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A Stream Database Server for Sensor Applications

Moustafa A. Hammad, Walid G. Aref, Ann C. Catlin,
Mohamed G. Elfeky and Ahmed K. Elmagannid

Abstract
We present a framework for stream data processing that incorporates a stream
database se11Jer as a fundamental component. The server operates as the stream
control iflterjace between arrays of distributed data stream sources and end-user
clients thaJ access and analyze the streams. The underlying framework provides novel
stream managemem and query processing mechanisms to support the online
acquisition, management, storage, non-blocking query. and imegration ofdata streams
for distributed muLti-sensor networks. In this paper, we define OUT stream model and
stream representation for the stream database, and we describe the functionality alld
implementation of key components of the stream processing framework, including the
query processing interface for source streams, the stream manager, the stream buffer
manager, non-blocking query execution, and a new class ofjoin aLgorithms for joining
multipLe data streams constrained by a sliding time window. We conduct experiments
using real data streams to evaluate the performance of the new aLgoritluns against
traditional stream join aLgorithms. The experiments show significant performance
improvements and aLso demonstrate the flexibility of our system ;n handling data
streams. A muLti-sensor network appLicatioll for the intelligent detection of lwzardous
materials ;s presented to illustrate the capabilities ofourframework.

Index tenns: Multi-sensor processing framework, Stream database, Stream manager,
Stream query processing, Stream scan, Window-join.

1. Introduction

The widespread use of sensing devices that generate digital data streams and the enonnous value
of the infonnation that can be extracted from them have led to an explosion of research in the
development and application of sensor data stream processing systems. Applications that process
streams have provided great insights into many physical systems, however sensor application
development is complicated by the continued reexamination of basic components, such as stream
management and stream processing, during the design and implementation of each application.
An advanced sensor-processing framework simplifies application development by providing
powerful components for the acquisition. query, analysis, and integration of streams of data. Our
framework for stream data processing incorporates a stream database management server as an
integral and fundamental component. The server operates as the stream control interface between
arrays of distributed data stream sources and the end-user clients that access and analyze the
streams. It provides the underlying database technOlogies for online data stream management
with real-time constraints, online and long-running stream query processing, and stream query
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operators for stream analysis and data mining. The stream manager has well-defined interfaces
for integrating stream pre- and post-processing units, and the query processor supports the
integration of application-specific modules to aid in the delivery of decision support based on
stream queries. A high-level view of the STEAM framework is shown in Figure 1.
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Figure 1. High-level view of the three elements of the STEAM framework. The stream database
server provides stream management and query processing for a network of sensors, and interacts

with clients to admit user queries and return results for decision support.

The Purdue University Boilemwker STEAM framework introduces the advanced database
technology required for managing and processing online stream data. In this paper, we describe
the functionality, design, and implementation of key components of the STEAM system. In
Section 3, we establish our stream model, steam representation, stream data type, and the STEAM
system architecture. In Section 4, we give a detailed description of the query processing interface
for source streams. The stream manager is described in Section 5, and we include a description of
our mechanism for calling individual streams. We also discuss stream buffer management in
Section 5, and describe the STEAM mechanisms for handling multiple streams and for sharing
streams between multiple queries. Query execution is discussed in Section 6. We examine the
scheduling of query operators in the query plan and give a detailed description of a class of join
algorithms, the window-join, for joining multiple data streams. To motivate and illustrate the
capabilities of the STEAM database server, we describe a multi-sensor network application
implemented within the STEAM framework in Section 7. In the application, data streams are
generated from a sensor network of chemical and biological detectors that progressively collect
and stream multi-dimensional data to the STEAM database server. Online stream data mining
algorithms aid in detennining whether hazardous materials are present

The STEAM project research and development is based on experience and insight gained
through our ongoing research initiatives for advancing video database technology, which has
produced a video stream database management system [6,7] offering comprehensive and efficient
database management for the real-time query, analysis, retrieval and streaming of video data. Our
fundamental concept was to provide a full range of functionality for the video stream as a
fundamental database object. Research and development efforts for this system have produced
some of the most advanced techniques and models [17,18,19,29] currently available in streaming
video database management, and have provided the foundation for STEAM research.
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The key contributions of the STEAM project are the following:
• A stream processing framework with a powerful stream database server that provides

advanced stream management and query processing capabilities to support the acquisition,
management, storage, online query, online analysis, and integration of data streams for
distributed multi-sensor networks.

• A class of algorithms for joining multiple data streams which addresses the infinite nature of
streams by joining stream data items that lie within a sliding window over time. The
algorithms are non-blocking and can easily be implemented in the pipeline query plan.

• Application development based on the stream database framework. Our system for the
intelligent detection of hazardous materials includes extensions to the underlying query
processing component to support online data mining and analysis techniques.

2. Related Work

Many ongoing research projects address sensor and stream query processing, and their methods
for handling the processing of multiple continuous streams share many characteristics. This
section presents several research projects which have developed or are currently developing
systems for data stream processing.

The COUGAR [11] system focuses on executing queries over both sensor and stored
data. Sensors are represented as a new data type, with special functions to extract sensor data
when requested. The system addresses scalability (increasing numbers of sensors) by introducing
a virtual table where each row represents a specific sensor. The table handles the asynchronous
behavior of the sensor as well as the return of multiple values for a single sensor request. The
COUGAR system inspired many of the implementation issues addressed by STEAM. The STEAM
database server is built on top of PREDATOR [35] and Shore [37], which is similar to the
COUGAR system implementation.

The STREAM [9] project at Stanford addresses new demands imposed on data
management and processing techniques by data streams. They suggest a query execution
mechanism based on a separate scheduler to independently schedule the operators, which are
connected by queues. The work on STREAM also addresses the processing of query operators
using a limited memory space [2], suggesting that some queries over data slreams (e.g., projection
with duplicate elimination operators) may be answered using limited memory by considering the
relationship between the terms in the where clause. The Fjord project [32] proposes a framework
for query execution plans involving both sensor and stored data. Operators are represented as
modules that are connected to each other through push or pull queues. If the operator receives
data from a push queue, a specialized scheduler repeatedly schedules the operator; otherwise the
pull queue invokes the source operator.

The Telegraph project and the work on eddy [1] introduce a data flow system where the
order of executing the query operators can be changed during query execution. Their recent work
[33] addresses the adaptation of eddies to run queries over data streams and share the status of the
query operators between concurrent continuous queries. They suggest a multi-way join for
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joining multiple data streams over a window interval, SteM. The SteMs are unary operators that
are probed with new tuples for a match. Their methods for updating join buffers and verifying
window constraints are not discussed. Continuous queries are also addressed in the context of the
Niagara project [13], which addresses group optimization over continuous and long running
queries. Recent work [42] suggests a rate-based optimization strategy to select the best plan to
output tuples more quickly. Tribeca [38] is a specialized query processing system designed to
support network traffic analysis. The system mainly focuses on query processing over streams of
network traffic, either online or off-line.

Various research efforts have studied the algorithmic complexity of computations over
streams [27] and the computation of correlated averages over streams using fixed or sliding
windows [22]. In [23] the authors propose the use of wavelet transformation methods to provide
small space representations of streams for answering aggregate queries. Recent work of Datar et
al. [14] introduces an approximate algorithm to compute count and sum within a sliding window
defined over the count of arriving data items. Praveen et al. [36] provide the SEQ model and
implementation for a sequence database. The sequence is defined as a set with a mapping
function defined to an ordered domain. The work in [28] provides a data model for chronicles
(sequences) of data items and discusses the complexity of executing a view described by the
relational algebra operators. The band join [15] technique addresses the problem of joining two
relations of fixed size for values within a "band" of each other. The band-join addresses the same
problem as joining streams within a window of time, however the suggested solution is based on
stored relations (partitioning), which is not applicable for streams. Index and partition-based
algorithms are presented in [31,44] for temporal-joins over finite relations.

In the STEAM system, we address the sharing of input data streams by multiple
concurrent queries at a level below query execution. We suggest an efficient and simple
scheduling mechanism that allows non-blocking query execution, and we introduce a stream
manager to interface query requests with the retrieval of data from source streams. None of the
systems described above address the handling and representation of source data streams in this
manner. We also introduce a novel multi-way stream window join that provides an efficient
online approach for verifying window constraints and updating the join buffers during execution.
We plan to address group query optimization and sharing of execution states between concurrent
queries.

3. An Advanced Stream Database Server

The nature of stream data, whether processed by the database server to answer queries or
delivered to the client from the database server, requires the extension of underlying database
technology to suppon real-time processing for data streams [8,9,11,13,27]. We address the
research issues involved in the development of STEAM functionality by first establishing the
definition and model of the data stream on a suitable level of database abstraction and then
defining the representation of stream characteristics within STEAM.

3.1 The Stream Model

We consider a stream to be an infinite sequence of data items, where items are appended to the
sequence over time and items in the sequence are ordered by a time-stamp. Accordingly, we
model each stream data item as a tuple < v, t> where v is a value (or set of values) representing
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the data item content, and t is the time at which this item joined the stream. A sensor identifier is
used to retrieve sensor-specific information from the STEAM database storage. The data content v
can be a single value, a vector of values or NULL, and each value can be a simple or composite
data type. Time t is our ordering mechanism, and the time stamp is the sequence number
implicitly attached to each new data item. The time stamp may identify either the valid time or
the transaction time, where valid time refers to the time assigned to the item at its source, and
transaction time refers to the time assigned to the data item at the query processor. A sensor is
any data stream source that is capable of producing infinite streams of data, either continuously or
asynchronously.

3.2 The STEAM System Architecture

The STEAM stream-processing framework is shown in Figure 2. The source of stream data is a
distributed array of sensors, each of which provides infinite streams of raw data. The pre
processing units receive raw streams from the sensors and prepare them for database processing
operations. The functionality of a preprocessing unit is application dependent; it may prepare raw
video streams by ex.tracting image-based feature information, network traffic streams by
extracting packet headers, etc. These units may also perform other functions such as filtering
stream content and projecting portions of the stream.

outputstream request

processedit~~ _
I !r---'----,i

8U1Ter &
storage

Managers

control parameters' ,L__--'

Index
Manager'

fffEAM
database
storage

I§] application specific
.. components

o underlying framework
cOrrfJonents

Distributed STEAM Stream
Sensor Array Stream Database SelVer Application Olent

Figure 2. Architecture of the STEAM stream processing framework.

The stream database server keeps information about the streaming sources in database
storage. The information may include error probabilities associated with incoming data, statistical
distributions of stream values, headers associated with groups of streaming items, and the average
or maximum rate of streaming. The STEAM stream manager handles multiple incoming streams
and acts as a buffer between the stream source and stream query processing. The main function of
the stream manager is to register new stream-access requests, retrieve data from the registered
streams into local stream buffers, and supply data to the query processor.
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The post-processing units export a processed output stream to the requesting client as a
result stream, and additional computations may be required to generate data for user decision
support. Information related to post-processing, such as additional headers or a requirement to
execute specific client software, can also be stored in the database. Some of the processing units
may not be needed or may be integrated with other units. Preprocessing may be integrated into
the sensor source and post-processing may not be needed at all. This functionality is entirely
dependent on the stream processing application.

3.3 Stream Representation and Data Type

Our two principal objectives for STEAM sensor representation are the following: 1) Each sensor
must be identified according to both static and dynamic information. 1~1a1lc includes the sensor
identification number, location, physical features, dimensions, etc. Id}'tuJmlr represents the real-time
value information of the sensor, and the sequence of dynamic values constitutes the stream data.
Both static and dynamic information are eligible for queries in the stream database system. For
example, a user may request the maximum value reported by one sensor during some time
interval or the maximum value reported at this moment by a subset of sensors located within a
specific area. In the first example, [dynamic for a single sensor is accessed. In the second example,
both l~rallc and ld}'tuJmlc are accessed for the query predicates. 2) The sensor representation must be
scalable, Le., it must be capable of handling simultaneous values from multiple (possibly
thousands) of sensors with low overhead for their storage, access, and query in the database
system.

We considered two representations for the sensor. In the first, the sensor is defined as a
relation that grows over time as data values from the sensor arrive. This representation is typical
of the table functions approach [34] that has been implemented in ffiM DB2 to support external
sources. The disadvantage of this approach is that each sensor is considered a separate table, and
a query that spans thousands of sensors must enumerate the sensors in the query syntax. Another
disadvantage is the difficulty in querying static information associated with the sensors. The
second alternative considers sensors as tuples, whose attributes describe both static and dynamic
information. This representation scales very well for increasing numbers of sensors, and both
dynamic and static information can be queried in a straightforward way using SQL syntax. We
have adopted the second representation, and we view collections of sensors as a single relation
(e.g., all sensors in a given application that have common static information.) For the dynamic
attribute type, we introduced the user-defined stream data type (SOT.)

The stream type is an abstract user-defined data type that represents source data types of
streaming capability. The value assigned to an attribute of type stream represents static
information, such as the communication port number of the sensor, the URL of the web page, etc.
Dynamic information is retrieved only at run time, when the stream is referenced by a query. As
part of the stream type definition, the user must provide implementations for the following
interface functions: InitStream, ReadStream, and CloseStream. These functions represent the
basic protocol routines that are called by other stream processing components of STEAM; any
sensor specific code can be encapsulated there. InitStream performs the necessary initializations,
allocates resources, and starts up communication with the physical sensor. ReadStream retrieves
the current value of the sensor, and each invocation of ReadStream produces a new value in the
system. CloseStream is invoked when no funher data is needed from the sensor. The system
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maintains the state between function invocations and between repeated calls to ReadStream using
allocated storage space for each stream.

Each value from a stream data type is associated with a time stamp. The default time
stamp is the lime at which the value was received by STEAM, but the user may override the
default with a different value within ReadStream. In both cases, the system verifies that time is
assigned in increasing order for each data value received. Since incoming data items are
associated with a time stamp, we associate an implicit attribute to any table that has an attribute of
type SDT. The attribute maintains the time associated with the tuples in that table.

4.0 The Stream Query Interface

Traditional databases provide access methods that are used to retrieve data from stored relations.
Techniques such as the sequential scan and index scan are the most widely used mechanisms for
accessing stored data. The type of access method is determined during query optimization. The
same technique can be used to access the contents of a table with attributes of type stream;
however, a new mechanism must be defined to report the dynamic values in each stream attribute.
In this section, we describe StreamScan as a mechanism for accessing the content of a sensor
table.

In STEAM, we rely on the traditional cost-based query optimizer to choose either the
FileScan or IndexScan method for accessing the stored content of the sensors table; we refer to
this method as the InitiaiScan. The method is passed to the physical query operator StreamScan,
which provides the typical interfaces functions Open, GetNext, and Close [21] to use in the
iterative execution of the query. During the call to Open, the sensors table is accessed using
InitialScan, and the retrieved tuples are registered for subsequent streaming. GetNext reports the
ready tuples to other operators in the query execution plan. When the query is terminated, the
Close routine is called to perform any de-allocation and to conflrm query termination to other
query operators. In Section 5, we elaborate on the mechanism used by StreamScan to retrieve
new streaming values.

StreamScan is more sophisticated than traditional file and index scans because it must
first access the sensor table to retrieve tuples with static information about the individual sensors,
and then contact those sensors continuously to get data. As described in the previous section, the
sensor table includes the static information for the sensors and place-holders to receive dynamic
values at run-time. Consider a sensor table with the following schema:

Sensors = (SensorJD: int, SellsorLocation: String, SensorValue: SDT)

and assume the table Sensors has values:

(1, hUp:/Ialkhwarizmi.cs.purdue.edu:5001,"")
(2, http://cybil.cs.purdue.edu:5002, •.,,)
(3, hUp:lI1isa.cs.purdue.edu:5003, "")
(4,http://ector.cs.purdue.edu:5004,"")
(5,http://icds32.cs.purdue.edu:5005,'''')
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The URL in SensorLocation represents the sensor location, which will be contacted to retrieve
sensor values. The user sends this query:

Select S,SensorVafue,temperatllre FROM Sensors S WHERE S.SellsorID=2 AND S.SensorID=4

We adopt the strategy of pushing down any selection that references static sensor information
in the query plan. We also push down any projection that does not include the SOT attributes in
the query plan. The target of projection pushdown is to accommodate the possibility that the user
query may only be interested in non-stream attributes of the sensor table. We determine this very
early dUring query optimization to avoid using the StreamScan operator to scan the sensor table.
In the example, the predicate S.SensorlD=2 AND S.SensorlD=4 will be pushed down to the
StreamScan, restricting sensors table access [Q tuples with SensorIDs equal to either 2 or 4.
StreamScan selects only tuples one and four for streaming. This step is perfonned within Open,
where an InitialScan is opened over the sensor table and the tuples are retrieved accordingly. The
selection predicates are applied to the returned tuples, which are projected as in the projection list.

Resulting tuples are registered in the stream manager so that the corresponding data items
can be retrieved. All registered streams from a single sensors table are attached to a single input
queue StreamsQueue, which is maintained by the stream manger for holding StreamScan data
items as the stream manager retrieves them from the corresponding sensors. Finally, the
StreamScan closes the Initial Scan. The Open interface for StreamScan is illustrated in Figure 3.

-Slream -Scan: Qpenes-ensors Table) ( -----------------.------------------------.J
streamsQueue = NULL; I
Tuple 1= NULL: ,
InlUalScan,Open(Sensors Table) IIOpen scan ooverllle sensors table !
Ife table not empty){

SlreamsQueue = StreamManager.CreateStreamsQueueO; Ilcreale Streams~euefor current scan

While( (I = InitiaIScan.GetNext(Sensors Table))J=NLU)

If (I satisfies selection predicatesH

t= projection(f)

streamManager. Regislar(t, StreamsQueue) II register stream an:! allach to SfreamsQJeue

};

} I
InlliaIScan.Close(8ensOlS Table) !lerose scan over the renoors tatkf I____,, . .. I

Figure 3. The Open interface for the StreamScan Operator.

The GetNext interface of the StreamScan dequeues the StreamsQueue for new tuples. If
StreamsQueue is empty, Stream Scan reports NULL tuple to the next query plan operator. The
propagation of NULL in the query plan is used to self-schedule query operators; this mechanism
is described in Section 6. Our query interface handles input streams with an infinite supply of
data items, but we also consider cases where input streams terminate. Termination of a single
stream detaches it from the corresponding StreamsQueue, and when all streams of a single
StreamsQueue are tenninated, StreamScan reports an end-of-streaming message to higher query
operators. Close is called when all attached streams are terminated or when the user halts the
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query. It unregisters any streams attached to the StreamsQueue and flushes the StreamsQueue
contents.

5.0 The Stream Manager

We have developed a real-time stream manager component for STEAM that manages incoming
and outgoing data streams. The stream manager handles multiple incoming streams and acts as a
buffer between the stream source and stream query processing. It services new data item requests
from the query processor using StreamScan, retrieves data from the corresponding sensors into
local buffers, and supplies data to the query execution engine. Stream manager operation is
illustrated in Figure 4.

The StreamScan registers new streams in the stream manager. The registration request for
a new stream contains the tuple value that represents the sensor's static and dynamic infonnation.
The stream is enqueued in CurrStreamsQueue and any necessary initialization is perfonned, such
as calling InitStream for the corresponding stream data type. The stream manager attaches the
stream request to the assigned StreamsQueue, wmch stores the streamed data items and serves as
the input to the StreamScan. Many streams can be attached to a single StreamsQueue. for
example all streams that belong to the same sensor table. A scheduler has been implemented to
serve the current requests in the CurrStreamsQueue in a round robin fasmon. The current
implementation is a continuously running thread that polls the streams for new data items through
calls to ReadStream, and stores them in the corresponding StreamsQueue. We are investigating
interrupt-driven scheduling, where the scheduler is notified when a stream has a new tuple to
retrieve.

Other QaeIY Opelll.IOrs in
tk query e~cution plan

SlrumScUl

StreamsQueues

CWTStreamsQueuc

Stmm type inlerfeces
InitSlream. RtadStream

CloseStree.m Schedulilr Temp.
Sto~e

Stream Manager
Sensors Table

Figure 4. The stream manager retrieves data from the sensor sources and supplies them to
the query physical plan. The StreamScan is the interface between the stream manager and the query

execution plan.

The ReadStream interface function returns three types of values: 1) the relum status
(STREAM_NEW_VALUE, STREAM_NO_VALUE or STREAM_END), 2) a new tuple with the original

9



static information and new dynamic values (if any), and 3) the time-stamp (optional, with default
equal to the current time.) Stream manager response is determined by the value of the return
status. For STREAM_NEW_VALUE, the new tuple is added to the corresponding StreamsQueue.
STREAM_NO_VALUE needs no action and STREAM_END tells the stream manager to decrement the
number of streams attached to the corresponding StreamsQueue and remove this stream request
from the CurrStreamsQueue. The stream manager also calls the CloseStream interface of the
SOT. To preserve the sequence order of data streams over time, the stream manager performs an
internal verification that data in the StreamsQueue are added in increasing time-stamp order.
Since the rates of input streams attached to a specific StreamsQueue may be greater than the
capacity of the query execution to consume the tuples, the StreamsQueue may grow beyond the
available memory storage. We now discuss buffer management for the StreamsQueue.

5.1 Stream Buffer Management

The stream manager separates the process of accessing the source streams and processing the
stream queries. Thus, stream query operators focus only on optimized execution of the query
operations and can ignore buffering for incoming data streams. The stream manager handles the
buffer requirements by storing the incoming data streams in StreamsQueue for each SteamScan
operator. StreamsQueue management is complicated for query execution rates that are either
faster or slower than the stream arrival rate. In the first case, the StreamsQueue memory buffer
should not overflow beyond the assigned memory space since the query execution engine
consumes each arrival tuple immediately. However, stream processing systems must be capable
of processing multiple queries at the same time, and furthermore, a single query may reference a
large number of data streams. The effect of increased numbers of input streams and/or increased
numbers of concurrent queries is that the actual rate of query processing is lower than the total
arrival rate of the input streams, and the StreamsQueue will eventually overflow. To handle this,
we have introduced a double buffering design for StreamsQueue in STEAM.

ComWD:dtaolrcllms

1

2,
2 Ov.tt1ow p::jc:::::::>
3

i--T.JIlPO~,, 010.."

MObllY Buffer

In:;omingl._.,
S""""",,,m

Figure 5. The partitioning of tbe memory buffer as tbe StreamsQueue overflows.

Each StreamsQueue is assigned a limited memory buffer space and, as the buffer overflows,
the tail of the StreamsQueue is swapped to temporary disk storage as shown in Figure 5. When
overflow occurs, the buffer is divided into four partitions. The first two out partitions are used as
an input double buffer for query processing. The remaining two ill partitions are used to receive
incoming data items from source streams. The stream manager schedules swapping for the in
partitions when they are full, and prefetching for the out partitions when they become empty.
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5.2 Handling Concurrent Queries over a Single Stream

We now consider the case for multiple queries referencing the same input stream(s). Recent
research adddresses query execution techniques for handling multiple concurrent queries that
reference the same data [13.33], focusing on the interaction between concurrent queries and
sharing the run-time state between operators from different queries. Our focus in this section is
different; we address the concurrency between streams before processing by the query engine.
The interaction between query operators from mUltiple queries is beyond the scope of this paper.

A single StreamsQueue can hold data from multiple streams. In addition, a single data
stream can be part of multiple StreamsQueues, e.g.• when multiple concurrent queries are
referencing the same stream. These cases can be handled by assigning to a single stream in the
CurrStreamsQueue a list of StreamsQueue that should receive the incoming data items. Any new
stream request SuqJ is first compared against current streams requests in CurrStreamsQueue. If a
similar request Sreq...i is found, the StreamsQueue of the new request is added to the list of
StreamsQueue associated with Srrqj- When serving Sreqj, the new data items are added to all
StreamsQueues included in its list. The approach is simple and optimal (in terms of memory
requirement) when the level of interaction between concurrent queries is small or none. As the
number of common streams increases between queries, buffer space is wasted due to increased
numbers of duplicate tuples in the StreamsQueue. In the worst case, this scheme will require
buffer size Q*S, where Q is the number of concurrent queries and S is the number of shared
streams. We propose a second scheme that scales with large numbers of data streams and
increased degrees of interaction between the queries.

In the second scheme, each stream is assigned a separate buffer space (StreamBuffer) and
each StreamsQueue is assigned a different buffer space. The StreamsQueue does not include the
actual streamed tuple. Instead it contains a reference to the stream where the tuple actually
resides. StreamBuffer contains the actual tuple, a unique identifier for the tuple, a count of
number of StreamsQueues that references the tuple, and the time-stamp. StreamsQueue contains
the identifier of the stream and the identifier of the tuple. The insertion algorithm for a new tuple
is more complicated as it needs to add the tuple to StreamBuffer, assign its count using the
number of StreamsQueue that reference the tuple, and add a tuple reference to all StreamsQueues
that reference the tuple. The StreamsQueue is scanned in the same way as the first scheme.
However, for each consumed tuple from StreamsQueue, the corresponding count field of that
tuple in StreamBuffer must be decremented. A tuple is removed from the StreamBuffer only
when its count reaches zero, that is, when it has been complete consumed by queries. The total
size of the buffers is additive in terms of the number of queries and the number of streams, but the
processing time is greater than that of the first scheme, since two accesses are needed to reference
a tuple.

6.0 Query Execution

In this section, we describe the mechanism for query execution used by STEAM to achieve non
blocking execution of query operators. We restrict the discussion to select-project-join type
queries, and illustrate how this technique is used to handle joins between multiple data streams
that are constrained by a sliding window over time.
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6. 1. Self-Scheduling for Stream Query Operators

Traditional query execution mechanisms generally utilize iterator-based query operators
connected together in a pipe lined fashion. The interface between operators is through calls to
GetNext between parent operators and their children, and the parent operator finally reports an
output to a higher operator in the query plan. The operators schedule each other in a simple
routine call fashion. This mechanism proves efficient for pull-based data sources (usually disk
based), where the system has full control over data sources and the delays associated with the
retrieving the data can be predicted. Even with traditional and non-streaming data sources, new
execution mechanisms are introduced to speed up the execution of either a single operator [41] or
the set of operators in the query plan [1]. Their goal is to avoid blocking the pipeline if one
operator is incapable of producing new data items. For query operators that handle data streams,
the need for a scheduler was introduced in [9,33], where a separate scheduler module schedules
the different operators and the operators are connected through queues. The management of
queues between the operators introduces additional overhead, especially when queues need to be
swapped to disk. The proposed solution in eddy [1], which is mainly designed to handle dynamic
ordering between operators of the query plan, maintains additional routing information per tuple.

We have developed a simple schedule mechanism that avoids using a separate scheduler
module and also avoids the large size queues between the different query operators. Our
mechanism fits easily in the traditional pipelined execution without introducing any tuple
overhead. The proposed scheduler is non-blocking; if one of the operators has no new data from
its underlying sources, the operator simply relinquishes control to next operator in the pipeline to
proceed. This step is repeated until arriving at the top level operator in the pipeline, where it
repeats execution of previous operators (through calls to GetNext.) It is important to note that the
release of control is not the result of the empty output of the operator execution, which may be
caused by other factors such as high selectivity of the operator. Rather, it is associated with the
blocking of all the input sources. Since the blocking of all input sources indicates that the
operator is incapable of producing more output tuples, releasing control to other higher operators
is a reasonable alternative. Note that wilh traditional pipeline execution, control is passed to the
higher operators only when new tuples are produced. Note also that operator optimizations to
speed up the production of output tuples [41] are still applicable using our mechanism. In
STEAM, we represent the release of control from one operator to the next operator in the query
plan as a production of a NULL tuple. The NULL tuple is not actually processed in the query
execution and simply signals the blocking of the current operator to the next operator.

Our technique provides fair scheduling between operators and, at the same time,
guarantees execution of any operator that has tuples to consume. The self-scheduling technique
reduces to the traditional pipeline scheduling when input sources always have input tuples
waiting to be processed.

6.2 Joining Multiple Streams Using Window Constraints

We have developed a general class of algorithms for joining multiple infinite data streams, and
have integrated these algorithms into the STEAM system. The algorithms address the infinite
nature of streams by joining stream data items that lie within a sliding window over time and
match the specified join condition. Our stream window-join (W-join) can be applied to many
practical queries that occur within the context of processing simultaneous online data streams. In
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this section, we introduce the class of algorithms for performing the W-join. The algorithms are
non-blocking and can easily be implemented in the pipeline query plan. For comparison, we have
also implemented stream join algorithms from the literature in STEAM, and we present
experimental results comparing W-join to existing algorithms using real data streams. Our results
demonstrate that the new W-join algorithms outperform existing algorithms by an order of
magnitude under a variety of stream data rates and stream delays.

The data streams processed by W-join represent continuously incoming data for multi
sensor network applications. An essential property for stream query operators is that they be non
blocking and able to process infinite amounts of data. Some ongoing research projects have
focused on window aggregate operations for data streams [22], where the window is defined to be
the entire contents of the stream seen thus far (the stream prefix.) Other studies [32, 38] consider
ajoin operation between a data stream and a typical database relation, or a self-join over a single
stream. However, none of these studies address the join operation for multiple streams. Some
systems that execute join queries on both streamed and stored data apply only to special cases of
the join. For example, the Fjord system [32] restricts the join operation to the equi-join, with no
joining between two streams. More recent stream join techniques, such as ripple-join [24] and the
non-blocking hash-joins [20,40] emphasize producing early results during join execution.
However, these operators all require processing lhe entire stream prefix, as well as all incoming
tuples. Stream join queries can either execute separately or be combined with aggregate functions
to produce summary infonnation. While these queries are somewhat similar to temporal queries,
efficient algorithms for temporal joins [31,44] depend on the underlying access slructure, which
is not available for online stream data sources. In addition, temporal join algorithms do not
consider long-running queries over infinite data sources.

In contrast to existing stream join algorithms, our class of algorithms joins multiple
infinite data streams over a sliding window of time and can be applied to any join condition. W
join can take several forms depending on the variations and/or existence of window constraints
between each pair of joined streams. A unifonn window constraint is used to join all input
streams using a single, fixed window size. For example, to monitor the simultaneous occurrence
of a hazardous material in multiple distributed sensors with a sliding one hour interval w, we
issue the query:

SELECT A.GasName FROM SensorTables A, B, C
WINDOW=w
WHERE A.Gasld=B.Gasld AND B.Gasld= C.Gasld

The W-join for different window constraints is applied to cases where window sizes vary between
pairs of input sensors. To track the spread of a hazardous gas that is detected by multiple sensors,
where the maximum time for the gas to travel between the sensors defines the time windows, W f,

W2, WJ, .,. for the join, we issue the query:

SELECT A.GasJd FROM SensorTables A, B, C
WINDOW(A,B) =w,AND WINDOW(B,C) =w,AND WINDOW(A,CJ =Wj
WHEREA.GasJd=B.GasJd AND B.Gasld= C.Gasld
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The W-join can also handle joins where some window constraints do not exist between pairs of
input streams, e.g., if there is a barrier preventing the propagation of the gas. Assume paths exist
between sensors A and B and between B and C, but not between A and C. We issue the query:

SELECT A. Gasld FROM Se"sorTables A, B, C
WINDOW(A,B) =w,AND WINDOW(B,C) =w,
WHERE A. Gasld=B. Gasld AND B.Gasld= C.Gasld

Our class of W-join algorithms can be used to answer any of the above fonns of stream join.
It avoids repeated iterations over non-window related tuples by verifying window constraints
between the input streams and then updating join buffers to contain only eligible tuples. All
algorithms are non-blocking to adapt for variations in slream data rates. For the unifonn window
constraint. we present detailed descriptions of the nested-loop (NLW-join) and hash CHW-join).
The two algorithms use a similar approach for tuning intennediate join buffers to maintain
window-related tuples from different streams, and both algorithms can be easily integrated into
query pipeline execution. We have also developed a merge (MW-join) algorithm that can be
generalized to address the variations and local/global optimizations related to the nature of the
window constraints. Due to space limitations, we omit the description of MW-join and the
handling of different or missing windows constraints. These algorithms are described in [25].

6.2.1 The W-join Operation

We define the operation ofW-join as follows:

Give" N data streams and a join coTUiitio" which is represented as a
Boolean expression of the values of the tuples, find the tuples that satisfy
the join condition and that are within a sliding lime window oflength w
time units from each other.

To illustrate the W-join, Figure 6 shows the operation of W-join among five data streams, A
through E, where the position of the data stream tuples on the x-axis represents their arrival order
over time. The heavy black dots correspond to tuples that satisfy the join condition, and the
window restriction implies that only tuples within a window of each other can be joined. Thus,
the tuple <a2,b-z,chd2,~> is a candidate for W-join, but <a2,lh,c ltd2,e.> is not since d2and ej are
separated by more than a window.

We clearly need an efficient approach for verifying window constraints between the input
streams and updating join buffers to contain only eligible tuples. The brule-force approach
requires verifying constraints between each pair of N streams. A more efficient approach for
verifying that N objects, each from a different class, are within a fixed distance of each other has
been suggested by Aref et al. [3] and we adopt a similar approach for verifying window
constraints among the individual tuples. While the algorithms in [3] cannot deal with infinite
streams and may block if data is delayed, our approach is non-blocking and does not require
complete scans over the streams. For updating the join buffers we provide an online approach that
updates the join buffers either periodically or as storage overflows.
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Figure 6. Two iterations of the W-join for five streams.

In Figure 6, five streams are joined together using a single window constraint of length w that
applies to each pair of streams. W-join maintains a buffer for each stream, and the vertical bold
arrows point to the last tuple processed from each stream. The algorithm processes each stream in
order: A, B, C, D, E, A, B, etc. At each iteration, a new tuple from a different stream is processed.
If the current stream has no tuples, the next stream is processed so that the algorithm does not
block waiting for tuples from a single stream.

Figure 6(i) depicts the status of the algorithm as it processes 32 from stream A. forming a
window of length 2w centered at a2. The algorithm then iterates over all tuples of stream B that
are within the window of a2' These tuples from stream B are shown inside the rectangle over B.
Since b l is white, it does nol satisfy the query predicate and cannot join with a2· Tuple hz.
however, satisfies the join and is located within the required window of a2. Thus the period is
modified (reduced) to include a2, hz, and all tuples within w of either of them. This new period,
shown as a rectangle over slream C, is used to test the tuples in C.

Tuple Cj satisfies the join predicate and lies within the rectangle, so a new period is
calculated that includes a2. b2, Cj and all tuples within w of any of them. This period is shown as a
rectangle over D. In stream D. d2 satisfies the join and is located within the required window -
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creating a new period that include these tuples and any others within length w of any of them.
This period is shown as a rectangle over stream E. We repeat this test for E, and the 5-tuple
<a2,b2,chd2,~> is reponed as output. The algorithm recursively backtracks to consider other
tuples in D, then C and finally B. The final collection of 5-tuples in the iteration beginning with
tuple a2 is: <a2,~,chd2,~>, <a2,~,c3,d2,~>, <a2,b3,chd2,~>, <a2,b3,c3,d2,~>, <a2,b4,chd2,~>,

<a2,b4,c3,d2,~>. When the iteration for a2 is complete, the algorithm begins again using a
different stream. In Figure 6 we advance the pointer of stream B to process tuple bs. This iteration
is shown in Figure 6(ii), where periods over streams C, D, E, and A are constructed. This iteration
produces no output since no tuples join in these rectangles.

W-join must address the removal of old tuples from the buffer associated with each
stream, where old tuples are those which will never W-join with any incoming tuples. We remove
a tuple from a stream if it is located a distance more than w from the last tuple in all other
streams. In Figure 6(i), we remove d, as we process stream D, since it is located more than w
away from the last tuple of all streams, namely a2, b4, C3, and ~. Note that a tuple cannot be
removed merely because it is more than length w away from a single stream.

W-join is non-blocking in the sense that it does not stop if one of the streams has no
tuples; instead it continues to process tuples from other streams. In addition, W-join can easily be
implemented in the pipeline query plan, since it is clear that new tuples from each stream are only
compared with tuples in the period constructed thus far, and those tuples can be produced from
lower levels in the pipeline tree.

6.2.2 The NLW-join Algorithm.

We consider a left deep, pipelined execution plan of the joins, where at each level in the pipeline
an additional stream is introduced to the join and the source streams correspond to leaves in the
execution tree. The left stream may be a source stream or an intennediate stream from a lower
level in the tree, but the right stream is always a source stream. We let "m-tuple" denote the W
joined tuples between m streams which are constructed at intennediate stages of W-join
execution. Except at the lowest node in the tree, tuples in the tree do not have a single time stamp
per period. As the left m-tuple climbs the tree, additional time stamps are added. We store the
times stamps of the joined tuples with the tuples themselves in order to handle tuple removal. The
period of each m-tuple can easily be computed as [Tlmx - W, Tmio + w] where Trmx is the
maximum of all times stamps in the m-tuple and Tmin is the minimum.

All tuples received from one stream and not yet dropped are stored in a stream buffer, which
is either small enough to fit in memory or is swapped in part (the tail) to disk. The pipelined
algorithm alternates between retrieving tuples from the left and right streams, and does not block
if one of the streams has no tuples. In this case, it continues to retrieve tuples from the other
stream, and if the other stream is also empty, the join produces an empty tuple to higher levels.
An empty tuple signals higher levels to either process other non-blocking streams or to call the
lower level again. As an m-tuple arrives from the left stream, it is used to iterate over all
qualifying tuples in the right stream. Only tuples that are located within the period of the m-tuple
are tested for the join predicate. If it satisfies the join from the right stream, a new (m+I)-tuple is
reponed to higher levels and the time stamp of the right tuple is added to the set of time stamps
already in the m-tuple. The process is repeated as each tuple arrives from the right stream.
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To remove old tuples from the buffer of source and intermediate streams, we need to
verify that the tuples are not included within the window of any arriving tuples from all the
streams. For this, we keep a vector of time stamps for each buffer which maintains the maximum
time stamps appearing in each source stream. For right streams, the vector Vriglu. has a single value
that represents the maximum time stamp for that stream. For left streams, Vlcn is a vector of
maximum time stamps for each source stream in its subtree. During the iteration of one stream,
we remove the tuple that is located a distance more than w from the tuples in the time stamp
vector of the other stream. This tuple is guaranteed not to W-join with later tuples appearing in
the other stream.

6.2.3 The HW-join Algorithm.

For the hash~based implementation, we assume the join predicate is an equality predicate over the
join attribute. The approach for updating the window is similar to the NLW-join, but the hash
algorithm builds hash tables based on the join equality attribute for both streams. The iteration of
HW-join is also similar to NLW-join, except that a new tuple is used to probe the hash table of
the other stream instead of scanning it. As with NLW-join, we need to update the buffer (hash
table) of one stream as tuples arrive from the other streams. For hashing, the probing tuple only
visits part of the hash table - the bucket that has the same hash key. This may result in old tuples
occupying buckets that are probed infrequently. To handle this situation, we call an update
routine to probe buckets that are rarely probed. It is worth noting that with large numbers of
arriving tuples and non-skewed values for the hashing attribute, the buckets are regularly updated
without the need to call an update routine.

6.2.4 Performance Studies for W-join

We now evaluate the perfonnance of NLW-join and HW-join using real data streams. We also
compare the performance of the W-join algorithms with versions of the ripple-join and Xjoin
which have been adapted to consider window constraints and periodic updates of their join
buffers. We first describe our workload data, and then discuss the experimental results.

Logs of Wal*Mart transactions were used for experiments based on real data. Our query
joined multiple stores, where the join predicate was equality of the item number sold in different
stores. Sold items appear as transactions of customer purchases. A single transaction for each
store includes the item number, description, purchase time, etc. A single store represents a stream
of items that have been sold, and the time stamp of the tuple is the time of transaction. The data
was extracted fonn the NCR Teradata machine that hold 70 Gbytes of Wal*Mart data. l The
perfonnance measure is the service time for each arriving tuple, which represents the time needed
to handle an arriving item in the W-joins. The service time depends on the number of
comparisons in each iteration, and reflects the efficiency of the algorithm. We collected the
service times averaged by 1000 input tuples during the experiment, and repeated the experiment
multiple times to validate the trends in the performance curves.

Figure 7 shows the results of {2,3,4}-way joins using real data streams with the sliding
window set to one hour. In Figure 7(a), we compare the NLW-join with a version of ripple-join
that is periodically updating its join buffers every 10,000 tuples to remove non-window related

I Computer hardware and software were donated La Purdue University by Wal"'Mart and NCR Corporation.
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tuples. In Figure 7(b), the same experiment is performed to compare the HW-join and a version of
Xjoin, where the hash tables are updated periodically in Xjoin. The steep increase and decrease in
the curves for 2-way joins are due to the nature of the real data, since it represents transactions
during the hours of store operation. Note that the plots do not build up as more tuples are
processed from the streams due [0 the effect of updating the join buffers. This is demonstrated
even more clearly when comparing the plots of the W-joins with the adapted ripple~join and
Xjoin. The experimental results show that W-join outperforms the ripple-join and Xjoin in all
cases.

• •• -,
1:::::::::~""j"'l1=;,_''"'1 r==~~--"'- .

• '"'
! I ,," ,

/" • "• • ",.. • ~ 'E HI"

• • •; ~ I,. ..- !

.I- ",
, ,

" .. • • ,oo • .. • • " '" • " .. • .. ",
_".......p"'Cn .........l ""_............. C'_,.... """) ........ d........C""·"...O'J

(0)- "'"' e=:ml1:=:='"1 1:=:=4
"'I- i- I, , G-

o 0 0

· • •! '00 ;-
••, .. • • ,. , .. • • ,. " • • • ".Urtw"_'...... ln""""'""l ..,.,.... o,"V-'4'..I"~ •........ or~'4'.. I" ............

(b)
Figure 7. Performance comparisons using real streams for (a) the adapted ripple-join and NLW-join
for 2, 3 and 4 streams (left to right) and (b) the adapted Xjoin and HW-join for 2, 3 and 4 streams
(left to right)

7. The Intelligent Detection of Hazardous Materials (IDHM)

The STEAM server processes continuous, incoming streams generated by sensor networks that
feature external data sources with dynamic characteristics. Our framework provides support for
interactions wilh stream pre- and post-processing units, scalable integration of sensors, and
scalable support for internal stream processing requests. In this section, we present an application
which was built using STEAM technology.

7.1 Rationale for IDHM

Airline security, hazardous material detection, and counter-terrorist efforts are leading national
priorities. Present technology is not capable of providing fast, cost-effective and reliable
detection, and no single technology can attain high detection rates and low false signals for all
types of hazardous materials. There is a critical need for the development of detection systems
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that integrate multiple detector technologies. utilizing detectors of different types, data fusion and
sensor response integration. The Center for Sensing Science and Technology (CSST) has been
established to research and develop deployable detection systems [12] and STEAM provides the
database server framework to build such applications. For our initial effort, we have integrated
the STEAM engine with the gamma detectors developed by CSST. The application addresses the
use of detection technology to identify concealed hazardous materials in airline passenger
baggage. and was developed in collaboration with CSST and the Physics Department at Purdue
University.

This system consists of 1) a distributed array of gamma detectors, each of which captures
the energy spectrum of a black box (e.g., suitcase) during exposure to neutrons produced by a
neutron generator, 2) the STEAM stream database server, and 3) a stream client application which
provides an interface to the user for entering queries and receiving output streams and action
reconunendations. The system attempts to identify the existence and type of hazardous materials
in a black box by applying data mining query operators to the data streams produced by the
gamma detector, supported by an underlying knowledge base of energy spectra infonnation.
Figure 8 shows a functional view of our framework for this application. The preprocessing unit
forms energy spectra from the data values generated by the gamma detectors. The stream
manager handles the incoming streams and provides an interface to the query processor. Data
mining operators in the query execution plan analyze the spectra, and results are reported to lhe
client
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Figure 8. Functional view of IDHM.

7.2 Data Mining Operators

The discovery of knowledge from incoming data streams is an essential element of the IDHM
application. Online and incremental stream processing is needed to avoid complete passes over
entire streams and to handle the continuous and increasing numbers of arrivals, while consulting
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both past and current streams. Data mmmg tools in STEAM are operators. both logical and
physical, which are integrated in the query processor.

We have developed and implemented several new data mining operators to aid in online
analysis and decision-making. Our operators support incremental and online mining of partial
periodic patterns [4,26], periodicity and cycle detection [16], high-dimensional clustering and the
discovery of frequent subsequences appearing across all incoming data streams.

7.3 IDHM Stream Processing

Data arrives from the gamma detectors in bursts, and a new energy spectrum curve for the current
box arrives every n seconds. When new data arrives, the system concludes either that the box is
safe or that more data is required to make a decision. More data may be needed due to
background material in the box that has affected the spectrum or because prolonged exposure is
required to produce better peak data. One metric to measure the effectiveness of the detection
methodology is the average time for reaching a decision. b1 some preliminary results, the system
was able to detect certain peaks from the first incoming spectra streams, while other peaks
required significantly more time. Each peak is modeled and evaluated separately, but we plan to
apply temporal stream data mining to capture the evolution of the energy spectrum over time.
This area of research may allow the system to predict upcoming energy spectrums to speed the
decision process.

Analysis of an energy spectrum consists of two phases: location of the peaks and
correspondence of the peaks to known hazardous materials. Our data mining methods apply
machine-learning techniques to model the hazardous materials and match them against known
curves using decision tree induction. nearest neighbor methods, and clustering. The machine
learning approach views this as a pattern classification problem and attempts to assign an input
pattern to one of a finite number of known classes. Each incoming energy spectrum defines a
pattern, and the classes in the knowledge base include known hazardous materials and the "none"
class corresponding to a safe box. Background materials can significantly affect the energy
spectrum and must be filtered out.

We store a significant portion of the preprocessed data streams from the sensors in the
STEAM storage layer, which serves as a repository and index for data collected from different
types of detectors. Our data mining operators provide analysis and integration of sensor readings,
increasing the level of confidence in reliability and accuracy of results. We have applied the
subsequence sensor analysis operators for temporal stream mining, subsequence similarity
matching, periodicity detection, and the mining of partial periodic patlerns. The STEAM database
server is responsible for requesting and collecting data from the gamma detectors. The protocol
interface between the STEAM stream manager and the gamma detectors is based on the pull
paradigm and includes the interface functions Open, Get_Next and Close. The query interface is
used to initiate the detection process and receive results in the form of actual and matched energy
spectra, identification of the matched spectra pattern, and data to support action
recommendations.
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8. Conclusion

We have introduced the STEAM system as a framework for building distributed multi-sensor
applications. The framework incorporates a stream database management server as an integral
and fundamental component to provide the underlying database technologies needed for online
data stream management with real-time constraints, stream buffer management, online and long
running stream query processing, and advanced stream query and data mining operators for
stream analysis. We established the stream model and database representation developed for
STEAM and described the functionality, design and implementation for key stream management
and query processing components. We described two new algorithms, the NLW-join and HW
join, for performing join operations between multiple data streams using a sliding window over
time. The algorithms use an efficient approach for verifying the window requirement and provide
online updating of join buffers. The new algorithms outperform the ripple join and Xjoin for
queries with time window constraints.

We also presented a system for the intelligent detection of hazardous materials which was
created using the STEAM framework. The system attempts to identify the existence and type of
hazardous materials by applying STEAM's data mining query operators to the data streams. We
plan to continue the design and implementation of new multi-sensor processing applications
based on the STEAM framework. The applications are used to motivate and advance the
underlying stream processing functionality of STEAM
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