies and protocols, and

33

• allowing different levels of integration.

An object-oriented approach to the development of multidatabase systems therefore allows these

systems to share the advantages of database systems and object-oriented programming languages.

For this reasOD, our survey treats separately those multidatabase systems that use an object-oriented

approach to component systems integration. Such systems are also further classified as academic

research prototypes, industrial research prototypes, and commercial systems.

5.1 A Review of Academic Research Prototypes

5.1.1 A la carte Framework

The A la carte Framework [DKH92], developed at the University of Colorado, provides an exten­

sible set of reusable components to integrate heterogeneous and persistent object storeS. There

are three types of functionality required to implement a heterogeneous configuration, and the A la

carte Framework provides components to serve each of these functions. Components of the first

type are combined to construct facilities, such as heterogeneous transaction management, which

are typically implemented as an intrinsic part of a heterogeneous management system (HMS).

Components of the second type specify integration protocols which manage the mapping of the im­

plementation of a given function, such as concurrency control, between autonomous systems; these

protocols are also typically implemented as part of an HMS itself. These integrating components

help ensure correct interoperation between autonomous systems with disparate implementations.

Components of the third type are used to extend or "bootstrap" an autonomous system with the

functions necessary to operate in a heterogeneous configuration, if such functions are not normally

present. In this case, A la carte components are combined with an existing system to create an

effectively new autonomous system that has the capabilities required to operate in a heterogeneous

archltecture. The framework also provides a mechanism for capturing constraints which govern the

mixing and interchange of components, reducing the complexity of heterogeneous systems integra­

tion. Finally, each component can have different implementations, within certain constraints, so

34

that some tailorable HMS behavior can be achieved.

The A la carte Framework could be used to integrate a spectrum of domains found in hetero·

geneous systems, including schema representation, query processing, transaction management, and

recovery. It defines a multi-dimensional model that helps clarify the process of heterogeneous sys­

tems integration from highly applications-oriented standpoint. This framework clarifies for systems

integrators the implications of certain design decisions and the alternative architectures that are

available to them. By uncovering the internal behaviors of autonomous systems, this framework

supports the creation of tailorable heterogeneous configurations. Despite its systems-orientation,

its mata-Ievel representation of heterogeneous architectures renders it very flexible and wide appli­

cable.

5.1.2 FBASE

FBASE [Mul92}, developed at Purdue University, is a federated object-oriented database system

that uses an object-oriented approach to support the integration of database systems, particularly

relational, nested relational, extended relational, and object-oriented database systems.

In the federated architecture [HM851, each component system has private, import, and export

schemas, and each component system functions as a global query processor. The private schema

describes the data of the component system, while the export schema describes the data it may

share with others. The import schema. describes the data located at remote systems of which

the system in question is aware and is derived from the export schemas of the other component

systems. FBASE includes FBASE component systems and heterogeneous component systems. In

order to preserve autonomy, only the FBASE component systems generally function as traditional

federation component systems. Heterogeneous component systems would typically only provide an

export schema and could not issue global queries.

Since one of the main goals of FBASE has been to allow flexibility in the method of component

system integration, various approaches for component system integration are presented that balance

ease of implementation with ease of use and/or functionality. While FBASE does not provide

35

global transaction management, the FBASE system is currently being integrated into the InterBase

multidatabase system [BCD+93], which provides support for global transaction management.

5.1.3 Thor

Thor, a distributed object·oriented DMDS developed in the Laboratory for Computer Science at

MIT [LDS92], is intended for use in heterogeneous distributed systems to allow programs written

in different programming languages to conveniently share objects. Thor objects are persistent in

spite of failures, are higWy likely to be accessible whenever needed, and can be structured to reflect

the kinds of information of interest to users. Thor combines the advantages of the object-oriented

approach with those of database systems. Users can store and manipulate objects that capture the

semantics of their applications and can also access objects by high-level path names, by navigation,

and by means of queries.

Thor is intended to run in a distributed environment in which computing nodes are connected

by network. Some of these nodes are Thor servers, which store the objects in the Thor universe,

while others are client nodes where users of Thor run their programs. Although it is possible for

a single node to act as both server and client, it is most common for client and server nodes to be

distinct.

Frontends are run at client nodes, while backends and object repositories are run at server nodes.

Users always interact with Thor via a frontend, which typically resides at the user's workstation

and makes use of backend or object repositories to carry out client requests. The frontends and

backends understand types and perform operations, while the object repositories are concerned

only with managing resilient storage for the objects.

All modifications to objects are made at frontends and are installed in phase 2 of a two-phase

commit protocol only if phase 1 is successful. An optimistic concurrency control scheme is currently

used to maintain the consistency of Thor, although a pessimistic concurrency control is also under

consideration. A primary copy scheme is employed to handle replication, and objects are allowed

to move throughout the system.

36

5.2 A Review of Industrial Research Prototypes

5.2.1 Carnot

The Carnot Project [Woe93] at MCC addresses the problem oflogically unifying physically-distributed

and enterprise-wide heterogeneous information. Specifically, Carnot will provide a user with the

means to navigate information efficiently and transparently, to update that information consistently,

and to write applications easily for large heterogeneous distributed information systems.

Carot has developed and assembled a large set of generic facilities that are focused on the

problem of managing integrated enterprise information. These facilities are organized as five sets

of services: communication services, support services, distributed services, semantic services, and

access services.

The communication services provide the user with a uniform method of interconnecting het­

erogeneous equipment and resources. The support services implement basic network-wide utilities

that are available to applications and other higher level services. The distribution services support

relaxed transaction processors which manage information inconsistently when appropriate. They

also provide a distributed agent facility that interacts with client applications, directory services,

repository managers, and Carnot's declarative resource constraint base, to build ESS work flow

scripts designed to carry out a particular business function. The semantic services provide a global

or enterprise-wide view of all the resources integrated within a Carnot-supported system. A suite of

tools uses an extensive set of semantic properties to declaratively represent an enterprise informa­

tion model with.in the global context and to construct bidirectional mappings between the model

and the global context. The access services provide mechanisms for manipulating the other four

Carnot services, permitting developers to employ a mix of user interface software and application

software to build enterprise-wide systems.

A number of sponsors of the Carnot research project have initiated the development of ap­

plications using the Carnot prototype; these include Eastman Kodak, Boeing Computer Services,

BellCore, and Amerltech. The focus of these applications varies from an emphasis on heterogeneous

37

database access to a concern with more generalized workflow processing.

5.2.2 CIS

CIS (Comandos Integration System) [BGN+SS, BNPSS9] provides an object-oriented interface for

its component systems. CIS is part of the COMANDOS project (Construction and Management

of Distributed Office Systems) under the European Strategic Programme for Research in Informa­

tion Technology (ESPRIT). CIS integrates various systems, including relational database systems,

graphic databases, and public data banks.

CIS supports the creation of integrated applications accessing data managed by heterogeneous

and independent application environments residing on various sites throughout a computer network.

These applications may run on different hardware and different operating systems and DBMSs.

each with its own conventions regarding data. representation and storage. CIS models this situation

through the concept of (logical) nodes. classified into Client Nodes and Server Nodes, connected

by a (logical) communication network.

A Server Node is the abstraction of a representative of CIS within a pre-existing application

environment. The role of CIS, in the context of a server, is to make available to clients a uniform

object-oriented interface which is superimposed upon the local environment. The CIS component

that resides on the server is called Cis_Server.

A Client is the abstraction of an application, based on CIS, which accesses the functions provided

by one or more services. A client performs an integrated application function using data from

different pre-existing environments, thereby implementing the integration goal of CIS. The CIS

component that resides on the client is called Cis_Client.

An object-oriented approach is used for schema translation. CIS Servers have been designed to

provide an object-oriented programming environment for the implementation of abstract classes.

Questions of schema integration and transaction management are not addressed, and distribu­

tion transparency is not provided by the system.

38

5.2.3 DOM

The DOM (Distributed Object Management) project [BOH+92] at GTE Laboratories supports

application development in a distributed object-oriented environment that integrates autonomous

and heterogeneous database and non-database systems (such as file systems). The DOM system

supports schema translation to a common object-oriented data model.

A DOM system consists both of native objects that are fully implemented by the DOM com­

ponents of the system and of objects that are wholly or partially implemented in heterogeneous

attached systems. These attached systems are not limlted to database systems but may include con­

ventional file systems, hypermedia systems, or application programs. Interaction with an attached

system occurs through objects defined in a DaM's Local Application Interface (LAI). Objects from

the attached systems have placeholders defined within the DaM object space. These placeholders

are used for the materialization of external data within DaM, data transfer, the invocation of ap­

plication processing of external data, and global concurrency control. When used for concurrency

control purposes, LA! objects can be treated like any other DaM object. The LAI objects act as

guards to control across a DaM/attached system boundary. If they are defined as active objects,

they can enforce cross-boundary consistency concepts.

The DaM system provides an advanced transaction model that supports both closed nested and

open nested transactions and combinations thereof. While closed nested transactions are equiva­

lent to traditional nested transactions, open nested transactions do not provide the same top-level

atomicity, so the partial results of the transaction may be viewed by other transactions. Compen­

sating, contingency, and non-vital subtransactions are allowed, and execution dependencies may be

specified between subtransactions.

A correctness theory and implementation approach has not been developed for the DOM trans­

action model. Since the component systems to be integrated may be non-database systems that

may not support transactions, it would be impossible to guarantee correct global transaction man­

agement. The degree of correctness provided is therefore dependent on the capabilities of the

systems integrated.

39

5.2.4 EISjXAIT

EISjXAIT (Engineering Information System/Xerox Advanced Information Technology) [PSH91] is

a framework that uses an object·oriented approach to integrating heterogeneous systems.

An object-oriented interoperability framework, termed the Object Management System (OMS),

is employed to ensure interoperability by:

• Providing build-in abstract data types and constructors for user· defined abstract data types

that permit the heterogeneity of component systems to be masked.

• Providing reference resolution, type checking, and a function resolution mechanism to refer·

ence and operate over objects from heterogeneous systemsj and

• Providing various execution-related primitives, including transaction management support

and exception handling.

A query language is provided that consists of functions that operate on collections of types,

including the following functions:

• union, intersection, and difference;

• select, project, and join;

• flattening and grouping functions for sets with embedded structures.

While nested transactions are possible, their level of correctness is depend on the capabilities

supported and externalized by the component systems. For example, two-phase commitment is

provided only when component systems support this capability by providing a visible prepare· to­

commit state.

5.2.5 DIS

OIS (Operational Integration System) [GC090] provides applications with a uniform object-oriented

interface for accessing data managed by heterogeneous information systems. Conceptually, ors can

40

be depicted as a three-layer system. At the abstract level, the programmer is presented with an

abstract view of objects, which are described in terms of classes and user-defined operations. Tills

uniform method of reality description, termed the "DIS Integration Data Model (IDM)", permits

distributed applications to be coded in an object-oriented manner. A set of predefined operations

which locate and access objects is associated with these IDM classes. Such generic operations con·

stitute the Operation Interface Abstract Level. At the Operation Interface Implementation Level,

the code implementing generic operations is superimposed on the application environments to be

integrated. Those programs may reside in local systems and therefore be pre-existing and possibly

heterogeneous and ma'ke use of local data management system fundionalities. This process, which

is termed operational mapping, may cause a generic operation to have several implementations. Al·

though operational mapping is less automated than schema mapping, it does not require mapping

between the data elements manipulated by the local data management system and some "global

schema". The introduction of an abstract level enhances the software reusability.

OIS models the heterogeneous world through the concept of (logical) nodes, classified into

Client nodes and Server nodes, connected by a (logical) communication networ'k. A Server is an

autonomous and independent environment which groups together a set of objects under common

application semantics. The role of OIS in the context of a Server (DIS_Server) is to ma'ke ap­

plications available to the clients. Therefore, a Server is the partial abstraction of a pre-existing

application environment.

A Client is the abstraction of a distributed application based on DIS. It is composed of the

distributed application and of the OIS_Client (the client portion of ors) which encapsulates the

IDM, together with the abstract view of OIS.Server services. Therefore, the Client implements the

integration goal of DIS.

aIS provides both a query language interface, called QL, as well as a method for embedding

als functionality within C++ programs. DIS translates component schemas into its own data

model and does not require component system modification.

41

5.2.6 Pegasus

Pega.sus [ASD+91] is a heterogeneous multidataba.se system under development at Hewlett Packard

Laboratory. The goal of Pega.sus is to integrate distributed object-oriented, relational, and other

information systems. Pega.sus uses an object·oriented model and language for its data model and

query language and addresses the issues of both schema translation and schema integration.

Pega.sus exploits object-oriented data modeling and programming capabilities, employing both

type and function abstractions to deal with mapping and integration problems. FUnction imple­

mentation can be defined in an underlying databa.se language or a programming language. Data

abstraction and encapsulation facilities in the Pega.sus object model provide an extensible frame­

work for approaching heterogeneities in both traditional database systems and nontraditional data

sources ranging from simple text to complex multimedia systems.

The Pegasus data model is based on that of Iris [WLH90] and includes three basic constructs:

objects, types and functions. Pegasus provides HOSQL (Heterogeneous Object SQL) as a common

query language. HOSQL is a functional as well as an object-oriented language that employs declar­

ative statements to manipulate multiple heterogeneous databases and to create types, functions,

and objects in both Pegasus and underlying local databases. If desired, specifications of types and

functions can also be imported from underlying local databases and can then be integrated into

the Pegasus native schemas. The HOSQL language offers transparent and explicit remote access.

As Pegasus integrates information systems that do not support transactions, it does not consider

global transaction management.

5.2.7 ViewSystem

ViewSystem [KDN90} is part of the KODIM (Knowledge Oriented Distributed Information Man­

agement) project at the GMD-IPSI national research institute. ViewSystem uses the VODAK data

model to integrate heterogeneous and autonomous information and publication systems. Both

schema translation (to the VODAK model) and schema integration are supported.

42

The VODAK data model provides support for specification of the following concepts:

• Category Generalization constructs a generalized model from classes processing disjoint sets

of entities;

• Role Generalization constructs a generalized model from classes that have overlapping sets of

entities;

• Specialization;

• Aggregation;

• Grouping.

The constructs underlying these concepts form the basis for system integration in ViewSys­

tern. An object-oriented query language is provided for multidatabase access, and a hybrid query

evaluation scheme is proposed which uses both integrated view materialization and query decom­

position/translation to process global queries. Transaction management is not discussed within the

ViewSystem approach.

5.3 A Review of Commercial Systems

5.3.1 UniSQL/M

UniSQL/M is a multidatabase system from UniSQL, Inc. that integrates multiple UnlSQL/M

unified relational and object-oriented databases and multiple relational databases. UniSQL/M

currently offers drivers (gateways) for INGRES and ORACLE, and plans to support additional

relational database drivers in the near future. UnlSQL/M is a complete database system and

UniSQL/M users can query and update the global database in the powerful SQL/X database

language, whlch is a superset object-oriented extension of ANSI SQL.

UniSQL/M maintains the global database as a collection of views defined over relations in local

RDBs and classes in local UniSQL/X databases. UniSQL/M also maintains a directory of the local

43

database relations and classes, that have been integrated into the global database, along with their

attributes, data types, and methods. Drawing upon the information in this directory, UniSQL/M

translates queries and updates into equivalent forms to be processed by local database systems that

manage the relevant data. The local database drivers pass these translated queries and updates to

local database systems and transfer the results back to UniSQL/M for format translation, merging,

and any necessary postprocessing (e.g., sorting, grouping, and joining). UniSQL/M supports udis_

tributed transaction management" over local databases, through which all updates issued within

one UniSQL/M transaction, even if propagated to multiple local databases, are simultaneously

committed or aborted.

6 Summary

Tables 1 through 3 summarizes the main features of the systems discussed in this paper, following

the taxonomic schema proposed in Section 3. In each table, object-oriented systems follow those

using conventional integration methods. In general, a "No" entry indicates either that the capability

in question was specifically excluded or was ambiguous, while an "Any" indicates that various local

data models are either supported or that their support can be easily implemented.

System Integrated. This column lists the types of component systems that can be integrated

into the specified multidatabase system. Type 1 multidatabase systems, which integrate only

database systems, are the most commonj a few Type 2 schema also integrate non-database systems,

a highly complex task requiring the ability to perform transformations among component database

and non-database systems. Such systems, while challenging to develop, are more powerful than

Type 1 multidatabase systems.

Provision of Schema Translation and Integration. This column indicates whether or

not a specified multidatabase system provides a common data model at the global level and/or the

facilities to resolve semantic conflicts among component system data. The common data model

facilitates data transfer among component systems. For example, data to be transferred from

44

Providing Local Maintaining
System Systems Schema Data Supporting Component

Integrated Translation & Model Transactions System
Integration Supported Autonomy

IMDAS Various DB and ST' Any No Y.,
Non-DB Systems

InterBase Various DB and ST' Any Yes:.! Ye,
Non-DB Systems

NDMS Database Systems ST' Relational No Ye,
& Network

MRDSM Database Systems ST' Relational No Ye,

OMNIBASE Database Systems ST' Any Yes'1. Ye,

PRECI* Database Systems ST' Any Yes4 Yes

A la carte Various DB and No Any y.,' No
Non-DB Systems

FBASE Database Systems Ye, Relational No Yes

Thor Object Repositories No Object- No Yes
of Thor oriented

IProvides schema translation only,
20pen and closed nested transactions are provided, but cozrectness is dependent upon the capabilities of

component systems.
3Correctness is dependent upon tlle capabilities of component systems.
4Base relation onlYi replicates are updated by broadcast.

Table 1: Academic Multidatabase Prototype Systems

45

Providing Local Maintaining
System Systems Schema Data Supporting Component

Integrated Translation & Model Transactions System
Integration Supported Autonomy

ADDS Database Systems ST' Rel., Network Yes"" Yes
& Hierarchical

DATAPLEX Database Systems ST Relational & No Yes
Hierarchical

Mermaid Various DB and ST' Any NO Yes
Non-DB Systems

MULTIBASE Database Systems Yes Any NO Yes

TDIE Database Systems Yes Rel., Network Yes Yes
& Hierarchical

Camot Various DB and ST' Any Yes:> Yes
Non-DB Systems

CIS Various DBSs ST' Any No Yes

DOM Various DB and ST' Any Yes Yes
Non-DB Systems

EIS/XAIT Engineering ST' Any Yes" Yes
Info. Systems

OlS Heterogeneous ST' Any No Yes
Info. Systems

Pegasus Heterogeneous Yes Any No Yes
Info. Systems

ViewSystem Information and Yes Any No Yes
Publication Systems

1 Provides schema translation only.
2If local data Hems can be locked by global transactions.
31(a Lwo-phase commit protocol is supported.
t Based on «ownership".
60pen and closed nested transactions are provided, but correctness is dependent on the capabilities

of component systems.
6Nested transactions are provided, but corredness is dependent ou tile capabilities of component syslems.

Table 2: Industrial Multidatabase Prototype Systems

46

Providing Local Maintaining
System Systems Schema Data Supporting Component

Integrated Translation & Model Transactions System
Integration Supported Autonomy

Ingres/STAR Database Systems Yes Any Yes Yes

Oracle V5 Database Systems Yes Any Yes~ Yes

SUPRA Database Systems Yes Relational & Yes~ Yes
Network

Sybase Database Systems Yes Any Yes' Yes

UniSQL/M Ingres, Oracle, Yes Relational & Yes" Yes
and UniSQL/X Object-oriented

~Two phase-commit prolocol must be supported.
2 CorrecLness is dependent on the capabililies of componenL systems.

Table 3: Commercial Multidatabase Systems

system 1 to system 2 will first be transformed from the system 1 format to that of the common

data model, when it enters the data flow; upon arrival at system 2, the data is further transformed

into the format of that system. Such a common data model resolves inconsistencies among the

presentation formats of similar data. However, a new component system cannot be integrated into

a multidatabase system until a mapping has been provided between the commOn data model and

the data model used by the component system.

Schema integration addresses such semantic conflicts as naming, type, and unit conflicts. For

example, two component systems may represent employee salaries in dollars or pounds, respectively,

a unit conflict which must be resolved when data is transfered from one component system to

another. The provision of schema integration cannot, however, enable a multidatabase system to

automatically resolve all varieties of semantic conflicts among any component systems, as such

conflicts can assume a virtually infinite variety of permutations.

Local Data Model Supported. This column indicates those types of local data models

which are supported by a specified multidatabase system. Possible data models employed by com-

47

ponent systems include relational, network, hierarchical, entity-relationship, and object-oriented

models. A non-database component system may use any format to store and process data. The

:flexibility of a multidatabase system is enhanced by its ability to support a variety of local data

models.

Supporting Transactions. This column indicates whether a specified multidatabase system

semantically supports ACID (atomicity, consistency, isolation, and duration) transactionS. While

a close nested transaction must maintain the ACID properties syntactically, an open nested trans­

action is not required to provide top-level atomicity, and the partial results of such a transaction

may be viewed by other transactions. Tn this case, compensating transactions can be specified to

undo the effects of a committed transaction, and contingency transactions can be executed if a

given transaction fails.

Maintaining Component System Autonomy. If a multidatabase system requires any

degrees of modification of its component systems, the local autonomy of its component systems is

not preserved. Even a minor modification to a software system may not be possible if the owner of

a component system may not have a source code version of the database or the resources to modify

it even if this code version was availablej also, the component system may belong to a different

organization than the one developing the multidatabase system, and that organization usually does

not grant permissions to others for the modifications of their products.

The overview of multidatahase systems presented in this paper was constrained by the lack

of detail regarding implementation and performance provided in published descriptions of such

systems. Few references discussed transaction management and query processing aspects which

are strongly affected by the integration scheme used. The information-hiding effects of behavioral

mapping, while aiding system integration, may present difficulties for transaction management and

query processing. Since the bulk of the research to date on schema integration has involved only

structural mapping, [Ber9!] is correct in suggesting that more work needs to be done on schema

integration involving behavioral mapping.

48

Tables 1 through 3 indicate more than half of surveyed systems integrate both database systems

and various non-database systems. Most surveyed systems provide a common data model to map

among heterogeneous component systems which translates moved or shared data into the appro­

priate format. As most surveyed systems integrate various non-database systems, a multidatabase

system must be able to perform such mapping between data models of any type, a condition which

is fulfilled in most surveyed systems. Only about a third of surveyed systems provide schema inte-

gration facilities, indicating that schema integration is eitber difficult to implement or of practical

unimportance. About two tbirds of surveyed systems provide limited transaction support, indi-

cating that no satisfactory solution has been found for this issue. All but one surveyed systems

maintain the autonomy of component systems; such autonomy has clearly become a common goal

of multidatabase system developers. Nearly half of surveyed systems are object-oriented, indicating

that multidatabase developers are focusing increasingly on an object-oriented approach.

The integration of heterogeneous information systems has become a critical goal for many or-

ganizations, one which is being pursued by many different groups with varying approaches. In this

paper, we have proposed a new taxonomy that characterizes these approaches by [lve criteria: sys-

terns integrated, provision of schema translation and integration, support of local schemas, support

of transaction management, and maintenance of component system autonomy. This taxonomy has

been employed here to characterize twenty-six actual multidatabase systems which represent the

broad spectrum of approaches being pursued worldwide, including both commercial products and

prototype systems. These multidatabase systems and the approaches they represent are harbingers

of the capabilities that will become widely available in coming years.

References

[AGMS87] R. Alonso, H. Garcia-Molina, and K. Salem. Concurrency control and recovery for

global procedures in federated database systems. In IEEE Data Engineering Bulletin,
pages 5-11, September 1987.

[ASD+91] R. Ahmed, P. De Smedt, W. Du, W. Kent, M.A. Ketabchi, W.A. Litwin, A. Rafii,

and M.e. Shan. The Pegasus Heterogeneous Multidatabase System. IEEE Computer,
24(12):19-27, December 1991.

49

[Bcn+93] Omran A. Bukhres, Jiansan Chen, Weimin Du, Ahmed K. Elmagarmid, and Robert

Pezzoli. InterBase: An Execution Environment for Global Applications over Dis­

tributed, Heterogeneous, and Autonomous Software Systems. IEEE Computer, Au­

gust 1993. (to appear).

[Ber91] Elisa Bertino. Integration of heterogeneous data repositories by using object-oriented
views. In Proceedings of the IEEE First International Workshop on Interoperubility
in Multidatabase Systems, pages 22-29, Kyoto, Japan, April 1991.

[BGMS92] Y. Breitbart, H. Garcia-Molina, and A. Silberschatz. Overview of multidatabase

transaction management. The VLDB Journal, 1(2):181-239, October 1992.

[BGN+88] E. Bertino, R. Gagliardi, M. Negri, G. Pelagatti, and L. Sbattella. The comandos inte­
gration system; an object oriented approach to the interconnection of heterogeneous

applications. In Proceedings of the Second International Workshop on Object-Oriented
Database Systems, pages 213-218, Bad Munster am Stein-Ebernburg, FRG, Septem­

ber 1988.

[BGRS91] Y. Breitbart, D. Georgakopolous, M. Rusinkiewicz, and A. Silberschatz. On Rigorous

Transaction Scheduling. IEEE Transactions on Software Engineering, 17(9):954-960,

1991.

[BHP92] M. W. Bright, A. R. Hurson, and Simin H. Pakzad. A taxonomy and current issues

in multidatabase systems. Computer, 25(3):50-60,March 1992.

[BL84] C. Batini and M. Lenzirini. A methodologies for data schema integration in entity­
relationship model. IEEE Transactions on Software Engineering, 10(6), November

1984.

[BLN86] C. Batini, M. Lenzerill..i, and S.B. Navathe. A comparative analysis of methodologies
for database schema integration. ACM Computing SUf'Veys, 18(4):232-364, December

1986.

[BNPS89] E. Bertino, M. Negri, G. Pelagatti, and L. Sbattella. Integration of heterogeneous

database applications through an object·oriented interface. Information Systems,

14(5):407-420,1989.

[BOH+92] A. Buchmann, M. T. Ozsu, M. Hornick, D. Georgakopoulos, and F. A. Manola. A

transaction model for active distributed object systems. In Ahmed 1<. Elmagarmid,
editor, Database 1hmsaction Models for Advanced Applications. Morgan Kaufmann,

1992.

[BS88] Y. Breitbart and A. Silberschatz. Multidatabase update issues. In Proceedings of the
ACM SIGMOD Conference on Management of Data, pages 135-142, June 1988.

50

[BST90)

[BT85]

[CAC91)

Y. Breithart, A. Silberschatz, and G. Thompson. Reliable transaction management
in a multidatabase system. In Proceedings of the ACM SIGMOn Conference on

Management of Data, pages 215-224, May 1990.

Y.J. Breitbart and L.R. Tieman. Adds· heterogeneous distributed databse system.
Distributed Data Sharing Systems, pages 7-24, 1985.

Special Section on Next-generation Database Systems. Communications of the ACM,

34(10), October 1991.

[CBE93] Jiansan Chen, Omran A. Bukhres, and Ahmed K. Elrnagarmid. IPL: A Multidatabase

Transaction Specification Language. In Fmc. of the 13th Intemaiional Conference on

Distributed Computing Systems, Pittsburgh, PA, May 1993.

[Chu90] C.W. Chung. DATAPLEX: An Access to Heterogeneous Distributed Databses. Com­

munications of ACM, 33(1):70-80, January 1990.

[DAODT85] S.M. Deell, R.R. Amin, G.O. Ofori-Dwumfuo, and M.C. Taylor. The Architecture of
a Generalized Distributed Database System - PRECI*. Computer Joumal, 28(3):282­

290,1985.

[DE89] W. Du and A. Elrnagarmld. Quasi Serlalizability: a Correctness Criterion for Global

Concurrency Control in InterBase. In P,'oceedings of the 15th International Conference
on Very Large Data Bases, pages 347-355, Amsterdam, The Netherlands, August

1989.

[DEK91] W. Du, A. Ehnagarrnid, and W. Kim. Maintaining transaction consistency in
multidatabases using quasi serializable executions. In Proceedings of COMPCON

SPRING'91, pages 152-155, San Francisco, California, 1991.

[DEL089] W. Du, A. Elmagarmid, Y. Leu, and S. Ostermann. Effects of Autonomy on Global
Concurrency Control in Heterogeneous Distributed Database Systems. In Pmceedings

of the Second International Conference on Data and [(nowledge Systems for Manu­

facturing and Engineering, pages 113-120, Gaithersburg, Maryland, October 1989.

{DH84] U. Dayal and H.Y. Hwang. View Definition and Generalization for Database Integra­

tion in a Multidatabase System. IEEE Tran. on Software Engineering, 10(6):628-644,

1984.

[DKH92] P. Drew, R. King, and D. Heimbigner. A toolkit for the incremental implementation
of heterogeneous database management systems. The VLDB Journal, 1(2):241-284,

October 1992.

[ea85] W. Staniszkis et al. Architecture of the Network Data Management System. In Pro­

ceedings of the 3rd Int'l Seminar on Distributed Data Sharing Systems, Amsterdam,

North-Holland, 1985.

51

[ELLR90] A. Elmagarmid, Y. Leu, W. Litwin, and M. Rusinkiewicz. A Multidatabase Trans­
action Model for InterBase. In Proceedings of the 16th International Conference on

Very Large Data Bases, pages 507-581, Brisbane, Australia, August 1990.

[GC090] R. Gagliardi, M. Caneve, and G. Oldano. An operational approach to the integra­
tion of distributed heterogeneous environments. In Proceedings of the PARBASE-90
Conference, pages 368-377, Miami Beach, Florida, March 1990.

[GM83] H. Garcia-Molina. Using Semantic Knowledge for Transaction Processing in a Dis­
tributed Database. ACM Tnmsactions on Database Systems, 8(2):186-213, June 1983.

[GPZ86] V. Gligor and R. Popescu-Zeletin. Transaction management in distributed heteroge­
neous database management systems. Information Systems, 11(4):287-297, 1986.

[Gra78] J. N. Gray. Notes on Database Operating Systems. In Operating Systems: An Ad­
vanced Course, Lecture Notes in Computer Science, pages 624-633. Springer-Verlag,

Berlin, 1978.

[GRS91] D. Georgakopoulos, M. Rusinkiewicz, and A. Sheth. On serializability of multi­
database transactions through forced local conflicts. In Proceedings of the 7th Inti.
Conf. on Data Engineering, pages 314-323, Kobe, Japan, April 1991.

[HF83] M.J. Han and P.S. Fisher. The problems of data structure and application software
coonversion in a heterogeneous environment. In P.S. Fisher, J. Sionim, and E.A.
Unger, editors, Advances in Distributed Processing Management, volume 2, pages

145-178. Wiley, Chichester, West Sussex, England, 1983.

[HM85] D. Heimbigner and D. McLeod. A federated architecture for information management.
ACM transaction on office information systems, 3(3), July 1985.

(KDN90] M. Kaul, K. Drosten, and E. J. Neuhold. ViewSystem: Integrating heterogeneous
information bases by object-oriented views. In Proceedings of the Sixth International
Data Engineering Conference, pages 2-10, Los Angeles, California, USA, February

1990.

[KLS90] H. Korth, E. Levy, and A. Silberschatz. A Formal Approach to Recovery by Com­
pensating Transactions. In Proceedings of the 16th International Conference on Ve,'Y

Large Data Bases, Brisbane, Australia, August 1990.

[KM89] M. Kuntz and R. Melchert. Pasta-3's Graphical Query Language: Direct Manipula­

tion, Cooperative Queries, Full Expressive Power. In Proceedings of the International
Conference on Very Large Data Bases, pages 97-106, Amsterdam, The Netherlands,

August 1989.

[KS91] Won Kim and Jungyun Seo. Classifying Schematic and Data Heterogeneity in Multi­
database Systems. Computer, 24(12):12-18, December 1991.

52

[KSL+87] V. Krishnamurthy, S. Y. M. Su, H. Law, M. Mitchell, and E. Barkmeyer. A distributed
Database Architecture for an Integrated manufacturing Facility. In Proceedings of the

International Confen;nce on Data and Knowledge Systems f01' Manufacturing and

Engineering, Oct 1987.

[Lar83] J. A. Larson. Bridging the gap between network and relational database management
systems. Computer, pages 82-92, September 1983.

[LDS92] B. Liskov, M. Day, and L. Shrira. Distributed object management in thor. In Proceed­

ings of the 3rd International Workshop on Object-Oriented Database Systems, pages
1-15, Edmonton, Alberta, Canada, July 1992.

[Lit85] W. Litwin. An Overview of the Multidatabase System MRDSM. In Proceedings of

the ACM Annual Conference, pages 524-533, Denver, Colorado, 1985.

[LNE89J J. A. Larson, S. B. Navathe, and R. Elmasri. A theory of attribute equivalence in
databases with application to schema integration. IEEE Tmnsaction on Software

Engineering, 15(4):449-463, April 1989.

[MB8l] A. Motro and P. Buneman. Constructing superviews. In Proceedings of the ACM

SIGMOD International Conference on Management of Data, pages 56-64, Ann Arbor,

Mich., USA, April 1981.

[MRB+92] S. Mehrotra, R. Rastogi, Y. Breitbart, H. F. Korth, and A. Silberschatz. The concur­
rency control problem in multidatabases: Characteristics and solutions. In Proceedings

of the ACM SIGMOD Conference on Management of Data, pages 288-297, 1992.

[Mul92] James G. Mullen. FBASE: A federated objectbase system. InternationaL Journal of

Computer Systems Science and Engineering, 7(2):91-99, Apri11992.

[NEL86] S. Navathe, T. Elmasri, and J. Larson. Integrating user views in database design.
IEEE Computers, 19(1):50-62, January 1986.

[NSE84] S. Navathe, S. Sashidhar, and T. Elmasri. Relationship merging in schema integration.
In Proceedings of 10th VLDB, August 1984.

[OV91]

[PSH91]

[PuSS]

M. Tamer Ozsu and Patrick Valduriez. P7'inci]JLes of Dis17'ibuted Database Systems.

Prentice Hall, Inc., 1991.

Girish Pathak, Bill Stackhouse, and Sandra Heiler. EISjXAIT project: An object­
base interoperability framework for heterogeneous systems. Computer Standards and

Interfaces, 13:315-319, 1991.

C. Pu. Superdatabases for composition of heterogeneous databases. In Proceedings of

the International Conference on Data Enginee7'ing, pages 548-555, February 1988.

53

[REC+89] M. Rusinkiewicz, R. Elmasri, B. Czejdo, D. Georakopoulous, G. Karabatis, A. Ja­
moussi, L. Loa, and Y. Li. Omnibase: Design and implementation of a multidatabase
system. In First International Symposium in Parallel and Distributed Processing,

pages 162-169, Dallas, Texas USA, 1989.

[Row85] L.A. Rowe. Fill-in-the-Form Programming. In Proceedings of Jlth International Con­

ference on Very Large Data Bases, Stockholm, Sweden, August 1985.

[SBD+81] J.M. Smith, P.A. Bernstein, U. Dayal, N. Goodman, T. Landers, K. Lin, and E. Wong.
Multibase: Integrating heterogeneous distributed databases systems. In Proceedings
of AFIPS Conference, pages 487-499, 1981.

[SG89} A. Sheth and 8. Gala. Attribute relationships: An impediment in automating schema
integration. In Workshop on Heterogeneous Dalabase Systems, Chicago, IL, December
1989.

[8188} A.P. Sheth and J .A.Larson. A tool for integrating conceptualschemas and user views.
In Proceedings of 4lh International conference on Dala Engitleering, 1988.

[SL90] Arnit P. Sheth and James A. Larson. Federated databases systems for managing
distributed, heterogeneous, and autonomous databases. ACM Computing Surveys,

pages 183-236, September 1990.

[TBC+87] M. Templeton, D. Brill, A. Chen, S. Dao, E. Lund, R. McGregor, and P. Ward. Mer­
maid - a front-end to distributed hetergeneous databases. Special Issue on Dish'ibuted

Database System, Proceedings afthe IEEE, 75(5), May 1987.

[TTC+90] Gomer Thomas, Glenn R. Thompson, Chin-Wan Chung, Edward Barkmeyer, Fred
Carter, Marjorie Templeton, Stephen Fox, and Bed Hartman. Heterogeneous Dis­
tributed Database Systems for Production Use. ACM Computing Surveys, 22(3),

September 1990.

[WLH90] Kevin Wilkinson, Peter Lyngbrek, and Waqar Hasan. The irjs architecture and im­
plementation. IEEE T7'ansadions on Knowledge and Data Enginee1'ing, 2(1):63-75,

March 1990.

[Woe93] D. Woelk. Using Carnot for Enterprise Information Integration (Synopsis). In Proceed­

ings of the Second International Conference on Parallel and Distributed Information

Systems, pages 133-136, San Diego, California, January 1993.

[ZE93] Aidong Zhang and Ahmed K. Elmagarmid. On global transaction scheduling criteria
in multidatabase systems. In Proceedings of the Second International Conference on
Parallel and Distributed Information Systems, pages 117-124, San Diego, California,
January 1993.

54

	A Taxonomic and Analytical Survey of Multidatabase Systems
	Report Number:
	

	tmp.1307986960.pdf.rSQjw

