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1 Introduction

A database system is composed of two elements: a software program, called a database management

system, and a set of data, called a database. The data in a database is organized according to some

data model, such as the relational model used in a DB2 database [DW88] or the hierarchical model

found with IMS databases [Dat77] . Users access the data through an interface (the query language)

provided by the database management system. A schema describes the actual data structures and

organization within the system.

During the decade of the nineteen-seventies, centralized databases were predominant, but recent

innovations in communications and database technologies have engendered a revolution in data

processing, giving rlse to a new generation of decentralized database systems. Such distributed

systems have proved to be well suited to the trend toward corporate decentralization and the

development of networking technologies that characterized the nineteen-eighties.

A fundamental distinction must first be drawn between distributed, heterogeneous, and multi­

database systems. A distributed database system is made up of a single logical database that is

physically distributed across a computer network, together with a distributed database management

system that answers consistent queries and updates. A distributed database furthermore implies
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homogeneity, in that all its physical components run the same distributed database management

system. The distributed database system supports a single data model and query language, with

an unambiguous schema. Conversely, a heterogeneous database system is a distributed database

system that includes heterogeneous components at the database level; these may include a variety

of data models, query languages, schemas, and access heterogeneities. A federated database is syn­

onymous with a heterogeneous database system [HM85]. Generally commercial federated databases

have been implemented as tightly coupled within a master schema that fully defines the scope of

integration. A major distinguishing factor between distributed and heterogeneous database systems

is the implied ability of the component databases to function independently in the latter. Finally, a

multidatabase system is a collection of loosely coupled element databases, with no unified schema

applied for their integration. Although a typical multidatabase system supports only queries, some

also allow updates to element databases. The loosely coupled approach to federated database sys­

tems provides a greater degree of autonomy for the component systems, since no central authority

is imposed. In addition, loose coupling generally tends to scale better to very large systems, since

it is difficult to support a central authority over such systems [BCD+93]. On the other hand, the

maintenance of consistency is more difficult in a system that lacks a central authority.

2 The Context of Heterogeneous Systems

Currently, data processing is increasingly characterized by applications that involve accessing and

manipulating data from many pre-existing databases. These databases are typically located in

heterogeneous and autonomous software and hardware platforms which are distributed over the

many sites of a computer network. The distribution of these systems reflects the decentralized

nature of modern business, while their heterogeneity and autonomy arise as a consequence of

the diversity of corporate computational and information processing requirements. Originally,

these systems ran in isolation to support their individual applications, but it has become evident

that inter-system cooperation would permit more complex applications involving multiple systems.

Unfortunately, the potential for cooperative interaction was not considered in the original system

design, and there is as yet no general model supporting interoperability among isolated systems. As

2



a result, supporting global applications involving multiple systems is a formidable task and remains

largely manual.

The unwieldy nature of this current situation is epitomized by the French Teletel System,

which provides its 1.8 million users access to more than 1,500 separate databases. Such a plethora

of systems demand multiple access methods and user paradigms, presenting a significant obstruct

to easy user access. On the other hand, it would not be feasible to require organizations to convert

all their pre-existing systems to a single unified standard.

Two possible solutions to this bottleneck may be envisioned. The first would entail the physical

integration of all data pertaining to a given application into one database. However, this approach

would not only be expensive and complex, but it would also result in unnecessary data redun­

dancies and would prohibit the maintenance of independent databases. Data under the control of

independent organizations would in any case remain outside this integration framework.

A more feasible approach involves, the logical integration of all data pertaining to a given

application into one logical database, providing the user with the illusion of a single database.

Information is integrated from pre-existing heterogeneous local databases in a distributed envi­

ronment, while global users are presented with transparent methods for accessing all information

encompassed by the system.

In general, the integration of distributed heterogeneous database management systems is limited

by the following constrains_ First, heterogeneities exist at various levels - hardware, operating

systems, data models, accessing capabilities, database management systems, and data formats ­

making it virtually impossible to design a common approach capable of addressing all aspects of

heterogeneity. Second, a distributed heterogeneous database management system must integrate

existing information systems, each of which was designed independently with little thought to

possible inclusion in a larger system. Third, the underlying assumptions and semantics of each

existing system must be fully understood, an unlikely prospect in view of the typically limited

documentation of these systems. Finally, the integrated system design must strive to create only

minimal changes in existing systems. Transactions, whether queries or updates, involve access to

individual systems, each with its own set of requirements and standards which must be reconciled
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by the distributed heterogeneous database management system.

2.1 Motivation

Organization wide access to data and software resources requires the interconnection of previously

isolated applications and systems. An end-user in a heterogeneous computing environment should

be able not only to invoke multiple existing application systems but also to coordinate their inter­

actions and associations. In today's computing world, databases are proposed as a solution to the

problem of shared access to heterogeneous resources, both software and hardware, that character­

ize multiple autonomous applications. There are many benefits to integrating pre-existing systems.

These benefits are:

• Data Sharing

-Among Applications

-Among Users

• Easier Application Development

• Evolutionary System Expansion

• Global Access to Local Data

Organizations typically are made up of a collection of different departments, each making au­

tonomous decisions about its operations within the larger enterprise. A first step toward the

integration of such diversified systems is the definition and characterization of the autonomous

design of the databases which support these individual information systems. Several contextual

issues need to be addressed in the process of arriving at such definition. Widespread heterogeneity

arises naturally from a free market of ideas and products, some of which prove to be more widely

adapted than others to specific applications. Such diversified market demand will continue to fos­

ter heterogeneity in future systems. The tendency toward heterogeneity in large corporations is

reinforced by the political decentralization of power and by the frequent acquisition and merger

of previously independent companies. Furthermore, the rapid pace or innovation jn the computer

4



field militates against the establishment of the sort of time-tested standard required to create a

homogeneous system.

2.2 Cooperative Computing

The necessity of cooperative computing is becoming increasingly evident as we evolve toward large

and more heterogeneous computing systems. Cooperative computing describes the abHity of two

or more programs to communicate or work together to accomplish specific tasks. Frequently, coop­

erative computing also implies communication between two or more different execution domains,

which may range from different run-time support systems with a single processor to physically

distinct processors with a distributed computing system.

The need for such cooperative computing arises in many contexts. The nature of an organiza­

tion determines how and with which other organizations cooperation may be established, as well as

the extent to which this cooperation will be achieved through information exchange and process­

ing. For example, organizations whose activity mainly consists of information processing, such as

banks, travel agencies, insurance companies, and hospitals, should be especially interested in insti­

tuting a cooperative fiow of digitized information among their computers. Indeed, such industries

as international banking, international air carriers, and travel agencies have already largely auto­

mated cooperative information processing activities such as bank transfers and airline and hotel

reservations.

The move toward cooperative computing is also strong in international trade. An example

of this trend is the emergence of standards and systems for computerized trade shows, such as

the Electronic Data Interchange for Administration, Commerce, and Trade (EDIFACT) standard

[159735] given in the Trade Data Interchange Directory, which is issued and maintained by the

United Commission for Europe [VeigO].
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3 Aspects of Database Integration

Database integration conceptually combines participating databases to form a single cohesive inter-

operable multidatabase. Such a multidatabase IS capable OfpIoviding uniform user access interfaces

to the component heterogeneous distributed database systems.

Multidatabase systems combine autonomous and heterogeneous component (or local) database

systems into a global database system. In multidatabasc systems, global transactions are divided

into sub transactions, with one subtransaction per local system that the global transaction ac­

cesses. Local transactions may be executed at each local database system. A conceptual view of

a multidatabase system is shown in Figure 1. A global transaction Gi , and its decomposition into

subtransactions Gi,}, Gi,2, ... , Gi,n is shown. Also, a local transaction Lj,l that executes at LDBS1 ,

and a local transaction Lk n that executes at LDBSn , are shown.,

3.1 Commitment in Multidatabase Systems

One of the most difficult problems with implementing reliable transaction management in multi­

database systems is the problem of atomic commitment of global transactions. That is, ensuring

that if any of the effects of a global transaction am executed, then all of the effects will be executed.

In fact, it has been shown that it is impossible to do in general without violating local autonomy

[MEg!]. The two phase commit protocol (2PC) [EGLT76] has been used for tightly coupled dis-

tributed database systems. However, there are at least two problems with applying 2PC to the

multidatabase case.

Fhst, current database systems do not generally provide the (visible) prepare-to-commit state

which is necessary to implement 2PC. And, if even one component system at which a transaction

executes does not support the prepare-to-commit state, it will not be possible to use the 2PC

algorithm. Second, even if database systems used in the future generally do provide the prepare­

to-commit state, 2PC can severely violate local execution autonomy which we will talk about the

next sections. nlocking can often occur with 2PC, so it becomes possible for a remote system to,

in effect, lock another system's data for indefinite periods of time.
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Figure 1: Conceptual Multidatabase Architecture.

One basic approach to handling the atomic commitment problem, that avoids the blocking be-

havior of two phase commitment, is to use compensating transactions, introduced by Garcia-Molina,

such as those used in Sagas [GMK88] or the (multldatabase) Flex transaction model [ELLR90J.

Compensating transactions can undo the effects of a committed transaction, so that subtrans-

actions of a transaction can be committed independently. Compensation can be considered an

optimistic approach, in the sense that one goes ahead and commits subtransactions, with the hope

that the entire global transaction will commit. If it does not, then the committed subtransac-

tions can always be undone. Compensation helps support long-lived transactions, since data is not

blocked until the entire transaction commits. In addition, compensation docs not require a visible
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prepare-to-commit state. However, the applicability of compensation depends on the semantics of

the data/transactions involved. So, compensation will not work for all cases. If the operations

that can be performed on a data item arc not commutative (l.e. if the order of execution matters),

then compensation will not work. Also, if the effects of a sub transaction correspond to a real world

event (e.g. launching a missile), then the effects might not be compensatable.

3.2 Transparency of Multidatabase Systems

A multidatabase system achieves transparency by separating the higher-level semantics of a system

from lower-level implementation and structural issues. Tamer Ozsu [OVgl1 has described these

transparences, as follows:

• Network transparency. Also referred to as distribution transparency, network transparency,

can be considered from the viewpoint of either the services provided by the systems or the

data. Network transparency involves both location transparency, in that the physical location

of services or data is invisible during high-level applications, and naming transparency, in that

a unique name is provided for each object in the system.

• Replication transparency. Data pertaining to a given database may be stored at mOIe than one

site. Data replication can improve system reliability and performance and data availability,

while high-level applications need not be aware of the redundancy.

• User transparency. Multiple users can access the system simultaneously without mutual

awareness or interference. User transparency is created by effective system concurrency con­

troL

• System transparency. The details of varying computer and operating systems and intersite

communication mechanisms are screened from user view at the multidatabase level.

• Data semantics transparency. Potential conflicts among data stored in multiple databases

should be reduced.
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3.3 Characteristics of Database Systems

Database systems are characterized by the following three aspects, as graphically depicted in Figure

• Autonomy. A database can unilaterally formulate its own concurrency control policy and

export schema for interacting with other databases. This characteristic may apply to a single

database or to multiple databases.

• Heterogeneity. Data models, query languages, and processing methods may differ between

multiple databases. As illustrated in Figure 2, such heterogeneity may include systems that

are query only, restricted update, non-guaranteed update, and automatic & guaranteed up-

date.

• Distribution. The databases are physically located at different sites. This aspect may include

single sites, multiple sites in LANs(Local Area Networks) or WANs(Wide Area Networks),

and multiple networks of LAN/WAN .

...... i.L.A.'!

,..
".I0"""'Y

"''''''''....''Y
"""io:I<Chlnn_JU"", ..

M...plc

DBMS

sow' DBMS

Figure 2: Dimensions of Database Systems

A database can exist at any point in the space defined by the three dimensions of Figure 2. For

example, a database may be on multiple sites in a WAN, consist of multiple autonomous OilMSs,

and have restricted update.
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The integration of database systems must take into consideration not only their charactedstics

as outlined above, but also the cost and performance of the resulting multidatabase system.

Moreover, we can break the Heterogeneity dimension of the previous figure into three different

possible dimensions: Model, Access, and Processing (Figure 3). The model dimension represents

the different data models the are being integrated. Therefore, the important task in the integration

process then is how to merge together two different databases through the different data models.

The access dimension represents the hetcrogcneous accesses that might exist as a result of the

integration. The last dimension is the processing or what we call the heterogeneous execution.

This dimension represents the synchronization among the concurrent execution of the global and

local transactions while guaranteeing the consistency of the multidatabase system.

Mod'"

Figure 3: Dimensions of Database Heterogeneity

3.4 Dimensions of Database Integration

Three of the most widely used approaches to the creation of multidatabase systems arc tightly­

coupled federation, loosely-coupled federation, and interdependent data management. Tightly­

coupled federations have schema integration, while loosely-coupled systems can define queries using

multidatabase languages. Further, loosely-coupled systems do not maintain hard links into a mem-
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ber databases. Only the databases which require integration are attached as needed to fulfill the

transaction request. In interdependent data management, multidatabase interdependencies must

be defined.

In these multidatabase approaches, database integration can be visualized in three dimensions:

• System integration: enables data to be accessed from more than one data base.

• Schema integration: provides a uniform global conceptual view of the multidatabase.

• Semantic integration: resolves data conflicts which might exist between component databases.

Schema InlC;\ll':llion

S.....nmlics Inlcgrmlion

Figure 4: Dimensions of Database Integration

A database integration may be located at any point in the conceptual space defined in Figure

2, in that it can possess any of the dimensions of integration outlined above. These dimension will

be discussed in further detail in the ensuring subsections.

3.4.1 System Integration

System integration provides both user transparency and system transparency. As multiple partic­

ipating databases are usually distributed, the multidatabase must facilitate communications and

allow users to access even the most remote database.
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The design of transaction management for user transparency in multidatabase systems has

been well studied, and it has been concluded that the preservation of the autonomy of participant

database systems prohibits the utilization of the two-phase commit algorithm. A balance must be

established between the demands of local autonomy and the prerequisites for full consistency and

reliability. Many refinements have been suggested to better fit transaction management methods

to particular multidatabase applications. In some instances, the basic requirements governing for

database transactions can be relaxed.

3.4.2 Schema and Semantic Integration

A global multidatabase schema creates network and replication transparency by providing users

with a uniform view of the federation of multiple databases. The common data model must be suf­

ficiently jnclusive to rened all the features of the component systems. Currently, many researchers

prefer the object-oriented data model as the canonical common data model for schema integration.

More automatic tools are needed to reduce the expense of database integration.

Semantic data transparency forestalls data conflict and inconsistency among component databases.

This is currently an area of active investigation, with many open questions yet to be resolved. As

only semantically similar objects may be integrated, a ftrst step must be to determine those objects

with shared semantics.

Techniques for semantic reconciliation include [She!)l] :

• Comparison of objects. To determine similarity, the schema of objects may be compared with

heuristic methods. For example, one may assume that the same name represents the same

object, except when explicitly specified to the contrary.

• Formal/logic-based techniques. Users typically are required to specify semantic rules, such

as the units of convergence, as part of the process of integration.

• Graphical facilities, CASE tools. Visual tools can aid users in specifying the semantic mapping

between objects.

• AI/heuristic techniques. By applying methods such as expert systems, case-based reasoning,
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and problem solving, computer systems can learn to recognize additional semantic cues. For

example, a computer system can learn that some names are synonyms.

• Use of a large knowledge base. Some object semantics can be derived from a knowledge base.

System, schema and semantic integration must be tailored to suit a particular application and

configuration of component databases. The extent of integration must also take into consideration,

system performance, cost, and application goals.

4 Autonomy and its Effects

Autonomy is among the most signifLcant properties of local (or component) database systems in a

multidatabase system. Local autonomy arises from the originally independent design, implemen­

tation, and administration of those local systems. Informally, local autonomy in a multidatabase

system is defined as the ability of each local database system to control access to its data by other

database systems, as well as the ability to access and manipulate its own data independently of

other systems. Local autonomy in multidatabase systems guarantees the independence of a local

database system and that applications previonsly developed on that system continue to be exe­

cutable, while ensuring the consistency and security of the local systems [DE89J. In this section,

we explore the properties of local autonomy and its effect on various aspects of the multiclatabase

system.

The preservation of the local autonomy circumvents the costly and vastly cumbersome prospect

of modifying local database systems. Local database systems have often been developed by inde­

pendent companies, which may not wish to engage in such modlfications. Local database systems

of several years' standing often have hundreds of associated application programs, and this well­

functioning complex must be preserved after integration into a multidatabase system. Any modifi­

cation of these local database systems may create incompatibilities with some application programs

and cause instability in the database systems, all undesirable consequences. Local database sys­

tems often belong to independent organizations which wish to retain a high degree of control over

their database even after it is incorporated into a multidatabasc system. For all these reasons, the
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preservation of local autonomy is of great importance in multidatabase system integration.

Local autonomy has a significant impact on many aspects of multidatabase systems. Local

autonomy permits easy addition to or removal of database systems from a multidatabase system.

Furthermore, local autonomy renders the support of global applications in multidatabase systems

much more difficult than in homogeneous database systems. The lack of understanding of the effects

of local autonomy has greatly hindered the study and development of multidatabase systems. For

example, the degree of compromise necessary are the part oflocal database systems to ensure the

consistency of global databases is not fully understood.

4.1 Local Autonomy Requirements

Local autonomy, as mentioned above, defines the ability of each local database system to perform

various operations on and to exercise control over its own data. For example, a local database sys­

tem should be able to implement its own data model, catalogue management strategy, and naming

conventions. It should also be able to exercise control over local transactions and global subtrans­

actions (e.g., to delay or abort a transaction) in order to maintain the consistency of the local

database. Local autonomy also defines the right of each local database system to make decisions

regarding the service it provides to other local database systems. Local autonomy is necessary to

guarantee that local users can continue to run local applications on their systems, regardless of

integration, and to ensure that the basic consistency, security, and performance requirements of a

local database system arc met, while allowing other local database systems to access its data.

We may distinguish among four types of autonomy [DEK90, DEL089] :

Design autonomy refers to the ability of a local database system to choose its own design

with respect to issues such as data model, query language, integrity constrains, and transaction

processing strategy.

Execution autonomy refers to the ability of a local database system to decide whether and

how to execute local operations without interference from external operations. For example, a local

database system may assign a lower priority to external (global) operations than to local operations.

Communication autonomy refers to the ability of a local database system to decide whether,



when, and how to communicate with some or all other local database systems.

Association autonomy refers to the ability of a local database system to decide whether

and how much to share its functionality and resources with others. For example, a local database

system may allow external users to access only a portion of its data.

Design and association autonomy arc static aspects oflocal autonomy; they define the right of

a local database system to make decisions regarding static characteristics which are set at the time

of integration. Execution and communication autonomy, on the other hand, aTe dynamic aspects

of local autonomy which define the right of local database systems to make run-time decisions.

To preserve design and association autonomy, the multidatabase system should not impose any

restriction on local database systems (i.e., local database systems may use any data model and qllery

language) and should also not require any modification to the local database systems. Similarly,

preserving execution and communication autonomy implies that the multidatabase system exercises

no control Dver local executions, other than the submission of global subtransactions.

It is usually difficult to effect a compromise regarding the requircments of design and association

autonomy. For example, it is usually unacceptable to force a local database system to alter its data

model or concurrency control protocol. On the other hand, the requirements of execution and

communication autonomy may sometimes be compromised, it is usually acceptable, fDr example,

for a local database system to abort a global subtransaction which the multidatabase system is

prepared to commit.

The effects of design and association autonomy on multidatabase systems can be statically

analyzed and therefore can be mDre easily comprehended. For example, the concurrency control

protocol employed by each local database system is known at the time of integration, and based

on this information, a global concurrency cDntrol protocol can be designed. In contrast, the effects

of execution and communication autonomy, dependent as they are on the actual execlltion of

applications, are much morc difficult to observe and understand. For example, it is generally

impossible for the multidatabase system to detect whether two global transactions indirectly cDnflict

at a local site.
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4.2 The Effects of Local Autonomy on the Global Concurrency Control

One of the main differences between homogeneous and heterogeneous database environments is the

existence of local autonomies. In this section, we discuss the effect of these local autonomies on

the design of global concurrency control algorithms for multidatabases. We also discuss difficulties

of doing global concurrency control under the restrictions of these autonomies, and possible ways

of remedying the problem.

Designing a concurrency control strategy for a. heterogeneous database environment is different

from designing a concurrency control algorHhm for a homogeneous (distributed) database system

and is much more difficult. The difficulties are primarily because a global concurrent controller

must deal with heterogeneity and autonomy of underlying databases, in addition to the possibility

that data may be distributed among various sites. In a homogeneous environment, there is only

one concurrency controller to certify and produce the schedules. The concurrency controller has

access to all internal information it needs to produce and/or certify the schedules. In addition,

it normally has control over all transactions running in the system. The fact that concurrency

control algorithms in traditional systems do not ha.ve to deal with the questions of a.utonomy and

heterogeneity makes the problem sufficiently different that new algorithms must be designed for

the heterogeneous environment. These difficulties manifest themselves even more gravely when

addressing commitment protocols.

In a multidatabase system, local and global concurrency control must be addressed separately

because of local autonomies. Local concurrency controllers guarantee the correctness (usually using

serializability) of the executions of local transactions and global subtransactions at each local sites.

The global concurrency controller, on the other hand, is responsible for retaining the consistency

of the global database. Before the discussion of the difficulties of retaining the global database

consistency, let us first introduce direct and indirect conflicts between operations.

In a concurrent execution, one operation might conflict with another operation III the sense

that the effect of one influences the other. The influences can either be on the values read by an

operation or on the current database state. Two conflicting operations are said to directly conflict

if they both operate on the same data item, and indirectly conflict otherwise. Similarly, we say
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that two global transactioIls directly conflict if they contain directly conflicting operations. If two

global transactions are not directly conflicting hut contain indirectly conflicting operations, then

they indirectly conflict with each other.

To maintain global database consistency, a global concurrency controller has to be able to detect

and resolve direct and indirect conflicts among global operations properly. Dired conflicts involve

global operations only, and therefore can be easily predicted by a global concurrency controller.

Indirect conflicts among global operations, however, might be introduced by local operations. Since

a global concurrency controller has no direct control over local transactions and no direct access to

information about local executions, it cannot detect indirect conflicts with certainty. This makes

Global Concurrency Control d.ifficult.

4.3 The Effects of Local Autonomy on the Global Transaction Manager

A global transaction manager coordinateds the execution of global transactions within a multi­

database system Ideally, the global tril.Tlsaction manager should enforce the ACID (atomicity, con­

sistency, isolation, and duration) [HR83J properties on global transactions. This objective, however,

is hampered by the constrains imposed by the autonomy of local database systems. While local

database systems incorporate their own concurrency controllers to ensure that local transactions

are run in a serializable fashion, improper synchronization can nevertheless occur at the global

level.

Conflicts are even more likely to occur regarding the commitment of global transactions. To

maintain local consistency, each local database system can unilaterally commit or abort a global

subtransaction of a global transaction executed as a local transaction. This action may be taken

without consulting the global transaction manager, possibly placing the global transaction in an

unacceptable state. A local component system in a multidatabase sees itself as isolated, with no

knowledge of the existence of other local systems and of the multidatabase system. For this reason,

the awmidty of global transactions cannot be achieved if full local system autonomy must be

retained.
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4.4 The Effects of Local Autonomy on Schema Integration

Schema integration, which enables navigation and global data access in multidatabase systems,

is another significant aspect of system design. Schema integration involves combining component

schemas (the schemas of the local database systems) into an integrated global schema. Again,

the constrains posed by the maintenance of local autonomy complicate the achievement of schema

integration. These abstracts include [KS91]:

• Data Model Heterogeneity. Local database systems may employ different data models;

for example, these may be relational, hierarchical, object-oriented, or entity-relationship.

• Structural Heterogeneity. Data may be structured differently in various local systems.

In one local database system, "alL thor" may be an attribute of a book entity, while another

local database system may designate "author" as its own entity with an m:n relationship to

book entities.

• Unit Heterogeneity. One local database system may store measurements in meters, while

another may use feet.

• Access Heterogeneity. Local database systems may employ different language semantics

for access data (eg. relational systems using SQL, text systems using text~enriched semantics)

• Type Heterogeneity. Two attributes that represent the same concept may be declared as

different types. This may occur even when homogeneous systems aTe integrated, for example,

one local database system may store social security numbers as a character string, while

another stores them in integer form.

• Name Heterogeneity. Two local database systems may contain entities that are semanti­

cally equivalent but are assigned different names; e.g., "customer" and "client". In addition,

attributes that arc semantically equivalent may be named differently.

• Naming Conflicts. Two local database systems may each contain an entity with the same

name but representing different objects.
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• Nonfederated Database Systems

- Homogeneous

• Federated Database Systems

- Loosely Coupled

Tightly Coupled

* Single Federation

* Multiple Federations

Figure 5: Multidatabase System Taxonomy

Schema integration is further complicated by the dynamic nature of component schemas. Under

the terms of local autonomy, local database systems can freely modify their database schemas,

disrupting the consistency between local schemas and the integrated global schema. Fortunately,

controlled inconsistency, rather than strong consistency, is often sufficient for effective performance.

For example, inconsistent data may be IIsable if it is at most one day old.

5 Architecture

5.1 Architectural Taxonomy

"Ve shall now summarize and compare the various architectural models applied to multidatabase

systems design. As stated earlier, a multidatabase system is a database system that supports the

execution of operations on multiple component database systems. These component systems may

be either centralized or distributed database systems. The basic IDultidatabase system taxonomy

is shown in Figure 5.

This taxonomy involves the following classifications:
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• Nonfederated Database Systems. A nonfederated multidatahase system is integrates

component systems that are not autonomous but which may still be heterogeneous. In a

nonfederated multidatabase system, no distinction is made between local and non-local users

and between local and non-local transactions. As the rubric of multidatabase system is

sometimes applied to those database systems with autonomous multiple component systems,

such a definition would exclude nonfederated systems. The homogeneous taxonomy covers

those systems that provide homogeneous access, execution and data models .

• Federated Database Systems. A federated multidatabase system integrates component

systems that are autonomous. The federation therefore has limited control over these compo­

nent systems and will have only partial knowledge of their actions. In federated multidatabase

systems, there is a definite distinction made between local and non-local users. Local users

interact directly with the component systems, and the federation has no direct knowledge of

or control over the transactions they execute. Local users are restricted, however, in that the

Lransactions they execute may only access data residing at the component database system

with which they interface, Non-local users execute transactions through the federation, but

these transactions may access multiple component database systems in the federation. There

are two subvarieties of federated multidatahase systems [SL90J:

Loosely Coupled. In loosely coupled federated database systems, system users are

largely responsible for the administration of the federated system. There is no central

authority that controls the creation of or access to of data. Each component system is

responsible for constructing global schema view and for processing queries that access

remote component systems.

Tightly Coupled. Tightly coupled federated database systems include a central au­

thority responsible for tIte administration of the federated database system. This central

authority has control over global schema view(s) and global query processing.

* Single Federation. A tightly coupled federated database system is considered to

have a single federation if it supports only a single federated schema.
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* Multiple Federations. A tightly coupled federated database system is considered

to have multiple federations if it supports multiple federation schemas.

5.2 Architectural Comparison

Nonfederated vs. Federated. A nonfederated system facilitates support of certain important

properties, such as concurrency control and atomic commitment. The traditional algorithms for

these procedures (two-phase locking and two-phase commitment) assume that component systems

can be modified as desired to implement the appropriate algorithms. While this can easily be

accomplished in a nonfederated system, the constrains of local autonomy in integrated systems

may interfere with the implementation of transaction management algorithms.

In many instances, however, a nonfederated approach is incompatible with the system contC!Xt.

In situations such as the following, a federated approach must be utilized:

• Pre-existing Systems. Within an organization, there may be pre-existing systems that

are considered too costly to replace, yet a global database system may be desired. A multi­

database system spanning multiple organizations will also need to accommodate the features

of its component database systems. In both these systems, a federated approach will be

Hlquircd .

• Development Using Off-the-shelf Products. Even given a centralized authority over

an entire system, organization with no pre-existing systems, economic reasons may preclude

building a system from the ground up, and off-the-shelf database systems may be used.

Generally, the modifications that can be made to off-the~shelfproducts arc very limited, as

the source code is usually not provided.

Loosely Coupled vs. Tightly Coupled. The loosely coupled approach to federated database

systems provides ensures a greater degree o[ autonomy [or the component systems, since no c<mtral

authority is imposed. In addition, loose coupling generally tends to scale better to very large

systems, since it is difficult to support a central authority over such systems. On the other hand,

the maintenance of consistency is more difficult in a system that lacks a central authority.
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Single Federation vs. Multiple Federations. Multiple federations permit greater flexibility

in viewing the data held in a tightly coupled federated database system. Multiple schemas can be

created to tailor access to a. variety of of interest and security considerations. The maintenance of

consistency between multiple and local schemas and between various multiple schemes is, however,

a challenging project. On the other hand, a single massive global schema will not scale well to a

very large multidatabase system.

6 Concluding Remarks

Heterogeneous database systems are being developed in response to the need to bridge disparate

sources of information which cx.lst within many organizations today. This disparity is frequently

caused by the acquisition and merger of organizations or changing business requirements that

demand new applications or innovations that result in enhanced qualities of information.

Transparency as well as autonomy are key aspects for consideration in a multidatabase system.

These aspects have significant impact on the complexities comprised in constructing an integrated

global schema of the component database systems.

A newly commercial multidatabase system was released by Molecular Design, Ltd. in September

1991 [5ch93J. INtersect, embodied within the ISIS/Host product, was delivered to the pharmaceu­

tical marketplace to provide transparent integration of heterogeneous database systems. It is an

object-oriented multidatabase system that provides loosely coupled federations of heterogeneous

databases. Using local schema's embodied in IIviews(l-letcrogcncous Views), it forms links dynam­

ically when the user or application requests assembly of data within the schema.

Data model heterogeneity is promoted through a nested object model used for linking various

database sources. This permits relational, hierarchical, CODASYL, object-oriented databases to

maintain their data relationships in the integrated view that is provided to the application or enel­

user. These relationships are imported into the integrated view without requiring the reconstruction

of those already exist.

INtersect supports access heterogeneity through the ability to support query operations and data
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[DW88)

types that are unique to the respective heterogeneous sources. This allows users who are familiar

with the strengths of the autonomous systems do not have to compromise in using the multidatabase

system. A single query model for access (eg. SQL) was inadequate, as a requirement was to support

the semantics of the respective homogeneous databases (eg. Text, Chemical Structure Search).

The object-oriented nature of INtersect has been carried through to the mechanism used to

interface new database sources. Extensibility is promoted through the ability for gateway interfaces

to maintain private methods for activation by the multidatabase system. These methods can extend

to definitions for new datatypes, as well as their manipulation.
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