View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Purdue E-Pubs

Purdue University

Purdue e-Pubs

Department of Computer Science Technical

Reports Department of Computer Science

2002

Search and Discovery in Digital Video Libraries

Walid G. Aref
Purdue University, aref@cs.purdue.edu

A. Catlin

Ahmed K. Elmagarmid
Purdue University, ake@cs.purdue.edu

J. Fan

M. Hammad

See next page for additional authors

Report Number:
02-005

Aref, Walid G; Catlin, A.; EImagarmid, Ahmed K ; Fan, J.; Hammad, M.; Marzouk, M.; and Zhu, X., "Search
and Discovery in Digital Video Libraries" (2002). Department of Computer Science Technical Reports.
Paper 1524.

https://docs.lib.purdue.edu/cstech/1524

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://core.ac.uk/display/4971544?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

Authors
Walid G. Aref, A. Catlin, Ahmed K. Elmagarmid, J. Fan, M. Hammad, M. Marzouk, and X. Zhu

This article is available at Purdue e-Pubs: https://docs.lib.purdue.edu/cstech/1524

https://docs.lib.purdue.edu/cstech/1524

SEARCH AND DISCOVERY IN DIGITAL VIDEO LIBRARIES

W. Aref
A. Catlin
A. Elmagarmid
J. Fan
M. Hammad
I. Ilyas
M. Marzouk
X. Zhu

Department of Computer Sciences
Purdue University
Woest Lalayette, IN 47907

CSD TR #02-005
February 2002

Search and Discovery in Digitial Video Libraries *

W. Aref, A. Catlin, A. Elmagarmid, J. Fan,
M. Hammad, I. Ilyas, M. Marzouk and X. Zhu
Computer Sciences Department, Purdue University, West Lafayette, IN. 47906

February 1, 2002

Abstract

The most useful environments for advancing research and development in video databases
are those that provide complete video database management, including (1) video preprocess-
ing and meta-data generation, (2) video and meta-data storage management, (3) indexing and
query processing, (4} buffer management, and (5) continuous media streaming. These environ-
ments support the entire process of investigating, implementing, analyzing and evaluating new
techniques, thus identifying in a concrete way which techniques are truly practical and robust.
In this paper we present a video database research initiative that began in June 2000, and has
culrinated in the successful development of a video database research platform that supports
comprehensive and efficient database management capabilities for digital video libraries. The
research issues involved in developing the basic system components are described, and the value
of the system as a development environment is illustrated by a performance study addressing
the query processing component.

1 Introduction

The proliferation of online video content confirms the value of digital video as a rich and powerful
source of information. Video clips are increasingly included in news and education websites to add a
spatial and temporal dimension to data. But the complexity, size and unstructured nature of digital
video data guarantee that, however easily digital video can be added to enhance the presentation of
information in a specific instance, the application of search and discovery to digital video databases
as a means of information retrieval will remain a challenge. After a decade of research in video
segmentation, analysis and indexing, no general mechanisms have been developed for producing
meta-data that supports high-level content-based queries for a video with generic subject matter.
The Informedia Project [6] provides full-content search and retrieval for news and documentary
videos, using combined speech recognition and image processing to transcribe, segment and index
videos. Informedia has focused on news-based video content, and substantial subject-based train-
ing is required to achieve an acceptable degree of accuracy for the audio-to-text transcriptions.
Virage [15] markets VideoLogger, a commercial product that uses speech and image processing
to index videos and generate meta-data. Their emphasis is on web-delivery of streaming video;
users enter keyword queries based on the meta-data, and Virage presents results as storyboards
tied to time-stamped audio transcriptions. Virage does not handle storage of digital video; users

*This work was supported in part by the National Science Foundation under Grants 11S-0093116, ETA-9972883,
I15-9974255, EIA-9983249, the Department of the Navy under Grant N00164-00-C-0047, and the Purdue Research
Foundation

store their videos outside of the system. The Photobook System [22] allows users to plug in their
own content analysis procedures. WebSeek [27] builds several indexes for both images and video;
indexing is based on visual features such as color, as well as non-visual features such as keywords
and subject categories. VideoQ) [4] supports visual features (color, texture, motion) and automatic
video object segmentation/tracking for video content representation and indexing,

The most useful environments for advancing research and development in video databases are
those that provide complete video database management, including (1} video preprocessing and
meta-data generation, (2) video and meta-data storage management, (3) indexing and query pro-
cessing, (4) buffer management, and (5) continuous media streaming. These research platforms
support the entire process of investigating, implementing, analyzing and evaluating new techniques,
thus identifying in a concrete way which techniques are truly practical and robust. This paper de-
scribes a video database research initiative that began in June 2000, and has culminated in the
successful development of a video-enhanced database research platform that supports comprehen-
sive and efficient database management capabilities for digital video libraries. The fundamental
concept was to provide a full range of functionality for video as an intrinsic, well-defined database
data type, with its own description, parameters and methods. A natural consequence is that the
digital video itself must be stored within the database (not in flat files or tailored disk partitions),
giving the system absolute control over every interaction with the video. This allows, for example,
the secure access control of streaming video, where the video data is altered (for reasons of privacy,
ownership privilege, etc.} as it streams from the database to the user [1].

The VDBMS system has been tested against more than 800 hours of medical videos. Qur
video tapes are obtained from Indiana University School of Medicine and cover topics in basic and
continuing medical education. The medical videos are digitized, compressed into MPEG1 format,
processed off-line by VDBMS to generate image and content-based meta-data, and then stored
together with their meta-data in the VDBMS database. Since VDBMS search and discovery have
focused on medical video data, we have developed some abstraction strategies for extracting seman-
tic content that apply specifically to medical videos. This paper, however, describes components
of the entire VDBMS system; both general and content-specific techniques are presented.

The paper begins with a functional description of the system, including the scope of the pre-
processing mechanisms, query capabilities, and results presentation. We then describe the system
architecture and discuss the research details of important components. The concluding section
discusses the importance of VOBMS as a development environment.

2 A Functional View

Building a digital video library that supports search and discovery requires a representation and
indexing structure for video data inside the database. Image- and content-based video processing
is used to partition videos into meaningful segments of consecutive frames called shots. Shots are
associated with visual features and/or semantic descriptors that are used to identify video content
for query, search and retrieval.

A query interface should give users a window into the digital video library, allowing them to
search and retrieve video shots, and hopefully discover something interesting. Many users are not
familiar with the contents of the digitial library they are searching against, and they may not even
know exactly what they are looking for. For example, consider a medical school faculty member
who is preparing a lecture on ”Laparoscopic Nephrectomy”. In this case, an ideal shot for her
lecture would demonstrate the use of a laparoscope during kidney mobilization and extraction.
She accesses the VDBMS medical database without knowing what videos are stored there. Several

‘Video Dataices Clhseet)
flﬁﬂlpﬂ‘h‘l‘hﬂdﬂ oweuii; hay by ' - . ,
CU Wl rr;-,n. " EmcusWach [Meknbha | oo Gwed] Dertrvact I L |
. r!i*dl.-lim* £ —
B e Loy i _ Dhe | LG Gt it St € Fusw/Doplig St © ' " FraisDichipina | | i
Loriwcs v Yudeodd w2 Sherid, va leorfurm va LaaeFrara, II"I-",HF:; '
il ure Wom et WAL H Aol W g1 Aol m s-quh'[.l a Amn XM g O] g
ﬁ'im-;: hmlv“nmn“. "0 P u.‘rwrl- . 1€ e g AT i I" LuTfa.
e e LA -————-I bt
umu.-.{-:nmuumw ISOIDOFET § B oMY T 1...1-,.15" . [R Yommiar
BENDNATIMAME D OIID 0 SIS HIRT Ae)l | g e S L= U
"M'T};mﬂ:'f‘mnp AT 01 OO D 1 Ja6i r :.p- houpalilt e e
ol > Wchom Ml v '
510619 011785 0 (cks 511540 0 4T/ 14 TN e ok r 'I ' Ly
01 VR DTS 6 (TS GO0, 0 115 O3 e
DORISAD 0 072 & (743 0 00FER 0 [C37 & ONeirs i P e Divtaroe b ars { D |
nmmmmmum:-:&numxnnnuww-u 1 |r.¢ r_'_‘ n-.u 1-‘ ' 6] oem |
r mua-u-m . rtin | l | " Coum Poae '

B 1|
E

r,ltl'!]»l Shl

“
o . ,
- LRI I S N 100 S

Figure 1: VDBMS query interface.

formulations for a query to locate the ideal shot would be very helpful:

1. Frame-level image similarity match on multiple features, including color, texture, motion, etc.
2. Shot-level multi-feature image similarity match, using feature aggregation across shot frames.

3. Progression through various layers of hierarchical video summaries, beginning with the highest
layer, “Operation”, and moving to lower layers for an increasing level of detail.

4. Keyword-based query against meta-data describing shot-level semantic content.

Items 1 and 2 are based on low-level visual features, however an optimal aggregation of the
specified features might be sufficient to match the easily identifiable color, shape and texture of a
human kidpey. In item 1, the query is based on a similarity match between the user’s “example
image” of a kidney and “video frame images” from the database. In item 2, a shot-level query
is used to identify those shots that contain a large number of kidney-like images, increasing the
probability that the shot describes a prolonged activity involving this image. Items 3 and 4 are
based on semantic features. All of these formulations are available through the VDBMS query
interface. The preprocessing techniques and system components which support this functionality
are described in detail in the next section; here a short discussion of the user query options and
their relationship to VDBMS query processing is given.

Queries based on Visual Features. For an image-based query, users present an example image
and query the database for images or shots “most similar” to the example based on any number and
combination of visual features. Results can be frame-level (a collection of frame images with similar
features) or shot-level (a collection of shots with similar aggregate features). Shot-level queries can

include camera motion features to match against, such as zoom, pan, tilt, and still. Shot-level
queries can search against aggregate shot information obtained by processing (1) all frames in the
shot, or (2} a set of of key frames that have been selected to identify shot content. In (2), the
key frames have been selected and extracted during VDBMS preprocessing as an abstraction of
shot content, using criteria that is camera-based, activity-based, or shot-based. All visual feature
queries are based on results generated by image-based shot detection and image-processing tech-
niques developed and implemented by the VDBMS research group.

Queries based on Semantic Features. For a content-based guery, the user enters a keyword that
is maftched against the keyword and annotation meta-data associated with logical or content-based
shots {more appropriately called scenes). Videos are partitioned into scenes and identified with text
{(keywords and annotations) semi-automatically, using a VDBMS visual editing tool that supports
scene boundary identification and editing, along with keyword, annotation and representative key
frame identification (one for each scene.) For browsing through medical videos, users can access
the video content abstractions produced by the VDBMS hierarchical summarization process.

For all image- and content-based queries, the VDBMS query processor returns a ranked list
of results, where the user determines the number of top-ranked results to receive. When the user
requests shot-level results, a representative key frame for each shot is returned. The representative
key frame is a single image that represents the shot content; this frame is selected during video
preprocessing and is used only for representing shots returned as a result of shot-based queries.
Users can choose to stream any or all of the shot results by clicking on the key frame.

Video Processing and the Query Interface. What research issues had to be addressed to
create a system that could support such queries with an acceptable quality of service? To support
the feature-based image queries, it was necessary for VDBMS to be able to perform real-time
searches against the high-dimensional feature vectors resulting from the feature extraction process.
Image information extracted from each frame of a video occupies vectors of cumulative dimension
approaching 1000, and a half hour video contains more than 50,000 frames. The magnitude of
this indexing information forced the implementation of an entirely new multi-dimensional indexing
structure for image similarlity searches. The concept is based on the Generalized Search Tree
(GiST) [29] implementation of the SR-tree as the indexing technique, where the nearest-neighbor
(NN} search gperator uses an index access path created by running an incremental NN search query
on the SR-tree. New operators have been investigated and developed to support multi-feature
queries, and these have been integrated into the query processing plan. The demands of continuous
video streaming required a new approach to buffer management policies. Caching parts of media
streams which may be referenced in the near future enhances streaming performance by reducing
the number of references to disk storage and by minimizing the initial latency associated with the
start of streaming. We have implemented an efficient buffer prefetching and replacement policy
based on knowledge collected from the content-based search manager and the stream manager. To
manage the enormous volumes of data assoctated with storing video data, tertiary storage such as
tapes, CDs or optical disks becomes essential. We have currently integrated a CD jukebox into
VDBMS, and access to this device is transparent to the user.

Finally, what about the video preprocessing techniques for extracting the representative meta-
data that makes these queries possible? We have developed innovative algorithms for image-based
shot detection, incorporating automatic threshold determination for selecting shot cut frames. We
have applied MPEG7 standards for descriptors and description schemes, using the XML-like format
to define semantic and image-based information that represents the video content. Qur research

has produced novel image-processing techniques for extracting low-level visual features (color, tex-
ture, camera motion, object detection, contour-based temporal tracking. etc), including nearly all
meta-data defined by MPEG7 as standard. Key frames are automatically detected and extracted,
both as (1) a single frame to represent each shot for query processing and fast browsing, and (2) a
collection of frames to support searches against key frame content. Hierarchical video summariza-
tion techniques have recently been introduced to the VDBMS system to support content queries.
In addition, content-based text has been added to the medical video meta-data through the use of
a visual scene-cut tool, which allows physicians to (1) identify and edit scene boundaries based on
logical content, (2) select the key frames to reperesent the scenes, and (3) add text for keywords
and annotations.

End users access the VDBMS query interface using the Windows-based client shown in Figure 1.
The client connects to the VDBMS system that resides on a SUN Enterprise 450 with 4 UltraSparc-
II processors running the SunOS 5.6 operating system. Users pose their query by choosing among
the various options:

e Query Type: Keyword, Example Image, Motion Info or SQL statement. The SQL equivalent
of the user’s query is generated for all non-SQL queries.

* Query Level: Frame/Display Frame (user submits an image for matching against database
frame images, and the matching frame images are returned as results), Frame/Display Shot
(user submits an image for matching against agreggate features of shots from the database,
and matching shots are returned as results - represented by their key frames), Shot/Display
Shot (user submits a video shot, and the aggregate features of that shot are matched against
agreggate features of shots from the database, matching shots are returned as results).

e Query Features: color histogram (YUV, HSV), color moment, texture edges, texture tamura,
motion histogram, camera activity, etc. Users select any combination of features to match
against.

» Ranking Distance: number of top-ranked results to return.

The results are presented on a sliding image “filmstrip”, and users can scroll back and forth
through the results using any step size. Clicking on the key frame image which represents a video
shot, streams the shot directly from the database to the query interface media player.

3 A System View

The VDBMS system is built on top of an open source system consisting of Shore [25], the storage
manager developed at the University of Wisconsin, and PREDATOR [24], the object relational
database manager from Cornell University. The VDBMS research group investigated and devel-
oped advanced multimedia capabilities, and then integrated them into the Shore/PREDATOR
base. Shore/PREDATOR was transformed from a traditional text-processing DBMS into a video
database management system supporting full database functionality for the “video” as a funda-
mental database object. Approximately 20,000 lines of code were added to the original 144,400
lines of Shore code, and approximately 57,000 lines of code were added to the original 84,000 lines
of PREDATOR, code.

A diagram of the system architecture is shown in Figure 2. Components that have been added
to the system include the Feature Extraction module, the Query GUI, the E-ADT Interface, the

new Feature
video Exbraction

I SQL In'l:erIace i
i

. R Communication Manager I-—I

Client Side l . 9

Server Side Communication Manager |'—l
T

PPNy sQL E-ADT Interface HTTP
Jcatalog - Interface [(video, image, points) Server

‘Manager:! .
——l Query Real-time Stream

Manager Manager

‘Biiffer & Storage Managers:

Tertiory Storoge

Figure 2: VDBMS system architecture

Stream Manager and the Tertiary Storage module. Components that have been modified exten-
sively to provide video-enhanced capabilities are the Query Manager, the Index Manager, and the
Buffer and Storage Managers. In the sections that follow, the algorithms and techniques that were
used to develop the components of the VDBMS systems are described. Video preprocessing is
treated first, as it produces the important representation and indexing information that identifies
video content within the database. We also describe how MPEGT7 standards are an integral part
of VDBMS feature representation. We next treat the processing of user queries as it relates to
(1) the implementation of new indexing schemes and (2) the investigation and development of a
new query operator to handle complex multi-feature queries. The final discussion addresses our
research in issues related to streaming, buffer management and storage. In particular, a stream
manager layer has been implemented above the buffer manager to serve concurrent, rate-specific
streams to clients and to guide the underlying buffer pre-fetching and replacement polcies. Disk
and buffer management has been enhanced by the implementation of (1) different caching levels for
accessing frequently referenced data, {2) segment allocation to replace the page-based approach,
and (3) improved methods for managing video storage hierarchies that include buffer, disk, tertiary
storage and the Internet.

3.1 Shot Detection and Key Frame Extraction

Partitioning a video into meaningful segments is the first step in creating the representation and
indexing structure for each video inside the database. These segments, or shots, are the basic units
for accessing, querying, browsing and retrieving video source (see Figure 3.) We need techniques
that measure the “difference between consecutive frames” to identify where shots begin and end.
These techniques can be based on pixels, statistics, transforms, features or histograms. In addition,
since there is no magic number that identifies when successive frames are “different enough” to be
considered members of different shots for all types of videos, the techmiques must incorporate a
mechanism for dynamic threshold determination. Such a mechanism can adapt automatically to
different kinds of videos.

The VDBMS system uses color histogram differences between frames as its measure for shot

i shat mILEdari!S) high-
. {imaga-based | visual faaures i .

gl medical goooivieen iRl ' dimensional
¥ | oedmaton Typeg ! . ndox
g | videos d

| 5
&/ P : . 1t
E 1 - H - :
o 5. : :
2 ‘contentbased! scon@boundares & - |
> s ! samanﬁcfeamras/J

1
E!
E :
i
5 image
'E 1 query

| samantic query
; | g top-ranknd ks
o f
8 | R kay frama select o request straam —
g | streaming yidan shot

i

Figure 3: An overview of video preprocessing which creates the meta-data that represents and
indexes video content inside the VDBMS database (top), and the end user query against the meta-
data for search and discovery in the VDBMS digital video library (bottom).

w
(=]

£

]

£ Computed threshold
& for determingtion of
B 15 shot cuts

% 10 Jfisiii [oar A E :

= 5 Eﬂ%ﬂw‘jp Las | Wil W & yrea :" Color histogram

g e O) differences between

adjacent frames

0 $000 10000 15000
Frame Number

Figure 4: Pass 1 of video preprocessing computes the color histogram differences and the threshold
value to use for identifying shot cuts.

cut detection. It is a two-pass process. The first pass calculates the frame differences according to
the YUV values of the frame image, tracking information needed to compute the threshold value,
as illustrated in Figure 4. The second pass uses the computed threshold and the frame difference
values to partition the video into shots. During the second pass, the first frame of each shot (the
shot cut frame) is extracted as the key frame to represent the shot for retrieval presentation. Ad-
ditional key frames are extracted based on global camera motion activity and shot criteria for key
frame-based queries. Finally the visual features that represent the shot content and index the video
in the database are extracted from each frame.

The Shot Cut Detection Algorithm. The VDBMS shot cut detection algorithm first calculates
the color histogram Hj; (k) for each video frame j using the YUV values of the frame image. The Y
is divided into 8 intervals. UV and V are divided into 2 intervals. This is mapped to a single vector

of dimension 32. The color histogram difference beween frames 5 and j — 1 is computed as follows:

[H;_1(k) — H;i(k))?
E[HJ OFACE (1)

HD(j,5-1)=

where k is one of the M potential color levels. If HD(j,7 —~ 1) is greater than an optimal threshold
T, the jth frame is selected as a shot cut. To determine T, we first compute the probabilities for
a non-shot cut and a shot cut as follows:

Pmc(z)——-,ﬁ—0<z<T P,.(3) —,;,J:'—T+1<z<M (2)
h—l]

h=T+1 In

where f; denotes the number of frames for which the computed color histogram differences with the
previous frames are equal to i and Y, fi, represents the total number of frames for which the color
histogram differences with their previous frames are in the range 0 < i < 7. Given the entropies
for non-shot cut and shot cut frames, Hps(T) and Hy(T'), respectively, the optimal threshold is
determined by maximizing the criteria function (2, 12] H(T.) = max {Hpse(T) + H;(T)} over
T=0,1,---,M.

The search complexity for obtaining the optimal threshold T is of order O(M?2) since O(M)
computations are required to obtain the two entropies for each element, and there are M potential
elements. To reduce the search burden, VDBMS has implemented an efficient search algorithm
which exploits the recursive iterations for czlculating the probabilities and entropies, where the
computational burden is introduced by repeated calculation of the normalized parts. The total
numbers of pairs for non-shot cut parts, where the thresholds are set to T and T+1, respectively,
are given by:

Po(T) = Tip fn B(T+1) =T £, = P(T) + fraa (3)

Thus, the recursive iteration for the corresponding entropy can be reduced to adding only the
incremental part, resulting in a search burden of O(M);

T+i TH g f;
HygeT +1) = g Prsc(i)l0gPasc(d) Z R+ 9RBT D
Py(T) fri1 froo __PoT) o Po(T)
nsc(T + 1) TR nsc(T) - P (T + 1)""| ng(T + 1) PO(T + 1) !OQPQ(T + 1)

B(T+1)

and similarly for Hy(T + 1) using P, (T} and P (T + 1).

In the second pass of preprocessing, the frames in the video are partitioned into two classes
on the basis of their color histogram differences and the optimal threshold T:: HD(5,7 = 1) > T
for shot cut frames, and HD(j,j — 1) < T, for non-shot cut frames. The video frames between
two successive shot cut frames are taken as one video shot. The visual features extraction process
defined later in this section operates on the shots determined by this algorithm.

Key Frame Extraction. The first frame in each shot is the one that determines the shot cut,
and this is chosen as the identifying frame for the shot. It is used for presenting shot results in
response to user queries. On the other hand, the collection of key frames that represent the content
abstract are extracted from each shot based on the following criteria: (1) shot-based: for each video
shot, the beginning and ending frames are taken, (2) camera-based: global camera motion is an
important indication of video content change; for a zoom motion, the beginnng and ending frames

AVG
©.0) o A .
i 0 1
2 oy
o
Vi (a.V)

Figure 5: Scatterplot for 2D entropic thresholding.

of the zoom are selected; for a (left/right) pan or (up/down) tilt, the number of selected key frames
depends on the strength of the camera motion, and (3) activity-based: moving objects are useful
for identifying key frames. Camera and activity detection is based on structural video component
segmentation.

Spatial Segmentation. Spacial segmentation is performed on each frame to extract the structural
image components for a 4z4 block resolution. We use the average gray level (AVG) and local
variance {VAR)} to indicate local detail and average properties of the frame image. In addition, we
have developed a 2D entropic thresholding for determining the optimal segmentation thresholds,
The AVG and VAR of block (m,n) are given by

AVG(‘TR, ﬂ') = T]E Zg:ﬁ Z:':D I(.‘]‘J, Y tn) VAR(TTL, ﬂ') = T% Zg=0 Zg=o II(E': ¥ tﬂ) - AVG(TR, ?);2
5

where I(z,y,t;) is the gray level of the pixel at position {z,y). We createc a 2D scatter plot
(AVG, VAR) as shown in Figure 5. There are A x V elements in the scatterplot, given that
the gray level has A possible elements and the variance has V possible elements. Fach element
represents the occurences f; ; of the pair (AV Gy, VAR;), that is, f; ; is the number of blocks in the
image that have AVG = ¢ and VAR = j. Using two thresholds a and v, the plot is partitioned
into four quadrants. Since the areas (blocks) interior to homogeneous objects or backgrounds
should contribute mainly to quadrants with relatively low local variance, and the edges and texture
contribute mainly to relatively high local variance, this implies that quadrants 0 or 1 contain the
distributions of homogeneous background and homogeneous objects. The remaining two quadrants
(with high local variance) contain the distributions of blocks near domain edges and texture regions.
The a priori probability of a pair (AVG;, V AR;) is given by f;; divided by the total number of
blocks in the image. Since the probabilities for homogeneous background Pp and homogeneous
object Pp can be considered independent, we have:

PBi.j (ayv) = fi,j(Zﬁ:O ZK:O fh,k)_l Poi,j (,v) = fi,.f(zf=a+l Z?J:e fh,k)_l (6)

Given the entropies for the two classes, Hp(a,v) and Hp(a,v), the optimal threshold vector
(&, 7) that is selected for performing the partition of the image components has to satisfy the
following criteria functions: H{a, 7) = max {Hg{a,?)+ Ho(a,0)} overa =0,1,--- ,A—land v =
0,1,---,V — 1. The computational complexity for finding the optimal maximum is O(A42V?) [10].
A fast 2D entropic threshold technique can be used to reduce this to O(2(A + V)). The blocks can
be classified into four groups on the basis of (&, #): (1) homogeneous background, (2) homogeneous
onjects, (3} textured background/objects, or (4) the edges between them.

Temporal Segmentation. Temporal segmentation is performed only on non-shot cut frames and
determines the temporal relationships between frames for the extracted image components. The

frame difference contrast (FCON}) of block (m,)} is given by

3 3
FCON(m,n) = 3 3 11(z,y,t) — I(z, 3, tact) @)
z=0y=0

where I{z,y, ty) is the gray level of the pixel at {z,y) in frame n. To compute the optimal temporal
segmentation threshold F, we set the probabilities for the temporal unchanged and changed regions,
P, (¢) and P.(3), respectively, in the same manner as for the shot detection algorithm, and we use
the entropy computations to arrive at the criteria function H{F) = max { Hy(F) + H(F)} over
F=0,1,--- N. The temporal relationships of the coordinate blocks among frames is then classified
into two groups: FCON(m,n) < F for unchanged blocks, and FCON(m,n) > F for changed
blocks. The efficient search algorithm described for shot detection can also be applied here to
reduce the computational complexity to O{N).

Struciural Video Components. After the motion estimation procedure has been applied [11], the
temporal and spatial segmentation results are integrated to determine the structural video com-
ponents. This process is based on the following rules: (1) the uncovered background (high motion
compensation errors) includes blocks that are detected as changed regions by temporal segmenta-
tion but are taken as one portion of the large background region by spatial segmentation, (2) the
homogeneous moving objects (low motion compensation errors) consist of blocks that are detected
as object regions by spatial segmentation, (3) the newly appearing objects are detected as changed
regions by temporal segmentations, but they have high motion compensation errors because no cor-
respondences were found for them in previous blocks, (4) texture background and texture moving
objects have high motion compensation errors (as in newly appearing objects), but their motion
vectors for the connected blocks are quite similar. Therefore, the changed regions can be further
partioned into uncovered background (resulting from fast moving objects), moving objects, newly
appearing objects or newly appearing backgound (resulting from global camera motion), and fezture
stationary background (resulting from camera jitter and moving edges). The unchanged regions can
be partioned into stationery background and still objects. The activity-based key frame selection is
determined automatically on the basis of these structural video components.

3.2 Visual Feature Extraction

Since the video shot is considered the basic database unit for digital video, preprocessing extracts
a collection of visual feature values from each frame and associates them with their corresponding
shots. The begin and end frames for each shot are identified in the database as shot boundaries,
and for each shot we have (Videold, Shotld, Visual FeatureVector) as the database representation
of the visual content of the shot. Users access, query and browse the video database to retrieve
shots based on information in the Visual FeatureVector. We first give a complete inventory of the
low-level frame and shot-based features extracted during VDBMS preprocessing. Following this
inventory, we describe the process for extracting camera motion information.

Low-level Visual Features. The low-level features maintained in the VisualFeatureVector are
listed below. Features are extracted for each frame, and “per shot” average, minimum, standard
deviation and variance values are based on the collection of values for all frames belonging to a
shot. In Table 1, we show a portion of the database schema used to store the the video, video shot
and frame features, including the GiST SR-tree index creation for the feature vectors. The GSR
INDEX is discussed in Section 3.5 .

10

P RS
.,‘-"

oz

T
Figure 6: VDBMS camera model.

o Color Histogram HSV format: color content of frame images using 256 color levels.

s Color Histogram YUYV format: spatial distribution of colors and content in a vector of di-
mension 32.

e Color Layout (MPEG?7 standard): color content and structure; includes information about
the spatial relationships of the pixels and can be used to distinguish between two images with
identical color content but different color structure. Frame images are divided into 16 blocks
with color histograms computed for each block, resulting in a vector of dimension 16 x 32.

¢ Color Moment: mean and variance of the luminance (gray level) component.

o Texture Tamura: each frame image is divided into 16 blocks and the average and standard
deviation of the luminance component are computed for each block.

s Texture Edges: detects image pixels which are edge points by computing the direction, 1 <
d < 9, at each pixel. A directional histogram is created from the percentages of pixels in each
direction.

e Motion Histogram: based on 8 x 8 blocks. The direction, 1 < d € 9, of motion for each
block is computed. A directional histogram is created from the percentages of blocks in each
direction.

New MPEG? visual features have recently been introduced (see http://www.cselt.it/mpeg) and
these have been added to the VDBMS feature extraction process:

* Dominant Color in YUV: for each of 8 dominant colors, percentage and YUV components,
in descending order of percentage.

¢ Scalable Color: color histogram is encoded using the Haar transform; this allows queries with
histograms of larger dimension than those stored in the database.

o Homogencous Texture: characterizes the region texture of an image using the energy and
energy deviation in a set of frequency channels.

» Edge Histogram: spatial distribution of five types of edges in local image regions (horizontal,
vertical, diagonal 45 degrees, diagonal 135 degrees and non-directional}. Edge directions are
computed as in Texture Edges. Images are divided into 16 blocks, and the direction of the
4 x 4 sub-blocks (i.e., dominant pixel direction) is computed for all 16 blocks.

11

CREATE TABLE VideoStream

CREATE TABLE VideoShot

CREATE TABLE PrameFeatures

(((

Videold int, Videold int, Videold int,
Movie video(” format mpeg”), Shotld int, ShotId int,
Annotation string, Annotation string, Frameld int,

Annotatorld int,

)
KEY (Videold);

Annotatorld inf,
StartFrame int,

EndFrame int,

KeyFrame image(”format jpeg”)

)}

CH vector ("1000”), // dim 32

CH2 vector (*1000"), // dim 256

CL vector ("1000”), // dim 512
CMMEAN vector ("1000”),// dim 1
CMVAR vector (*1000"), // dim 1
TTMEAN vector (”1000"), // dim 16
TTVAR vector (?1000”), // dim 16
TE vector ("1000”), // dim 9

MH vector (*1000"), // dim 9

)

CREATE GSR INDEX FFea.CH ON FrameFeatures(FrameFeatures.CH);
CREATE GSR INDEX FFea CMMEAN ON FrameFeatures(FrameFeatures. CMMEAN);
CREATE GSR INDEX FFea_ TTMEAN ON FrameFeatures(FrameFeatures. TTMEAN);

Table 1: Partial VDBMS database schema.

The Camera Motion Detection Algorithms. We use motion vectors extracted directly from
MPEG]1 streams to identify specific types of camera motion between frames. We first use an
efficient method to eliminate the smooth areas of a frame image where motion vectors cannot be
used. Then we apply qualitative classification algorithms to distinquish between tracking, panning,
tilt, zoom, rotation, and still. The camera model used in our algorithm is shown in Figure 6.
Any point P{(X,Y,Z) in a 3D scene is mapped to a point p(7,7)} in a 2D image. If f represents
the focal length of the camera and we apply projection rules, the points P and p are related by
z= f(%) and y = f(%). According to the camera model, any motion of the point P(X,Y, Z) can
be described as V = T x 2 x P, where V = (Vx, Vi, Vz)! is the velocity of point P in 2 3D scene,
T = (Tx, Ty, Tz) is the parallel component of the velocities, and Q = (Qx, Qy, Qz)¢ is the rotation
velocity of point P. For any point p in the image, the optical flow is OF(z,y) = (u(z, v), v(z, ¥))t,
where u(z,y) = %:{ and v(z,y) = %f. Taking into consideration the zooming motion of the camera,
the optical flow of each point p can be represented as a linear combination of different kinds of
camera motion:
Y

9 2
u(z,y) = P Qx +(f + %)Qy -z + %TX - %Tz - f[arctan(;)](l + %)r,_mm (8)

Ty
f
The above equations imply that if there is a dominant camera motion between frames, the optical
flow will have different modes for each kind of camera motion. A qualitative camera motion strategy

can therefore be used to distinquish between different patterns of optical flow in each frame.

We first extract the motion vectors from the MPEGI video stream. Since there may be frame
areas that are either smooth or contain a very large object (rendering the associated motion vector

> z 2
uz,y) = (7 + J?)Qx + —Qy + 280z — %Ty - éTz - f[arctan(?)](l + %)r;m (9)

12

— =~ — — — b | e e
— = e et el e "-\"t—-:gd-r-—r
— = = — — — =T e —— e e —
— b || e | [- - —
- =~ — = — ——ir — —p — e ——p —* =
— = = = = = e e e e —— — - — — -
333|222 I
I NEEBEIZS S| |F S =3
~ ¥ Yoy e T

- ¥ 4 -
- " * ;‘ “J‘ ¥ ‘:(‘_\kk

T AT
(tu. mev)-p —» () (’";!‘)....,...,,.,...‘".’[FOE" 444
mﬂ-—"”} \.,..,\“ :"""a-m')'x*l* % e I')_'
..4;;, At "';L*‘g‘, P
’—-" .v"f,’.\,\ :‘ii N ‘“‘s‘—.’:'
R AN N
4 A" L Sy -

Figure 7: Motion vectors for tracking (top left), small panning (top middle), large panning (top
right), zooming (bottom left} and rotation (bottom right).

IR E EEN

8

Figure 8: Frame image partition for evaluating motion vectors.

useless) we climinate these areas. We split each frame into mn blocks {By;,). If V;; represents the
motion vector of point p(z, 7) then the mean of each block is calculated as E[Vi,,] = 1_1(25, i€Bon T?,-j,
where K is the number of motion vectors in block Byy,,,. Since motion vectors in a small area should
be similar both in direction and length, we eliminate block Bpy, if (1) the mean E[V,,,] is smaller
than a given threshold, since either the energy of the block is too small or the directions of the
motion vectors in the block differ significantly, or (2) the covariance E[V,2,] is bigger than a given
threshold. The remaining motion vectors are those with relatively higher energy and uniform
direction in small regions.

Motion vectors can estimate camera motion, but they may vary with the view angle used to
capture the video. The tracking operation shown in Figure 7 (top left) is the same for large and
small view angles. However, motion vectors vary with respect to view angle for panning operations
(top middle and right). In order to classify camera motion accurately, we split the motion vector
of each frame image into 9 areas as shown in Figure 8.

Fized Operalion. A fixed operation implies that the camera is still. For any motion vector,
Vij = (ug,vy) for point p(z,y), the energy is computed as ||Vl = JuE+o2 If Vi; is smaller
than a given threshold, it is a small energy vector. If more than half of the motion vectors in a
given frame are small, the motion is treated as fixed.

Pan and Till Operations. Panning, tilting, and vertical/horizontal tracking are treated as verti-
cal/horizontal operations. Compared to other motions, these have a dominant motion direction,
and thus, most of the vector directions in a frame with one of these operations will be the same.
Our process to classify the vertical/horizontal motions is as follows:

1. Calculate the directions of all motion vectors and use a direction histogram to determine the

13

Figure 9: W (¢, j) distribution for zooming (left) and for rotation (right).

dominant direction (i.e., the direction representing the greatest number of vectors).

2. If more than half of the vectors are in the dominant direction, the motion of the frame is a
vertical or horizontal operation. The degree of this direction will distinquish vertical from
horizontal motion. If half or less of the vectors have a dominant direction, a different process
will be used to evaluate the motion.

3. Recall that the view angle has an influence on the precision of camera motion extraction. For
panning operations, there is some vertical movement for the motion vectors at the corner,
but the motion vectors at the corners for horizontal tracking operations are still parallel.
Therefore, (referring to Figure 8) if the motion of the frame is horizontal: With respect to vy,

if more than two areas among 7,11, 11,1V satisfy IIII; 'IIII > 0.2, then the motion is panning.
ij
Otherwise the motion is considered horizontal tracking. With respect to uz, if more than

two areas among I, 11, II, IV satisfy H > 0.2, then the motion is tilting. Otherwise the
Vi

motion is considered vertical tracking.

Zoom and Rotate Operalions. For images where less than half of the vectors have a dominant
direction, we look for zooming or rotation. Figure 7 {bottom) shows the distribution of motion
vectors for zooming and rotation. For zooming, all motion vectors point to {or radiate from) the
focus of expanding (FOE.) For rotation, all the vertical lines of the motion vectors will point to the
FOE. Qur strategy for distinguishing these two camera motions is based on this distinction. We
define an integer array W(4,j), ¢ € [0, M] and j € [0, NV}, where M, N are the width and height of
the frame. Initially, we set W (s, 7) = 0 for all ¢, . Then, lor any point p(z, 5) in the frame, consider
its motion vector (uz;,vy;) and the extended line of the motion vector given by y = —i'-:c+ —:"wi'-
For each point in the frame that is on the motion line, we increment the value of W(i,7). After
evaluating all points on all extended lines of the motion vectors in the frame, the comparative
distribution of W (%, j) for points inside and outside of the image FOE appears as in the plot on the
left in Figure 9, that is, for an area surrounding the FOE, W{3, j)|; sseror >> W {4, 3)l(i)¢ FoE-
If such an area does not exist, a similar strategy verifies whether a comparative distribution of
W (2, 7} for points inside and outside of the image FOE appears as in the plot on the right in Figure
9. In this case, the motion will be a rotation operation.

3.3 MPEGT Compliance

The MPEGY standards for multimedia content descriptors for audio-visual data are supported by
the VDBMS system in two ways:

e VDBMS video preprocessing extracts nearly all low-level features which have been defined
by MPEGT [17] as standard (color, texture, motion, etc}, and users can retrieve video shots

14

from end user

: ¥ I
MPEG-7 Document MPEG-7 Document
Speafied with DDL, Specilted with DDL

features extracted
via external process

features exiracted
from videoDB schema

Figure 10: MPEGT document support for feature import and export.

based on any combination of these features. Queries combining multiple low-level features
can be used to approximate high-level content-based searches.

¢ VDBMS has developed an XML wrapper that can import any MPEG7 document specified
with Data Definition Language (DLL) [16] and map its descriptors to the VDBMS object-
relational database schema. The wrapper also supports the export of VDBMS extracted
features and other meta-data from the database in the format of an MPEG7 document.

The XML wrapper enables the VDBMS system to make use of any available pre-extracted meta-
data formatted as MPEG7 documents without preprocessing the video itself. In addition, features
which VDBMS video preprocesing does not extract - most importantly event-based and other se-
mantic features — can be integrated as VDBMS meta-data via this mechanism. In Figure 10, the
import function takes as input a user-supplied MPEG7 document which is generated using Multi-
media Description Schemes (MMDS) and contains the high and low-level feature descriptors. This
document is passed through VDBMS’s MPEG7 wrapper to extract, parse and map the descriptors
to the VDBMS database feature schema. The video and its documented MPEG?7 features are then
stored inside the VDBMS database where they can be used for image and content-based queries.
The ezport function extracts existing feature descriptors from the VDBMS database and sends them
through the wrapper where they are mapped to the MPEGY descriptors. The generated document
can be used by other video processing tools or databases.

3.4 Hierarchical Video Summarization for Medical Data

We have developed a hierarchical video summarization strategy for medical video content, which
provides users with an overview of the content at various levels of abstraction. To generate an
overview, the key frames of a video are preprocessed to extract speciel frames (such as black
frames, slides, clip art, sketch drawings) and special regions (such as faces, skin or blood-red areas).
A shot grouping method is applied to merge spatially or temporally related shots into groups.
Visual features and a priori content knowledge about the medical videos are integrated to assign
the groups into predefined sematic categories. Based on the video groups and their semantic
categories, the video summaries for different levels are constructed by group merging, hierarchical
group clustering, and semantic category selection. Users choose the level of summary to access: the
higher the level, the more concise the summary, the lower the level, the greater the level of detail
contained in the summary. A detailed description of this process is given in [30].

15

3.5 Indexing and Query Processing

The meta-data which represents and indexes video content occupies more disk space than the
video itself. The enormous magnitude of this meta-data and its storage in the database as high-
dimensional vectors present serious indexing and searching difficulties in the execution and opti-
mization of feature-based queries.

The Generalized Search Tree (GiST) [29] developed at Berkeley is an extensible data stucture
that allows programmers to develop indices over any kind of data, supporting any lookup over
that data. The GiST packages unifies B-tress, R-trees, R-trees, SR-trees, hB-trees (and many
others) in one data structure, providing both data and query extensibility. GiST v1.0 provided
low-dimensional indices, with no support for nearest-neighbor queries. GiST v2.0 supports high-
dimensional indexing and nearest-neighbor search. GiST v2.0 is not, however, available for the
Shore v2.0 upon which VDBMS is based. The VDBMS research group extended the indexing
capability of Shore v2.0 by incorporating the GiST v2.0 implementation of the SR-tree as the
high-dimensional index, and modified the query processing layer of PREDATOR to access the
Shore/GiST index. VDBMS added the vecior ADT to be used by all feature fields in the Features
and FrameFeatures database tables, and implemented

CREATE GSR INDEX <table>_<fieldname> <table> (<table>.<fieldname>);

to create an instance of the GiST SR-tree for the given field to be used as the access path in feature
matching queries. The multi-dimensional indexing structure handles the high-dimensional feature
vectors that are produced by visual feature extraction and are used in image similarity searches.

In multi-feature image similarity queries, users present a sample image and query the database
for images “most similar” to the example based on some collection of visual features. Although the
database images can easily be ranked for each feature separately, results must be presented to the
user in a combined similarity order. The query evaluation model used for a similarity search does
not generally return a collection of exact matches, but rather a ranked collection of results with
a score {or grade) attached to each result. The aggregate grade for a given result is obtained by
combining the grades of several atomic similarity rankings, where the atomic ranking is based on
a single feature or attribute of the database object. Single-feature similarity queries in multimedia
retrieval are quite standard [5, 15]. The challenge for multi-feature similarity search is the ranking
of results based on an overall aggregate grade, using several atomic rankings as input.

Many algorithms have been proposed in the literature to address aggregation ranking, notably
Fagin’s algorithm (8], the TA, CA and NRA algorithms [9], the Quick-Combine algorithm [13), the
multi-step aggregation algorithm [20] and the Stream-Combine algorithm [14]. Two alternatives
exist for implementing rank-join algorithms for databases: table functions or encapsulation in a
physical query operator. Since there is no straightforward method for pushing query predicates
into table functions (23], their performance is severely limited. Implementing a rank-join algorithm
as a pipelined query operator, however, is very appealing for query optimization and allows for
handling nested joins and views efficiently. The operator permits greater flexibility in generating
candidate execution plans as opposed to the use of table functions. The encapsulation of the rank-
join algorithm in an operator makes it possible to shuffle the evaluation plan operators in seeking
the best plan.

For a rank-join algorithm to be implemented as a pipelined query operator, the algorithm
must have two key properties. First, the algorithm should be incremental. An incremental rank-
join algorithmn does not depend on specifying the number of required results beforehand, rather it
provides the next result whenever called for. Secondly, the operator must support pipelining. For
a query operator to be part of a pipeline, the output of one operator should be valid input to the

16

[Given multimedia database fables: TR
* VideoT able (VideoId, VidedName, Annotations)

: *FeatureTable (VideoId. Color, Texture, EdgeQrientation)

{ SELECT VT.VideoName FROM VideaToble VT, E
i : RANK-JOIN MNearest(FeatyreT able,Color,getColor(Image:queryimage.jpa)) a. ;
: Nearest(FeatureT able, T exture,getTexture(Imoge: quer-ylmagerg)J b), !
: (a.¥ideold = b.VideoIld), (adistance, b.disiance), (0.57q, 0.5*b) YFT
'WHERE VT Videold = FT.VideoId AND VT .AnnotafionContains('Kidney™

iy
!4 Cobnmagn]

FeatureTable

...

Figure 11: A rank-join query and its execution in the VDBMS query plan.

next operator in the pipeline. The pipelining property allows for the realization of join hierarchies
and nested views, and hence a wider range of query evaluation plans. Rank-join algorithms that
depend on the availability of a random access to the inputs cannot be realized as pipelined operator;
random access is not possible when the input arrives as output from another operator.

The NRA (no-random-access) algorithm in {9] assumes only sorted access is available on the
input streams. We have adapted the NRA algorithm so that it can be realized as a pipelined query
operator, and we have encapsulated and implemented the algorithm as the No-Random-Access-
RankJoin (NRA-RJ) logical query operator for VDBMS. NRA-RJ takes multiple ranked objects as
input and produces a global ranked list of the objects as output. The objects in each input list are
associated with grades and are sorted in descending order according to these grades. The operator
requires three parameters: a join condition to determine the correspondence between objects from
different streams with possibly different schema, a grade field name for each input stream, and
the weighting expression for computing the combined grade. NRA-RJ supports image similarity
matching with respect to multiple features, returning the top k results, where users specify the
value for k. Each database frame image is represented as a point in high-dimensional space, thus
the similarity problem is transformed to a nearest-neighbor query on a high-dimensional structure.

Using the NRA algorithm directly in the implementation of the NRA-RJ operator was com-
plicated by two problems. First, the algorithm depends on a predefined value for %, the number
of top results to be retrieved. We needed an incremental version of the algorithm which produces
the next top object when needed by the caller. The second problem is that the output from the
algorithm does not have exact grades associated with the output objects. Instead, each object has
a range from worst grade to best grade. This prevents pipelining the operator in the query plans,
since the exact ranks (grades) will be available only from the source input streams.

We describe the NRA-RJ operator in terms of the operations Open, GeiNezt, and Close. Get-
Nezt is implemented as a binary operator for practical reasons (the algorithm still holds for more
than two inputs). Internal state information needed by the operator consists of a priority queue
holding objects encountered thus far. Objects are sorted on worst grade in descending order, and

17

ties are broken using best grade. To allow for pipelining, inputs to the algorithm may be source
streams or output streams from other algorithm executions. Therefore, each object in the input
streams is associated with a range of grades from worst grade w to best grade b {where w = & for
exact grades). At depth d (the number of objects retrieved from each input stream), the proposed
algorithm maintains the bottom values g‘i‘” and gg‘”. The worst grade of an object R is computed as
t(wy,wz), where ¢ is the weighting function and w; is either the worst grade of the ob ject according
to input z, or 0 if the object has not yet been encountered in input stream 4. Similarly, the best
grade of an object R is computed as £(b;, bz), where b; is the best grade of the object according to
input stream i, or b}d} if the object has not yet been encountered in input stream 3.

In the Open operation, the operator initializes the internal state information and opens the left
and right child iterators. The Close operation destroys the state information and closes the input
iterators. The algorithm for the core operation, GeiNezt, begins by checking the priority queue
(buffer) to see if an object can be reported. An object can be reported if its worst grade is still
greater than the best grades of all other objects. The maximum best grade for objects encountered
thus far is obtained from the buffer. For objects not yet encountered, a threshold value can be used
as an upper bound of the maximum possible best grade. The threshold is obtained by applying the
weighting function to the best grades of the last encountered left and right objects. The maximum
best grade in the buffer is maintained so that a scan of the whole buffer is not necessary for each
call. To deal with grade ranges, the algorithm uses the best grades from the input streams to
update the bottom values and to update the best grade of objects in the buffer. Optimization of
the algorithm is achieved by introducing the batch depth technique. In this technique, whenever
the depth d increases—by retrieving objects from left and right iterators—a minimum depth step
s must be performed. That is, the operator must retrieve at least s objects from each of its input
streams. The batch depth technique may cause the retrieval of extra database objects but will
reduce the overhead of maintaining the objects in the operator priority queue.

Recently, Apostol et al. introduced a new rank-join algorithm, the J* algorithm [19]. The
basic version of the algorithm does not use any random access, and it support join hierarchies
(i.e. pipeline of join operations}. No other efforts to introduce the rank-join algorithm as a query
operator have appeared in the literature. We have also implemented J* in VDBMS, and Section 4
presents the results of a study in which we compare the performance of these two operators.

3.6 Video Streaming and Search-based Buffer Management

Continuous-media servers that support content-based search and retrieval use a main memory buffer
to store the requested media streams before sending them on to the user. Caching parts of media
streams that may be referenced in the near future enhances streaming performance in two ways:
(1) it reduces the number of references to disk storage, and (2) it minimizes delay associated with
the start of streaming. Precise caching decisions are difficult to make, however, since they depend
on future knowledge about expected-streams. We have developed an efficient buffer prefetching
and replacement policy based on knowledge collected from the content-based search manager and
the streaming manager. By integrating knowledge from the search and streaming components,
VDBMS can achieve better caching of media streams, thus minimizing initial latency and reducing
disk I/0O.

Optimal prefetch and replacement policies prefetch data before its first reference and replace the
data block that will not be referenced for the longest time. The obvious difficulty is dependence on
knowledge about future tasks, which is generally not available. In the case of video streaming, how-
ever, there is an inherent connection between the streaming and the searching processes. Choices

18

FAWWWW CMRef

&) | M, 4090 [e—
o = o e W CMRef
' & M, [B.16) VWANPOYW C MR,
e 00.0) \ VANV CMRE
CHMRal
T T VOWWYW .CHReD,

[=-3 ' aF H

YW CHRet,

4ﬁgﬁ?sﬂun| §—‘ earch Resulis

-

:
e, (i} 12]3] s fis[17] ’E & Replae el streming

} O Keep afler streaming
1}

1
‘e— Pericd T —pt— Period T — o -

Figure 12: The search-based replacement policy. Two current streains cs) and css are referencing
common blocks, and some expected-streams have been collected from the search results. Page 6 of
¢s1 is removed after use as it is no longer referenced by current or expected-streams. Page 11 of
stream csz will be referenced by cs) and is kept in the buffer. Page 8 of s, is expected for reference
by expected-stream esz and is also cached.

for streaming are usually based on search results, and this relationship can be used by the buffer
manager to prefetch and cache pages expected for reference. Many factors must be considered when
basing prefetching or replacement decisions on search results. Streaming decisions based on the
search context are probabilistic: new streaming requests can be based on any of the search results
or even on none of them. Also, since the caching space is now shared by pages for current as well
as expected streams, there will be increased overhead in the replacement policy associated with
balancing the space assigned to each.

Buffering policies for media streaming have been investigated in several studies. The work in [3]
introduces a memory-efficient prefetching schedule based on fixing the time-displacement between
prefetching requests. Replacement policies for media streams have been studied in [7, 18, 21]. The
target applications are systems designed for streaming purposes only, such as video on demand
(VOD) applications. In {21], two replacement policies are introduced, based on caching data that
is expected for play by other streams within the shortest time period. The algorithms produce
effective buffer hit ratios for long streams (videos lasting more than half an hour) and for streams
frequently requested by clients. The Use&Toss strategy is suggested for sequential access patterns
in [28]. This strategy does not consider caching the page after using it, and hence the page can
be replaced immediately after use. In each of these studies, the focus is on systems dedicated to
media streaming. Most of the previous studies consider VOD-like applications where the video data
set is small and streaming lasts for a long time. Qur application domain is based on requests for
streaming video shots, and is quite different. The data set is large and the streaming time is short.
Methods that take into account the relationship between search results and streaming requests to
determine buffer management policies have not previously been addressed in the literature. This
new approach has been developed and implemented in VDBMS. A detailed description of our buffer
management policy is given later in this section.

The Stream Manager. The stream manager is responsible for handling the special needs of video
streaming. Fach request for video data needs to be streamed with a predetermined rate; MPEG1
needs (on average) a 1.5 Mbps display rate. Violating the rate of streaming by either increasing
or decreasing the display rate may result in overflow at the client buffer or hiccups at the client
side. To hide the latency associated with access to disk storage, the stream manager streams part

19

of the data {a segment) while prefetching the next segment into the memory buffers. Since many
stream requests are serviced simultaneously by the manager, resources such as memory buffers
and disk bandwidth must be divided among the streams. This is achieved by serving each stream
request periodically, and serving additional concurrent streaming requests within that period. Due
to limited memory and disk bandwidth, the manager can only serve a specific number of requests
within a single period. To serve requests in real-time, the segment referenced next should be
retrieved into the buffer before the end of the current period.

We have implemented a stream manager layer above the buffer manager layer in VDBMS,
and its functionality is as follows: (1) admit a new stream request if the maximum number of
concurrent streams has not been reached, otherwise delay the request and re-try when one of
the current requests finishes, (2) schedule segment prefetching by sending requests to the buffer
manager. Each page of the allocated segment is fixed in the buffer pool until the page is streamed,
(3) send the segment to the client according to a predetermined streaming rate. The segments are
processed page-wise, and each page is unfixed and returned to the buffer manager after streaming
its content, and {4) communicate with the query manager to keep track of search results.

The memory buffer is organized into pages of fixed size, and the segment of a stream that is
serviced within a period consists of multiple buffer pages. The main memory buffer is divided
into two areas, the buffer pool which serves video streams, and the database buffer pool which is
mainly used by the search manager. Buffer pools are limited in size and are controlled by the buffer
manager, providing basic functionality such as allocation and replacement of pages.

Search-based Buffer Management. Search-based policies are designed to achieve the following
goals:

o Consider both current and expected streams in caching and prefetching decisions,

¢ Adapt quickly to the probabilistic nature of caching or prefetching expected streams, e.g.,
a prefetched page may turn out to be unreferenced and therefore should not be kept in the
cache,

e Service the maximum number of requests from the cache, and

¢ Introduce minimal overhead to the time-sensitive streaming process and the core buffer man-
agement functionality.

Qur technique depends on information collected from different system components about cur-
rently serviced streams and expected-stream requests. The stream manager stores the information
in its own data structures and uses it to guide the allocation and replacement of the buffer manager
as follows. When a new stream request is admitted for streaming, the portion of the stream to be
accessed is declared. The manager records the information as a tuple of the form T = (CM#, start,
end), where CM# is a unique identifier for the stored stream, start and end indicate the starting
and ending block numbers of the streamed data. For current streams, the manager keeps the tuples
in the lookup table T.;. The manager modifies the starting block for each serviced stream at the
end of each period to track the currently streaming blocks. In addition, as the query manager
replies to a user query with a set of candidate results, the streamn manager receives a copy of the
search results and considers the top-ranked set of results as likely for future streaming. We refer
to the top-ranked results as ezpected-streams, and the stream manager records the CM#, starting
and ending blocks for the expected-streams in a separate lookup table T,;. The information in the

20

h Slreaming Process .
w - » Ume
Fre.fetching Process Expected Siream

€5y £, C5) 65; CF) O3, G5y &5, 05, £5

fu— Period T —pjwe— Pericd T —»{

YWWWWW CHRel

/ WW'IW'WV CHRef,
€5 | CM, [1.100) 5 CM,, [400,900] WW'M'UW CHRel,
€5z | M, [200,500) E53 | M, [200,500)
£53 [M, [300.700) esy [cm,. 300,300) YWWWW .CHRef,

&5, (M, (10060 [+ | WMWY ChRef,

WwWwWW CMRel;
T T earch Resulis

s Es

Figure 13: The search-based pre-fetching policy. This scenario shows three current streams
cs1, ¢80, ¢53 and two search results. The period T can serve five concurrent streams, so the stream
manager uses the extra resources to prefetch two expected-streams from the T, table. The top-
ranked expected-streams from each search result are chosen before lower-ranked ones.

two lookup tables is used with different confidence levels, since the information in Ty, describes the
actual system status, whereas T, represents only an expectation of future references.

QOur core buffer manager uses the Generalized CLOCK [26] (GCLOCK) replacement algorithm
for buffer page replacement. We associate the counter “keep_weight” with each page. As a page is
unfixed and returned to the buffer pool, the counter is set by the stream manager to a predeter-
mined value. GCLOCK views the buffer pool as a circular list with a pointer identifying the next
page to check for replacement. When a page is to be allocated, the pointer scans the unfixed pages
searching for a page to allocate, and continues to decrement the counters until reaching a page with
a counter equal to zero.

The Replacement Policy. In the search-based replacement policy, pages in the buffer pool that
are referenced by either current or expected-streams are considered for caching. To maximize the
number of caching pages, we do not cache pages that will be referenced by current streams after
a long period of time has passed. Also, we prefer caching pages that will be referenced by current
streams to those referenced by expected-strecams, assigning higher keep_weight values to pages for
current streams than to those for expected-streams.

As a page P is streamed by request R;, the manager determines whether any concurrent streams
will reference P by checking the table T, for a request R; with the same CM#, such that P is
within the interval given by the R,’s starting and ending blocks. To avoid situations where P is also
referenced by R; in the current period, we offset R;’s starting block by the length of the period.
One match in the table is enough to decide to keep the page in the buffer pool. If a match is found,
the stream manager assigns a value w, > 1 as the keep_weight value of the page to inform the buffer
manager that the page should not be replaced for some time. On the other hand, if no matching
entry in T; is found, we check T, for a match. To avoid caching pages expected for reference after
a long period of time has passed, we restrict caching to the first segment of expected-streams. If
a match is found, manager assigns a value w, > 1 as the keep_weight of P. However, we choose
w, to be less than w, to reflect the fact that we are less confident about expected-streams than
actual streams. If no match is found in either T¢; or T.;, the manager sets the keep_weight to
zero, indicating that the page can be replaced immediately by the core buffer manager. Figure 12
presents a scenario illustrating the replacement policy.

21

The Prefetching Policy. With knowledge collected from the search manager, we can predict with
high probability that one of the expected-streams will be requested. We utilize the fraction of the
period unused by current streams to prefetch the firsi segment of the top ranked expected-streams
into memory. While serving the current stream requests, the manager tracks the utilization of the
streaming period. If it detects a number of serviced streams less than the maximum possible, it
consults the T, table, chooses one of the expected-streams, and prefetches its first segment into the
memory buffer. Afterwards, it immediately unfixes its pages and sets the keep_weight to w. > 1.
In this way, the segment will be kept in the buffer pool for some time before being replaced. The
stream manager does not keep information about these requests in T, since they do not belong to
current streams.

The stream manager loops around the expected-streams, bringing in the first segment of top-
ranked streams before serving the lower ranked expected-streams. If the prefetched segment turns
out to be unreferenced, it is aged in the buffer pool, and the keep_weight is eventually reduced
to zero, forcing the segment to be replaced out of the pool. This process is handled separately
from the tracking of actual status of expected-streams. If an expected-stream becomes an actual
request, most of the pages in the first segment would already be cached in the buffer pool, so that
the number of references to the lower level storage would be sigmificantly reduced. A scenario for
the prefetching policy is shown in Figure 13.

Our system follows the client server architecture, where each client request is directed to the
appropriate processing unit. Stream requests are directed to the stream manager process and
search requests are forwarded to the search manager process. The two processes share the same
address space and can easily exchange information. The stream manager is implemented as a
multi-threaded module, where different threads are started to handle these tasks:

e Serve new stream requests in first come first served (FCFS) order. If a new request arrives
and the number of current streams is less than the maximum number of supported streams,
the stream request is admitted. Otherwise, delay it until one of the current requests finishes.

s Switch between concurrent streams to prefetch the next segment for each stream. Update
the T, table with the current stream status (starting block).

¢ Keep track of already streamed pages and consult the 7, and 7, tables to set the keep_weight
value of the page before handing them to the core buffer manager (unfixing).

» Communicate with the search engine. Each time a search request is serviced, the stream
manager updates the 7., table with the top-ranked search results.

e Prefetch expected-streams. The stream manager continuously monitors the period, and if
the number of current streams is less than the maximum supported streams, the manager
services one of the expected-streams, where top-ranked expected-streams are always serviced
first.

4 A Development Environment

A useful development environment must be designed in a flexible, extensible way so that new al-
gorithms, new data types, or entirely new components can be easily added. The VDBMS system
was designed from the start to support the easy interfacing of new structures and components.

22

Our development process required the implementation of modules with well-defined interfaces and
encapsulated [unctionality. This process has not only allowed us to video-enhance the original
Shore/PREDATOR system by investigating, developing and implementing the fundamental com-
ponents to support full video database functionality, it has also given us a platform for integrating
and evaluating algorithms and components from other sources. Our system can be used to test the
correctness and scope of algorithms, measure the performance of algorithms in a standardized way,
and compare the performance of different implementations of a compoment.

To illustrate the effectiveness of VDBMS for new algorithm implementation and algorithm
performance analysis, we briefly describe a performance evaluation for two pipelined rank-join op-
erators in executing multi-feature queries. The study compares the NRA-RJ operator developed by
the VDBMS research group and the J* operator introduced by Apostol et al. We implemented both
the J* operator and (for a baseline comparison} the non-pipelined version of the NRA algorithm as
a multi-way rank-join operator, MW-RJ. Although most query optimizers are restricted to binary
operators, MW-IRJ provides a reference line for the best possible performance. A multi-feature
query for the %k top-ranked results was issued against the VDBMS f[eatures:

Q: Retrieve the top k video shols “most similar” lo a given image, based on m visual feaiures.

The query evaluation plan has m NN operators on m different visual features, and m — 1 rank-join
binary operators are used, where the results of one operator are pipelined to the next operator in
the pipeline. The number of features mm varies from 2 to 6, and the number of top-ranked results
k varies from 5 to 100. To evaluate the operators, we used the following performance measures:
(1) query running time for retricving the top matching & output results, {2) size of the buffer
maintained by the operator, and {3) number of database accesses in disk pages. While the number
of database accesses should give a good indication of the time complexity of the operator, the
experiments show a significant CPU time complexity difference between the two operators that
affects the total running time, especially for small numbers of inputs.

1200 - -
0 RRA-AJ
9 1000 o oJ A
% &
3 o] &
o B0 e
2 rﬂﬂw‘”" 3
600 —_ 5
E _;3’3) - o—— 3
2 <
§ [l w
] 3
= 20 Fd
°u132636¢o%60?oaboo1m nosbzhabi‘o_?'(o_su_maoeom
(a) (b) (c)

Figure 14: Comparing NRA-RJ and J* for m = 2.

Figures 14 and 16 give performance comparisons for NRA-RJ, J* and MW-RJ, for m = 2 and
m = 3 respectively, where m is the number of input sources that give a pipeline of length m — 1.
For m = 2, NRA-RJ is identical to MW-RJ since there is no pipeline. Figure 14(a) compares the
total running time of the NRA-RJ and J* operators. The J* algorithm has a significant CPU

23

overhead due to the execution of its underlying A* graph search algorithm, which considers more
Join combinations. Thus, NRA-RJ shows a faster execution time. Both operators are nearly equal
in the database access count depicted in Figure 14(c). NRA-RJ has a smaller maximum queue size
than that of J*, as shown in Figure 14(b), and the difference increases as k increases (i.e., as more
results are requested). The difference in the maximum queue size and in the execution time can be
explained by the fact that the J* algorithm has to consider more join combinations than NRA-RJ
since it was developed for a general join condition. When used in self-join problem settings, the
generality of the J* algorithm causes expensive unnecessary computations that increase both the
queue size and the running time.

SCAN_STOP (k)

NRA-RJ (OP1)

N

NRA-RI (GF2)

/N

z L3

Figure 15: A query pipeline with m = 3.

For m = 3, Figure 16 compares the NRA-RJ, J*, and MW-RJ operators. Figure 16(a) shows
that NRA-RJ still outperforms J* in total running time, and the pipeline does not affect the speed
of the NRA-RJ operator when compared with MW-RJ. For the maximum queue size given in
Figure 16(b) and the number of database accesses given in Figure 16(c), we make the following
observations:

e NRA-RJ has a larger maximum queue size and more database accesses than MW-RJ. To un-
derstand this difference, we clarify how NRA-RJ operates in a pipeline of 3 inputs. Figure 15
shows NRA-RJ with three input streams, L, L2 and L;. When the top NRA-RJ operator,
OPF,, 1s called to produce the next top ranked object, several GetNezt calls for the left and
right children are invoked. According to NRA-RJ’s GetNext algorithm, OP; gets the next
tuple from its left and right children at each step. Hence, OF%, will be required to deliver as
many top ranked objects for Ly and Lj as for L. These calls to the ranking algorithm in
OP, force Ly and L3 to retrieve unecessary objects and result in larger queue sizes with more
database accesses. We will refer to this as the local ranking problem, that is, the NRA-RJ
operator in the early pipeline stages tends to retrieve more database objects in order to deliver
as many ranked tuples as required by the next NRA-RJ operator.

» The J* operator has less database access cost than NRA-RJ and close to that of MW-RJ,
despite NRA-RJ’s local ranking problem. In contrast to NRA-RJ, the J* algorithm does not
retrieve equal numbers of objects from its left and right children,

» For the same reason that J* has less disk accesses than NRA-RJ, J* starts with smaller
maximum queue size than NRA-RJ. However, as in the case for m = 2, J* begins to save
many candidate join combinations in the queue, causing its maximum queue size to become
larger than that of NRA-RJ as & increases. This also explains the fact that J* has a larger

24

8
|
g
|
8

Time {seconds)

queue size than MW-RJ, even though both are retrieving almost the same number of database
objects, as shown in Figure 16(c).

o o NRA-
— MW-RJ
0—0J"

g8 &

Maximum Queue Size
g
Mo of Accessed Pages

-
[=]

O P e —O—A—-1

0 o

4'-'___|lljll
ommmnﬁmnmwm

(a) (b) (c)

Figure 16: Comparing NRA-RJ, MW-RJ and J* for m = 3.

We now evaluate the scalability of the two pipelined operators with respect to the length of the
query pipeline m. By fixing & = 20, the operators NRA-RJ and J* are again compared with respect
to our three chosen performance metrics. As m increases from 2 to 6, NRA-RJ has a larger queue
size because of the increased local ranking overhead in the pipeline. As NRA-RJ encounters greater
database access, I/O cost begins to dominate total running time. The overhead finally affects the
running time enough to make NRA-RJ performance worse than J*, demonstrating clearly that J*
is scalable in terms of increased ranked inputs while NRA-JR is not.

Our evaluation of the performance of NRA-RJ led to an important insight: minimize the exces-
sive local ranking calls in earlier stages of the pipeline. Our solution was to unbalance the depth step
in the operator children. We changed the NRA-RJ GetNezt algorithm to reduce the local ranking
overhead by changing the way it retrieve tuples from its children, that is, to require less expensive
GetNexzt calls to the left child, which is also an NRA-RJ operator. Using different depths in the
input streams had a major effect on the performance. Figure 17 gives the a comparison between
the modified NRA-RJ, the J* and the MW-RJ operator. In the optimized version of the NRA-RJ
operator, one tuple is retrieved from the left NRA-RJ child for each p tuples retrieved from the
right input child (in the figure, p = 2.} The optimized NRA-RJ operator showed great performance
improvements in both the maximum queue size and in the number of database accesses, due to the
reduction of local ranking overhead in the inner pipeline stages.

With this improvement, the optimized NRA-RJ operator is superior to the J* operator even
for large m. The optimized NRA-RJ operator is an order of magnitude faster, has less space
requirements, and has a comparable number of disk accesses.

5 Conclusion

We have introduced a video database research initiative that began in June 2000 and has culminated
in the successful development of a video-enhanced database system that supports comprehensive
and efficient database management capabilities for digital video libraries. The fundamental con-
cept was to provide a [ull range of functionality for video as an intrinsic, well-defined database

25

n|nmuwi2urueow'_m

Time (seconds)

§

g (7]
(7] g":m
Y 200 | %
o &
3 =3
o 420
g g
2 <
§ oo 3
1 ©9a}
b 2z
Yo ® % @ ﬁ W 7@ 0 W 1o Oy b 2 o ﬁ © M m kW
(a) (b) (c)

Figure 17: The optimized NRA-RJ operator.

data type, with its own description, parameters and methods. System components such as video
preprocessing, query processing and buffer management were implemented using algorithms and
techniques developed by the VDBMS research group. This paper presents detailed descriptions
for some of these algorithms and techniques. We define our system as a research platform, as it
supports the easy integration of externally developed algorithms and components, and allows the
system to be used for measuring and comparing the performance of different implementations of
algorithms or components in a standardized way. This concept was illusirated by a performance
study of rank-join query operators. An analysis of the resulting performance data led to a modifi-
cation in the implementation of our multi-feature query operator which significantly improved its
performance.

References

[1) Elisa Bertino, Moustafa A. Hammad, Walid G. Aref, and Ahmed K. Elmagarmid. Access con-
trol model for video database systems. In Proceeding of CIKM, Ninth international conference
on information end knowledge management, pages 336-343, November 2000.

(2] A. Brink. Thresholding of digital image using two-dimensional entropies. pages 803-808, 1992.

(3] Edward Chang and Hector Garcia-Molina. Effective memory use in a media server. In
VLDB’97, Proceedings of 23rd International Conference on Very Large Date Bases, Augusi
25-29, Athens, Greece, pages 496-505. Morgan Kaufmann, 1997.

[4] S. Chang, W. Chen, H. Meng, H. Sundaram, and D. Zhong. Videoq: an automated content-
based video search system using visual cues. Proceedings of the fifth ACM inlerternational
conference on Mullimedia, pages 313-324, 1997.

[5] J.Y. Chen, C. Taskiran, A. Albiol, E.J. Delp, and C.A. Bouman. Vibe: A compressed video
database structured for active browsing and search. In In Proc. SPIE: Multimedia Storage and
Archiving Systems I'V 3846, pages 148-164, 1999.

[6] M. G. Christel. Visual digests for news video libraries. In Proc. ACM Multimedia Conf., pages
303-311, New York, 1999, ACM.

26

(7]

(8]

[9]

[10]

[11]

[12]

(13]

[14]

[15]

[16)

[17]

[18]

[19]

(20]

[21]

A. Dan and D. Sitaram. A generalized interval caching policy for mixed interactive an d long
video environments. IS&T SPIE Multimedia Computing and Networking Conference, San
Jose, CA, jan 1996.

Ronald Fagin. Combining fuzzy information from multiple systems. Journal of Computer and
System Sciences (JCSS), 58(1):83-99, Feb 1999.

Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggregation algorithms for middlewar.
In PODS’200! Santa Barbara, California, May 2001.

J. Fan, G. Fujita, J. Yu, K. Miyanohana, T. Onoye, N. Ishiura, L. Wu, and I. Hirakawa.
Hierarchical object-oriented image and video segmentation algorithm based on 2d entropic
thresholding. pages 141-151, 1998.

J. Fan and F. Gan. Motion estimation based on uncompensability analysis. pages 1584-1587,
1997.

J. Fan, R. Wang, D. Xing, and F.Gan. Image sequence segmentation based on 2d temporal
entropy. pages 1101-1107, 1996.

Ulrich Giintzer, Wolf-Tilo Balke, and Werner Kiefilling. Optimizing multi-feature queries for
image databases. In VLDB 2000, Proceedings of 26th International Conference on Very Large
Data Bases, September 10-14, 2000, Cairo, Egypt, pages 419-428, 2000.

Ulrich Gintzer, Wolf-Tilo Balke, and Werner KieBling. Towards efficient multi-feature queries
in heterogeneous envir onments. In In: Proceedings of the IEEE Internalional Conference on
Inform ation Technology: Coding and Computing (ITCC 2001), Las Vegas, USA, 2001, 2001.

A. Hamrapur, A. Gupta, B. Horowitz, C. Shu, C. Fuller, J. Bach, M. Gorkani, and R. Jain.
Virage video engine. SPIE Proc. Storage and Retrieval for Image and Video Databases, pages
188-197, 1997.

Multimedia Content Description Interface. Mpeg7 ddl working draft 4.0 — part 2: Description
definition language. 2000.

Multimedia Content Description Interface. Text of iso/iec 15938-3/fcd information technology,
part 3-visual. 2000.

Frank Moser, Achim Kraiss, and Wolfgang Klas. L/mrp: A buffer management strategy for
interactive continuous data flows in a multimedia dbms. In VLDB'95, Proceedings of 21th
Internatione!l Conference on Very Large Data Bases, September 11-15, Zurich, Switzerland,
pages 275-286. Morgan Kaufmann, 1995.

Apostol Natsev, Yuan-Chi Chang, John R. Smith, Chung-Sheng Li, and Jefirey Scott Vitter.
Supporting incremental join queries on ranked inputs. In VLDV'01, Rome, Italy, 2001.

Surya Nepal and M. V. Ramakrishna. Query processing issues in image (multimedia)
databases. In ICDE’99, Sydney, Ausirialie, pages 22-29. IEEE Computer Society, 1999.

Banu Ozden, Rajeev Rastogi, and Abraham Silberschatz. Buffer replacement algorithms for
multimedia storage systems. In Proceedings of IEEE Iniernational Conference on Multimedia
Com puting and Systems, ICMCS, pages 172-180, 1996.

27

[22] A. Pentland, R. Picard, and S. Sclaroff. Photobook: tools for content-based manipulation of
image databases. SPIE Proc. Storage and Retrieval for Image and Video Databases, pages
34-47, feb 1994.

[23] Berthold Reinwald, Hamid Pirahesh, Ganapathy Krishnamoorthy, George Lapis, Brian T.
Tran, and Swati Vora. Heterogeneous query processing through sql table functions. In
ICDE’99, 23-26 March 1999, Sydney, Austrialia, pages 366-373, 1999.

[24] P. Seshadri and M. Paskin. Predator: An or-dbms with enhanced data types. In SIGMOD
1997, Tucson Arizona, May 1997.

[25] Shore. Shore storage manager architecture. June 1999.

[26] Alan Jay Smith. Sequentiality and prefetching in database systems. ACM Transaections on
Database Systems, 3(3):223-247, September 1978.

[27] J. Smith and S. Chang. Searching for images and video on the world wide web. CTR Technical
Report, 1996.

[28] Michael Stonebraker. Operating system support for database management. CACM, 24(7):412—
418, 1981.

(29] M. Thomas, C. Carson, and H. Hellerstein. Creating a customized access method for blobworld.
March 2000.

[30] X. Zhu, W. Aref, and A. Elmagarmid. Hierarchical video summarization for medical data.
page to appear, 2001.

28

	Search and Discovery in Digital Video Libraries
	Report Number:
	
	Authors

	tmp.1307986960.pdf.CNCEq

