
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

2008

Record Linkage Based on Entities' Behavior Record Linkage Based on Entities' Behavior

Mohamed Yakout

Ahmed K. Elmagarmid
Purdue University, ake@cs.purdue.edu

Hazen Elmeleegy

Mourad Ouzzani

Report Number:
08-026

Yakout, Mohamed; Elmagarmid, Ahmed K.; Elmeleegy, Hazen; and Ouzzani, Mourad, "Record Linkage
Based on Entities' Behavior" (2008). Department of Computer Science Technical Reports. Paper 1713.
https://docs.lib.purdue.edu/cstech/1713

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4971538?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

Record Linkage Based on
Entities' Behavior

Mohamed Yakout

Ahmed Elmagarmid
Hazem Elmeleegy
Mourad Ouzzani

CSD TR #08-026
October 2008

Record Linkage Based on Entities’ Behavior
Mohamed Yakout, Ahmed Elmagarmid, Hazem Elmeleegy, Mourad Ouzzani

Department of Computer Sciences, Purdue University

West Lafayette, IN 47907, USA

{myakout,ake,hazem,mourad}@cs.purdue.edu

Abstract— Record linkage is the problem of identifying similar

records across different data sources. Traditional record linkage

techniques focus on using simple database attributes in a textual

similarity comparison to decide on matched and non-matched

records. Recently, record linkage techniques have considered

useful extracted knowledge and domain information to help

enhancing the matching accuracy. In this paper, we present a

new technique for record linkage that is based on entity’s

behavior, which can be extracted from a transaction log. In the

matching process, we measure the improvement of identifying a

behavior when comparing two entities by merging their

transaction log. To do so, we use two matching phases; first, a

candidate generation phase, which is fast and provide almost no

false negatives, while producing low precision. Second, an

accurate matching phase, which enhances the precision of the

matching at high run time cost. In the candidates phase

generation, behavior is represented by points in the complex

plan, where we perform approximate evaluations. In the

accurate matching phase, we use a heuristic called

compressibility, where identified behaviors are more

compressible. Our experiments show that the proposed technique

can be used to enhance the record linkage quality while being

practical for large logs. We also perform extensive sensitivity

analysis for the technique’s accuracy and performance.

I. INTRODUCTION

Record linkage is the process of identifying similar records

that represent the same real world entity. Linking records

across different sources has many applications like improving

the quality of the data by comparing to a more accurate source

or for data analysis and mining. Record linkage is important

when integrating two data sources into one. For example if

two companies are merging, it is important for the merge to

succeed that shared customers are discovered. Record linkage

is also referred to duplicate detection when identifying similar

records is performed within the same source.

Prior work in record linkage focused on simple attributes

similarities (refer to [10] for a recent complete survey). In the

linking process, more than one technique is employed to

enhance the matching accuracy. The techniques are also

domain specific and depend on the availability of some data

features. Recently, record linkage techniques have evolved to

consider more information extracted from the existing raw

data for enhancing the process of matching.

In this paper, we observe that in some applications the

entities to be linked have a behavior that is recorded in some

transaction log. Such behavior can be then used to determine

whether two entities are in fact the same. For example, in a

super market, customers buying transactions are stored

attached to some customer id. Most of the time, stores does

not store customer’s personal information while depending on

their credit cards to identify them in their databases. If two

stores are considering merging, they can not use the credit

card information for linking the records due to privacy.

Therefore, the customer’s buying behavior which is stored in

the transaction log is the only information that can help in

identifying common customers. In addition, in some

surveillance systems, it may be possible to register entities’

actions in the premises being monitored. Linking the records

across such systems may help in crime investigations. In both

situations the entities’ behavior can play an important role in

the linkage process since persons tend to follow similar or

correlated behavior in different places.

The behavior of an entity is usually represented in a

transaction log as a set of actions performed at a given time

with specific features, e.g. in the supermarket scenario, the

actions are the items and the features are the quantities that the

customer bought from each item.

In this paper, we present a new technique for record linkage

based on the entities’ behavior, which is stored in a

transaction log. The transaction log registers each action

performed and eventually the action’s feature describing how

the action was performed. We should note however that when

comparing two entities from two sources or within the same

source for duplicate detection, we are not usually expecting to

have exactly the same behavior or transactions in the two

sources for the same entity. Instead, our objective is to analyze

the “merged behavior” and determine how likely the merged

behavior corresponds to the same entity. Our approach in

comparing behaviors can be better described using the

example in Fig. 1. We assume that there are two stores S1 and

S2, where S1 has customers C1 and C2, and store S2 has

customers C3 and C4. Beside each customer, the transactions

of buying milk are shown. When linking the customers from

S1 to the ones in S2, the similarity between the transactions

cannot be a correct measure of similarity; it is not expected for

the customer (entity) to buy the same items (perform the same

actions) in two different stores (in two different systems) at

the same time or with the same pattern. Let us now instead

look at the merged transactions from the two stores. The

merged transaction log of C1 and C3, appears under C1C3. We

note that a pattern or behavior in buying the milk can be

recognized; C1C3 is a customer buying 3 gallons of milk every

two days. Therefore, most probably C1 and C3 represent the

same customer. Note also that each of C1 and C3 alone does

not demonstrate a recognized behavior in buying milk. When

merging C1 and C4, we cannot identify a behavior and

consequently, C1 and C4 cannot be the same. In the case of

C2C3, although there is a recognized pattern, where the

customer buys milk every day, the numbers of gallon are

different and deviate; thus C2 and C3 are not the same

customer as well.

Time Qty Time Qty

1 3 3 3

7 3 5 3

11 3 9 3

13 3

Time Qty Time Qty

4 6 3 3

6 6 6 3

7 6 10 3

8 6 14 3

 16 3

Time Qty Time Qty Time Qty

1 3 1 3 3 3

3 3 3 3 4 6

5 3 6 3 5 3

7 3 7 3 6 6

9 3 10 3 7 6

11 3 11 3 8 6

13 3 13 3 9 3

 16 3

Fig. 1 illustrating example

Based on the described example, the process of comparing

two entities is performed by merging their transactions with

the goal of obtaining a more identifiable behavior if these two

entities represent in fact the same entity. Therefore, our

approach focuses on measuring the improvement in

identifying behavior after merging entities’ transactions. Since

the transaction log is expected to be large, we avoid visiting it

several times and instead proceed through a two-phased

approach for matching the entities.

In the first phase, we use a relaxed matching approach to

quickly produce candidate pairs for matching. The matching

in the first phase is meant to be fast and guarantee high recall

(i.e. almost no false negatives) with minimum false negatives.

The improvement in identifying the behavior is evaluated by

representing every action as point in the complex plan. The

representation is based on the time at which the action was

performed. It can be explained as if the total period covering

the transactions is distributed over a circle centered at the

origin and every time the action is performed, the complex

number point is pulled in the corresponding direction. Patterns

with stable features (less deviated) become identifiable as the

magnitude of the complex number is close to the origin.

In the second phase, a more accurate but expensive

matching function is used to improve the precision of the

initial matching results. The underlying idea is that when

performing actions, repeated patterns and stable features will

be more “compressible” if a behavior can be well recognized.

The compressibility heuristic stems from the idea of

representing behaviors as images and compressing the images.

Therefore, when merging two entities’ transactions, we

propose to measure a compressibility gain for each of the

entities to help each entity select its best match using a stable

marriage technique.

To the best of our knowledge this is the first work that

considers the use of entities’ behavior for the record linkage

purpose.

The rest of the paper is organized as follows; we begin by

discussing the behavior characteristics and formulate the

problem studied in section II. Section III presents the

candidates matching phase and section IV describes the

accurate matching phase. In section V, we discuss the

filtration of the matching results. The conducted experiments

are discussed in VI. Section VII contains the related work and

finally we conclude the paper in section VIII.

II. PRELIMINARIES

In this section, we first introduce a characterization of the

behavior along two dimensions. We then outline the record

linkage process through composite matchers and formulate the

problem in the context of behavior identification improvement.

A. Behavior Dimensions

Informally, the behavior of a given entity, e.g., a person, a

gene, or a particle, can be characterized through the actions

this entity performs (using an action log for example) along

two main dimensions: action repetition patterns and action

features.

Action repetition patterns can be recognized when an entity

repeats specific actions on a regular basis following a pattern

or trend. Such patterns could differ from an entity to another

or could be similar. For example, a customer (entity) who

buys cat food (action) every week (pattern). These patterns

can also be fixed, increasing, decreasing, oscillating or

seasonal.

Action features are some attributes that are attached to

every type of actions and describe how the action was

performed. Entities could vary in their performance of the

same action in terms of these features. Sometimes, there exists

a preference to perform an action according to specific feature

values. The features preference can be recognized in

behaviors when stabilization is followed. For example, when a

customer buys milk (action), he or she buys 3 gallons (feature

of the action of buying milk) while other customers prefer

buying 1 gallon.

Other behavior characterization can be also considered like

action relationships, which can take different forms including

such as association and implication. However, in this paper,

we focus on the action repetition patterns and features.

From the above discussion, we propose a definition for a

conceptual representation of behavior called Behavior Matrix.

Definition: Behavior Matrix

Given a finite set of n actions performed over a discrete

finite period of time of length m by an entity E, the Behavior

Matrix (BM) of E is an mn × matrix, such that :

=
otherwise

performedisjactionifC
BM

ij

ji
0

,

Where, Cij represents the feature value when performing

action j at time i, i = 0, 1, 2, …. , m-1 and j = 0, 1 ,…, n-1,

The Behavior Matrix is an interesting conceptual approach

for representing entity’s behavior. Using this matrix, we can

visualize the behavior as an image where the actions’ features

are considered as colors. This would allow to visually look at

the two behavior’s dimensions. The action’s pattern and

features, interpreted as repeated blocks in the images, led us to

the compressibility heuristic approach described in section IV.

B. Problem Definition

Record linkage is a process of identifying pairs of records

across two or more databases that correspond to the same real

world entity. The behavior is considered as a complex

attribute of an entity and can be used in improving the results

of the record linkage problem. Basically, the process is

composed of building Matching Functions that take as input a

set of thresholds and a pair of records to classify them as

match or mismatch according to a predefined decision rule.

Definition: Matching Function

Given two relations with the same attributes RA (a1, a2 …,

ak) and RB (a1, a2 …, ak). A matching function MF takes as

input triple }),...{,,(1 kBA rr θθ and produces a Boolean output

{True, False} corresponding to {match, mismatch}, where:

• rA ∈ RA is a record with attribute values

(rA(a1),…rA(ak)) and rA(a1) ∈ Dom(RA.a1) … rA(ak) ∈

Dom(RA.ak).

• rB ∈ RB is a record with attribute values

(rB(a1),…rB(ak)) and rB(a1) ∈ Dom(RB.a1)…rB(ak) ∈

Dom(RB.ak).

• },...{ 1 kθθ are predefined similarity thresholds for the

corresponding attributes a1, … ak in both the

relations RA and RB.

The output of the matching function MF is decided based on

≤
= =

otherwiseFalse

ararfiffTrue
rrMF iiBiAi

k

ikBA

θ
θθ

))(),((
}),...{,,(11

I

Where +
ℜ→×).().(: iBiAi aRDomaRDomf , i = 1,..k, are

predefined similarity measures or distance functions defined

over the domains of corresponding attribute ai for the relations

RA and RB.

The decision rule used in the above definition to identify a

pair as matches or not is considered strict. Fellegi and Sunter

[23] presented a more flexible formulation for the rules that

depends on the output of the similarity functions fi

Traditionally, the input to the matching function was simple

database attributes and the function would compute the scores

based on hamming or edits distances. Recently, many

approaches targeted the use of other extracted information and

sometimes adopt iterative approaches over the data aiming at

returning more accurate similarity scores. For example, the

use of the relationship with other referenced entities in a

database [4] and same entity-to-entity relationship [3].

Practically, many matching functions are used with different

types of input in a record linkage process, depending on the

nature of the dataset.

Sometimes, the matching function performs a relaxed

matching [12], where it is expected to obtain accurate decision

about mismatches, while decision about matches may not be

accurate. Relaxed matching is used when the accurate

matching function is computationally expensive and therefore,

a relaxed cheap matching function is employed first to

produce an input to a more expensive but accurate matching

function. This usually leads to a two-phased approach. The

first phase uses fast relaxed matching functions with the goal

of eliminating the number of false negatives to maintain high

recall. The second phase is more expensive and takes care of

improving the precision. The blocking technique is an

example of a two-level matching process that has been used in

the record linkage problem [15].

We consider an entity’s behavior as a complex attribute

with two components representing the two behavior’s

dimensions described above (action repetition pattern and

features). The process of determining similarity between two

entities based on their behavior is composed of two steps: first,

merge their transactions, representing the actions they perform

and then determine to what extent the resulting merged

behavior becomes identifiable compared to the original

behaviors. To measure the identification of behavior, we need

to measure the support improvement for the two behavior

dimensions. Since, attacking this problem through accurate

measurements is not practical; we introduce a combination of

simple heuristic techniques instead. The proposed heuristic

approach resulted in an acceptable accuracy as explained in

section VI.

We propose a technique that heuristically measures the

enhancement in the two behavior’s dimensions to help better

identifying the overall entity’s behavior. The technique is

composed of two phases; candidate matches generation and

accurate matching. In the candidates generation phase, the

behavior is represented by points on the complex plan, where

we apply distance measurements, while in the second accurate

phase, we use a concept of compressibility to identify

homogeneous behaviors.

III. CANDIDATE MATCHES GENERATION

In the candidate matches generation phase, we use the

dimensions of the behavior mentioned in section II and

generate candidates pairs of entities for matching. We

represent the actions log in a compact way to allow for fast

computations in generating candidate matches. However, this

quick computation comes at the cost of poor precision while

eliminating false negatives.

The main goal of this phase is to minimize the number of

candidate matches, while eliminating the false negatives. This

phase should satisfy two important conditions; (1) Only one

transaction log scan, and (2) use a small number of simple

computations.

The matching function represented in this section classifies

the records as mismatch and likely-match. The accurate

matching operation is left for the Phase 2 matching.

Let Ex and Ey be two entities to be compared according to

their behavior represented in their transaction log. In the

following, we explain the use of the action pattern

improvement and feature stabilization when merging two

entities’ transactions to determine an eventual similarity

between them.

To compare two entities, each row in their Behavior Matrix,

which corresponds to an action, is first converted to a complex

number. Then, by merging the two entities’ transactions, we

expect the resulting magnitude of the complex number to

become smaller or close to the original entities’ magnitude if

they are similar. This is because of filling gaps in the sequence

and supporting the pattern. This observation will be illustrated

shortly.

Each row in the Behavior Matrix can be converted to a

complex number as follows: Suppose that a row vector i in the

Behavior Matrix of E contains the sequence x0,i, x1,i, …, xm-1,i

for action ai, the complex number representation of this row

can be computed as follow:

∑
−

=

−=
1

0

/12

,).(
m

k

mk

iki exaEc π

Consequently, the entity’s behavior is represented by a

vector of length n that contains complex numbers, where n is

the number of actions performed by entity E. When

comparing two entities’ behaviors, the merged transaction’s

representation is obtained by adding two complex numbers

without re-visiting the transaction log again. For example,

suppose we are comparing the behavior of entities Ex and Ey

when performing action ai. The complex number

representation for Ex when performing ai is
xxix iYXaEc +=).(

and for Ey when performing ai is
yyiy iYXaEc +=).(. Consequently,

the merged transactions representation when performing ai

is)()().(yxyxixy YYiXXaEc +++= . The complex numbers are

represented by either two coordinates on the real and

imaginary axis or using a magnitude and an angle. The

magnitude and angle representation is more interesting in our

case to compute matching scores.

To see why the magnitude-angle representation can better

help in detecting the existence of a similarity between two

entities, consider the example described in Fig. 2. For clarity,

we assume that there is only one action in the system and we

need, by applying transactions merge, to know to what extent

the behavior identification has been improved to suggest a

potential similarity between the two entities. At the left of

Fig. 2, entity E1 complex number results in mag1 = 4.45, and

for E2, it is mag2 = 4.62. When merging E1 and E2’s

transactions, a pattern can be recognized and surprisingly the

resulting mag12 = 0.35, is a smaller magnitude. The smaller

magnitude length resulted because E1 and E2 transactions

together formulate a smooth pattern in performing the action

by filling gaps in the action sequence. Moreover, the feature

values are close to each other. In the resulted vector E12, the

action is performed every 2 or 3 point of time and this

produced a balanced vector, which is recognized as a pattern.

Also, the feature values are close to each other, it is either 3 or

4 (i.e. it is stabilizing around these values). When converting a

balanced vector to a complex number as described, the

magnitude becomes small, because every entry in the vector

pulls the resultant magnitude to a direction along a circle

centered in the origin. In this case, we say the action pattern

was enhanced and the features stabilization is supported. At

the right of Fig 2, E2 was merged with E3. mag3= 3.1 and

mag2 = 4.62 and after merging the transactions, the resulted

mag23 = 7.18, which is bigger. We should note that the

resulting sequence from the merge does not have a recognized

pattern; moreover, the feature values deviated further away

(between 3 and 5). We are not interested in understanding the

change in the angles and including it in the computations. Our

aim is to come up with simple fast technique to produce

candidate matches and minimize the cost spent in this

operation.

-5

-3

-1

1

3

5

-5.5 -0.5 4.5

-5

-3

-1

1

3

5

-5 0 5

Fig. 2 Actions patterns in the complex and the effect on the magnitude

To develop a scoring formula based on the above

observation, we consider merging the transactions of Ex and

Ey with the assumption that there is only one action in the

system. We also consider magx and magy as the magnitudes of

the complex number representation of Ex and Ey respectively.

The resulting magnitude of the merge, magxy, can take values

between 0 and (magx+magy). The closer magxy is to 0, the

more likely this supports the existence of pattern with similar

features. The closer magxy is to (magx+magy) the less likely to

have a pattern enhancement and consequently, the less likely

for Ex and Ey to be similar. Accordingly, we propose a

matching score formula as follow:

yx

xy

yx
magmag

mag
EEsim

+
−=1),(

When we have n common actions between Ex and Ey, then

the final formula will be:

∑
−

=

+
−=

1

0)(

).(

)()(

)(
1),(

n

i xy

ixy

iyix

ixy

yx
ES

aES

amagamag

amag
EEsim

Where S(Exy.ai) is the number of occurrences of action ai in

the merged transactions and S(Exy) is the total number of

merged transactions. Note that this is applied to only common

actions between Ex and Ey, since uncommon actions will not

be affected by merging the transactions.

The intuition behind including the percentage of the

number of transactions of action ai within the total number of

transactions is to give a weighted effect for the actions. In

another word, the higher the relative number of transactions

for a given action, the more effect is expected in computing

the score.

The proposed formula guarantees a score +
ℜ∈sim

between 0 and 1. However, very low values are expected

since a score equal to 1 is reached when all the actions

performed by Ex are the same as Ey and the resulting

transactions’ merge magnitude equal zero in all the actions.

This situation can hardly happen in real world situations.

Instead, we normalize the resulted scores according to the

maximum reached score (i.e. if simmax is the maximum score

reached, and then all scores are divided by simmax). In the

experiment, we show how to select a threshold, tc, maintain no

false negatives while achieving high reduction in the number

of candidates generated.

The advantage of the described technique is that, by

performing a one scan on the entire transaction log, we can

compute the complex numbers for each action per a given

entity. When computing the matching scores to produce

candidates, simple complex numbers operations are employed.

In our implementation, the sine and cosine values are pre-

calculated to compute the complex numbers and all operations

have been reduced to simple additions and multiplication in

addition to small number of square roots to get the magnitudes.

Efficiency: Suppose that there are two sources P and Q

with p and q entities respectively and each source has a log of

size Tp and Tq respectively. The number of actions that can be

performed and registered is n. First, a scan to both the

transaction logs is performed to represent each action per

entity as a complex number. This takes time of O(Tp+Tq) and

space of O(np) and O(nq) for sources P and Q respectively.

Therefore, the total space requires is O(n(p+q)). Afterward,

comparing every possible pq pairs of entities requires O(ncpq)

since during the comparison all common actions nc between

every two entities are used. According to a matching threshold,

only candidates for Phase 2 are stored in O(C) space, where C

is the number of resulted candidates and it is bounded by pq.

Hence, the total time is O(Tp+Tq+ ncpq) and total space is

O(n(p+q)+C).

IV. ACCURATE MATCHING PHASE

We now present the more accurate matching approach to

identify similar entities that will have as input the candidate

matches computed in the first phase. In this section, we

propose the Compressibility approach that uses both actions

repeating patterns and actions features stabilization to detect

potential enhancements in identifying behavior that is more

likely to represent one single entity.

Identifying behavior through repeating patterns and

stabilized features can be heuristically achieved by

compressing all this information and comparing the

compression ratio with the original data size. We conjecture

that significant higher compression ratio implies better

identification of behavior. We thus introduce compressibility

as a measure of confidence to identify behaviors. High

compressibility means improved resolution for behavior.

Real world transaction logs usually build sparse Behavior

Matrices with a lot of zeros. These zeros result in a miss-

leading compression ratio without signification information

about the behavior itself. Therefore, we use the vector-pair as

a more practical representation for the behavior aiming at

getting more meaningful information from the compressibility

process.

In the Behavior Matrix, each action is represented by a row.

In each row, at time point i, the cell contains either zero, if the

action was not performed, or contains a feature value to

represent how the action was performed. In the vector-pair

representation, one vector represents the time at which the

action was performed and the other stores the corresponding

feature value. The time vector contains the inter-arrival time

between every two consecutive occurrences of the action.

Example:

Suppose that an action has the following row in the

Behavior Matrix

{3,0,4,0,0,3,0,3,0,4,0,0,3,0,3,0}

The vector-pair will be:

{{1,2,3,2,2,3,2}{3,4,3,3,4,3,3}}

If an entity performs an action regularly following a pattern,

the time vector will contain inter-arrival time values that

follow a certain level of correlation showing the action rate.

Moreover, the features vector will contain similar values to

represent how the action was performed. Consequently, with

this representation, we get rid of the zeros and at the same

time the compressibility technique becomes more appealing to

produce more significant information about the behavior.

Most of the existing compression techniques use data

repetition and encodes it in a more compact representation.

There are two types of compression techniques; lossless and

lossy. Lossless techniques are used when every single bit in

the compressed original data is important and should be

exactly reconstructed upon decompression. Conversely, lossy

techniques allow reconstructing data that is close enough to

the original while achieving better compression ratio. In our

case, the lossy compression is more attractive; we are not

compressing the data for the sake of decompression, but rather

we are trying to get a sense of how compressible the data is.

The Discrete Cosine Transformation (DCT) is widely used

in the signal and image processing, especially for lossy

compression techniques. It has the property of strong “energy

compaction” [2], that is if the original data (signal) exhibit a

correlation then most of the signal information tends to be

concentrated in a few low-frequency components of the DCT.

Therefore, by storing low-frequency coefficient, we can

reconstruct data that is close enough to the original.

The most common DCT definition of a 1-D sequence x0,

x1, …, xN-1 of length N is

∑
−

=

 +
=

1

0 2

)12(
cos)()(

N

k

k
N

uk
xuuT

π
α , for u = 0, 1, 2, …, N-1.

≠

=

=

0
2

0
1

)(

ufor
N

ufor
Nuα

If u= 0, ∑
−

=

==
1

0

1
)0(

N

k

kx
N

uT Thus, the first transformation

coefficient is the average value of the sequence. Usually this

value is referred to as the DC coefficient. All other

transformation coefficients are called the AC coefficient.

The cosine basis functions which are produced from

 +

N

uk

2

)12(
cos

π , u = 1,2,…N-1 and k = 1,2,….N-1, are

independent from the sequence x0, x1, …, xN-1. Therefore, these

functions can be pre-computed and hence improving the

performance.

Fig. 3 Compression process

To perform a compression for the behavior, we follow the

same approach used in JPEG [1]. However, instead of

applying the procedure in two dimensions, we apply it in one

dimension for the vector-pairs. The compression operation is

illustrated in Fig. 3. First, we compute the 1-D DCT for the

vector. Then, we divide the resulted DCT vector by a

quantizer vector then round each value to the nearest integer.

The quantization values are computed based on the sequence

average and the position in the vector to reduce the amount of

information in the high frequency components. The lost data

should help distinguish minor details in the behavior

representation which are not important and most of the time is

noise. Finally, a straightforward vector encoding technique is

used to compress the transformed vector.

Based on the compressibility approach, we can identify

eventually similar behavior; if the merged transactions of the

two entities Ex and Ey exhibit more compressibility, then they

are more likely to match.

To compute the matching score of two entities Ex and Ey,

we define the directed compressibility gain g(Ex,Ey) and

g(Ey,Ex). g(Ex,Ey) is the gain score for Ex when merged with Ey

and g(Ey, Ex) goes in the other direction. To compute each of

these gains, we suppose there are n actions. Assume also that

when compressing the vector-pairs, we obtain a compression

ratio cr(Ex.ai) for each action ai in Ex’s transactions and for Ey

cr(Ey.ai). After merging their transactions and compressing

the resulting vector-pairs, we obtain a compression ratio

cr(Exy.ai) for each ai. The overall compression ratio of Ex and

Ey:

[]

)(

).().(

)(

1

0

x

n

i

ixix

x
ES

aEcraES

Ecr

∑
−

== and
[]

)(

).().(

)(

1

0

y

n

i

iyiy

y
ES

aEcraES

Ecr

∑
−

==

Similarly, the compression ratio of Exy,

[]

)(

)().(

)(

1

0

xy

n

i

ixyixy

xy
ES

aEcraES

Ecr

∑
−

==

The support values are included to provide a weighted

effect for the actions on the overall compression ratio for the

entity’s behavior.

The gain in the compressibility for Ex from the merge with

Ey is:

)()(),(xxyyx EcrEcrEEg −=

and

)()(),(yxyxy EcrEcrEEg −=

In the following section, we see how to use these scores to

produce the final matching results.

Efficiency: Suppose that the number of candidate pairs is C

and there are n actions in the systems that can be registered.

Also, suppose the average vector-pair length is t` (note that

the t` is bounded by the t, the total time period length). In our

implementation, the transactions are stored in a database to

facilitate the retrieval. For each candidate entity pairs, a query

is submitted to get their transactions (i.e. O(C) queries).

Afterward, for each action (i.e. O(n)) a vector-pair is

formulated to be compressed. The compression took O(t`
2
).

Hence, the total time is O(Cnt`
2
). The space requirement is

constant O(1).

V. FILTERING MATCHES

We discuss now how to use the computed scores from the

compressibility phase to produce the final matches. The set of

matched records are called a mapping, where every record is

mapped to its matched one. The problem of finding the best

mapping is closely related to well-known matching problems

in bipartite graphs (see e.g. [24, 25]). A bipartite graph is one

whose nodes form two disjoint parts such that no edge

connects any two nodes in the same part. Thus, a mapping can

be viewed as an undirected weighted bipartite graph.

We use the intuition of the stable marriage [24] problem to

help us finding the best mapping. In an instance of the stable

marriage problem, each of n women and n men lists the

members of the opposite sex in order of preference. The goal

is to find the best match between men and women. A stable

marriage is defined as a complete matching of men and

women with the property that there are no two couples (x, y)

and (x’, y’) such that x prefers y’ to y and y’ prefers x to x’.

Such situation would be regarded as unstable.

In our case, we do not have equal number of men and

women (entities) on both sides and there are men and women

(entities) that should not be mapped, but they will have a

matching score anyway even if it is very low. We overcome

this by small modification to (1) allow for non equal numbers

of men and women to be mapped, and (2) use a threshold to

filter entities that should not be mapped. This approach is

similar to the SelectTheshold technique described in [26],

with the difference that the authors used relative scoring in an

undirected graph and we are using global scores in a directed

graph.

Fig. 4 Matching using stable marriage

To demonstrate how the filtering works, consider Fig. 4,

which shows 4 entities with the compressibility gain scores

represented by the weights on the directed edges. First, we

remove the directed edges with gain scores less than a

threshold tm=0.3. The discarded scores are shown on the right

of Fig. 4 with doted edges. The rest of the scores are then used

to order the preference of each node to apply a stable marriage

algorithm and finally get the mapping. In this case, b1 will

reject a2 as a match and the final mapping will be (a1, b1),

(a2,b2).

VI. EXPERIMENTS

In this section, we report the results of our experimental

study. The goals of the study are as follows:

• Evaluating the matching quality of the proposed

technique and demonstrating the effectiveness of the

two matching phases. Also, the data characteristics

effect is considered in the study.

• Studying the performance of the approach and the

effectiveness of the candidates generation phase on the

overall performance. Also the dataset characteristics

are considered in the evaluation.

• Demonstrating the scalability of the technique along

three parameters; log size, number of entities and

number of actions in the systems.

In the experiments, we used a real world transactions log,

representing transactions of a Walmart store customers. The

transactions we have cover the period from July 31, 1999 to

November 2, 2000 and contain more than 5 million customers,

who can buy from 432,223 items. The total number of

transactions is over 800 million. To simulate the existence of

two data sources whose customers (entities) need to be linked,

we divided the Walmart data into two. We randomly divide

the transactions of some customers, selected randomly,

between the two stores. We also control the expected

overlapping between the customers in the two virtual stores.

This large dataset helped us to create different datasets with

different characteristics. This way, we can study our technique

sensitivity with respect to different data properties.

All the experiments were conducted on a PC with a 3 GHz

Pentium 4 processor and 1 GB RAM running Windows XP.

We used Java to implement the proposed technique and we

used MySql DBMS to store and query the transactions for

processing and to store intermediate results.

A. Quality

The matching quality of the proposed technique is studied

by reporting precision and recall of the resulting mapping.

The recall measures the percentage of correctly matched pairs

over all pairs of records that refer to the same entity, and the

precision measures the percentage of correctly matched pairs

over all true matches. Since we are controlling the number of

overlapping entities in each of the datasets, we can identify

the already matched entities to get the precision and recall. In

this experiment, we used two subsets from the divided

Walmart datasets; one with about 1200 average number of

transaction per customer. This is considered a dense dataset

and referred as Dataset 1. The other has about 700

transactions per customer, which is less dense dataset, and

referred as Dataset 2. We used different density of transaction

for the purpose of studying how this data characteristic will

affect the matching accuracy.

Fig. 5 Candidate phase effectiveness

In Fig. 5.a and 5.b, we illustrate the effectiveness of the

candidates generation phase for each of the two datasets. We

report the recall, precision and the percentage of reduction on

the number of candidates against the matching score threshold

tc. The candidates’ reduction is computed as follows: suppose

that the two data sources contain p and q records and that the

number of generated candidates is C pairs. The reduction

percentage r = 100(pq – C)/pq. For Dataset 1, it is noted that

most of the time the recall is significantly high up to more

than 90%. On the other hand, the precision takes low values

and improves from 10% to about 80% with the increase of tc

between 0.3 and 0.4. For high values of tc, the recall decreases

and the precision increases. This is expected since the

matching decision becomes stricter while using inaccurate

matching in this phase and consequently; this leads to have

more false negatives. The percentage of reduction in

generated candidates started with low values and quickly

increases to more than 90% with the increase in tc especially

after 0.3. This is also because the matching becomes stricter.

Minimizing the number of candidates results in less effort in

the compressibility phase which is expensive.

0

20

40

60

80

100

120

0 0.2 0.4 0.6 0.8
Threshold (tm)

%
p

re
c
is

io
n

/r
e
c
a
ll

precision- DS1 recall-DS1

precison-DS2 recall-DS2

Fig. 6 Overall accuracy: Dataset 1 & 2

For Dataset 2 in Fig. 5.b, the precision increases slowly,

while the recall drops much faster than for Dataset 1. This is

because Dataset 2 is less dense and contains less information.

The reduction in the candidate matches is almost the same as

Dataset 1. For both Fig 5.a and 5.b, it is noted that the

candidates generated for the compressibility phase is

significantly reduced to more than 90% especially for tc values

more than 0.25, while maintaining high recall. The precision

is not expected to be high during this phase, however. Dataset

1 showed a noticeable high precision for high tc values. This is

because Dataset 1 is dense; the more transactions, the more

information are available for better matching decision even in

the first phase.

The overall matching accuracy of the process after applying

the compressibility phase and the mapping filter is illustrated

for each of the two datasets in Fig 6. We report for each of the

datasets the precision and recall. To get this results we used tc

= 0.25 as similarity threshold value in the candidates

generation phase. This value showed for both datasets more

than 95% recall and more than 90% reduction in candidates’

number. In both datasets, high recall and precision values

have been achieved for low mapping threshold values tm

especially between 0.1 and 0.2. As tm decreases, the recall

slightly deceases while the precision significantly increases.

Dataset 1 showed higher recall and precision than Dataset 2

for tm between 0.1 and 0.2. This is because Dataset 1 is denser

and contains more information for matching. Generally, it is

noted how significantly the precision and overall matching

accuracy are improved by the compressibility phase.

In our next experiment, we study the effect of distributing

an entity’s transactions between the data sources. In our two

stores example, a customer may use one of the stores more

than the other, or he may equally use them. Therefore, we

decide to study the effect of the percentage of distributing an

entity’s transaction among the data sources. To do this, we

used Walmart dataset to produce 3 pairs of datasets each

representing different two stores. We managed in each of the

dataset pairs to divide randomly some the customers’

transactions to reach the percentage of division 40%, 25%,

and 10% respectively.

0

20

40

60

80

100

120

0 0.1 0.2 0.3 0.4 0.5
Threshold (tc)

%
v
a
lu

e
s

recall precision % reduction

0

20

40

60

80

100

120

0 0.1 0.2 0.3 0.4 0.5
Threshold (tc)

%
v
a
lu

e
s

recall precision %reduction

(a) Dataset 1 (b) Dataset 2

Fig. 7 Studying the transactions division on the candidates matching performance.

Fig. 7 shows the results of the first matching phase for each

of the dataset pairs. We observe that as division percentage

increases, the best achieved values for both the recall and

candidates reduction increase. This can be noted in the three

figures at thresholds between 0.2 and 0.3. In Fig 7.c where the

percentage is 40%, we are able to reach 95% recall while

achieving also more than 95% reduction in the candidates.

The precision is very low as expected; however, it gets worse

as the division percentage is reduced to 10% in Fig 7.a, where

the precision can hardly reach 5%.

0

20

40

60

80

100

120

0 0.2 0.4 0.6 0.8 1 1.2
Threshold (tm)

%
P

re
c
is

io
n

/R
e
c
a
ll

Precision-40%

Recall-40%

Precision-25%

Recall-25%

Precision-10%

Recall-10%

Fig. 8 Studying transactions division: Overall accuracy

The overall accuracy when linking the three datasets pairs

is illustrated in Fig. 8. We report in this figure the achieved

precision and recall after applying the accurate matching

phase. To get these results, we used in the first phase

threshold value tc = 0.25, which demonstrated high recall and

at the same time high reduction in the number of candidates. It

is noted for all the datasets that the precision and recall

behaves similar to the results achieved in Fig. 6 in the

previous experiment. Both the precision and recall take

reasonably high values between 77% and 95% for low tm

values. As tm increases the recall values gets improved while

the precision dramatically decreases. The effect of

transactions percentage distribution is noticed such that pair

datasets with smaller percentage values (i.e. customers tend o

use one of the store most of the time) show worst precision

and recall in its best cases at tm between 0.1 and 0.2. In the

figure, pair dataset with division 10%, achieved around 80%

recall and precision at the same time for tm between 0.1 and

0.2. On the other hand, dataset pair with division 40%

achieved more then 90% recall and precision for the same tm

values. To conclude, when entities’ transactions are divided

almost equally between two data sources, this helps in

achieving high matching accuracy. Despite this fact, our

technique matching quality for low transactions division was

acceptable.

B. Performance

Our next set of experiments study the execution time of the

matching process. We mainly focus on analyzing the time

spent in each of the two phases of the proposed technique.

Also, we illustrate the effectiveness of the threshold tc used in

the candidates generation phase on the overall linking time.

0

100

200

300

400

500

600

700

800

900

0.1 0.2 0.3 0.4 0.5
Threshold

T
im

e
(s

e
c

)

Compressiblity Phase

Candidates Phase

Total

Fig. 9 Studying execution time.

To study the execution time of our technique, we linked

two datasets each with about 1000 customers with average

number of transactions for each customer is 1000. In Fig. 9 we

report the total execution time in addition to the time spent in

each phase against different values of tc threshold, which is

used in the candidates phase. The candidates phase took 115

sec; the candidate phase execution time is not affected by the

tc, because all the pairs of records should be compared anyway

and then filtered based on tc selected value. For each value of

the threshold, the candidates are passed to the compressibility

phase to produce the final mapping.

0

20

40

60

80

100

120

0 0.2 0.4
T hresho ld (t c)

%
 V

a
lu

e
s

recall precision reduction

0

20

40

60

80

100

120

0 0.2 0.4
T hresho ld (t c)

%
 V

a
lu

e
s

recall precisiom reduction

0

20

40

60

80

100

120

0 0.2 0.4
T hresho ld (t c)

%
 V

a
lu

e
s

recall precision reduction

(a) Transactions divided by 10% (b) Transactions divided by 25% (c) Transactions divided by 40%

Fig. 10 Studying scalability sensitivity.

For high tc values, the compressibility phase execution time

is very low and hence the overall time is low. The reason is

that the number of produced candidates for high tc is small. As

illustrated in the previous experiment of Fig. 6, this comes at

the cost of accuracy and results in a lot of false negatives. As

tc decreases the compressibility time dramatically increases

and consequently the overall time increases. For very low

values of tc, the candidate phase produces almost all possible

pairs to be match in the compressibility phase. We also note

that the compressibility phase is very expensive if it is used

alone without the candidates phase.

A. Scalability

In the following experiment, we study the scalability of our

technique along three important data characteristics; the

number of transaction, the number of entities and the number

of actions that can be registered. We used Walmart dataset

and constructed different pairs of datasets to be linked. In each

dataset pair, we controlled the number of entities, the average

number of transactions per entity and the number of actions.

Note that the numbers of entities along with the average

number of transactions per entity control the total number of

transactions.

The result of the experiment is depicted in Fig. 10 along

three graphs. From left to right we use 400, 550 and 700 as

average number of transactions per entity. Within each graph,

we report the execution time when the number of entities

takes the values 1000, 2000 and 3000 against changing the

number of actions in the system among 100, 150 and 250.

It is noted in each of Fig. 10.a and 10.b that with the

increase in the number of actions, the execution time

decreases; however, this property does not hold in Fig. 10.c

where the average number of transactions per entity increased

to 700. It is worthy noting that with the increase in the number

of actions and fixing the average transactions per entity, the

entity’s behavior will contain high number of actions that are

rarely performed. In our implementation, we neglect such

actions and so this minimizes the execution time, while

maintaining more accurate results. In Fig. 10.c, increasing the

average transactions allows for having more effective actions

in the computations and consequently, increases the execution

time.

0

1000

2000

3000

4000

5000

6000

7000

0 0.5 1 1.5 2 2.5
Log size (millions)

T
im

e
 (

s
e
c
)

Fig. 11 Scalability with log size

Generally from the three graphs in Fig. 10, increasing the

number of entities along with increasing their average

transactions increases the total execution time because this

results in larger log to be processed. However in Fig. 11 when

reporting (for the same datasets used in Fig. 10) the execution

time verses the size of the log, the performance vary because

the log size is not the most effective parameter for our

technique however; the number of entities and actions could

be more effective and this supports the practical sense of the

technique.

VII. RELATED WORK

Record linkage has received significant attention in the

literature and it has many variations like de-duplication [8],

hardening soft databases [6], reference matching [7], object

identification [5], identity uncertainty [9], entity resolution [3],

mention matching [12] and reference reconciliation [4].

Most of the existing techniques for record linkage depend

on textual based attributes and use several approaches for

string approximate matching (refer to [10] and [11] for recent

0

1000

2000

3000

4000

5000

6000

7000

100 150 250

N umber o f act io ns

T
im

e
 (

s
e
c
)

1000

2000

3000

0

1000

2000

3000

4000

5000

6000

7000

100 150 250
N umber o f act io ns

T
im

e
 (

s
e
c
)

1000

2000

3000

0

1000

2000

3000

4000

5000

6000

7000

100 150 250

N umber o f act io ns

T
im

e
 (

s
e
c
)

1000

2000

3000

(a) Avg. transactions/entity = 400 (b) Avg. transactions/entity = 550 (c) Avg. transactions/entity = 700

surveys). Recently, more involved techniques presented to

make use of extracted information from the data to improve

the linkage accuracy. We view our contribution as

complementary to these techniques.

The idea of extracting information and knowledge to

capture similarities between entities has recently been

explored in the data mining and machine learning community.

In [16], a complex generative model is proposed that captures

dependencies between various classes and attributes and also

possible errors during entities matching. In [17], a dependency

model is proposed that propagates similarity decisions through

shared attribute values. Both the above approaches entail

learning a global detailed probabilistic model from training

data, and having the entire matching process guided by that

probabilistic model. In [18] and [19], associations are used to

compute similarities and relate matching decisions. [20]

proposed an approach in which entities are matched by a

sequence of comparison and matching steps with different

similarity measures being used in different steps. Merging

between steps was used to increase information about

individual references. The use of negative information was

proposed in [21] to validate individual resolution decisions.

Also, an interesting approach for making use of aggregate

constraints in a relational database to improve records

matching was introduced in [22].

Performing the records matching level-wise or on a

compositional manner was introduced in [14], [15] and [12].

The work in [14] and [15] focuses on improving the run-time

efficiency of the matching process. While the work in [12]

introduces a more general, compositional, multi-component

approach for records matching.

VIII. CONCLUSIONS

In this paper, we presented a new technique that uses a

given entity behavior, which can be recognized in an entity’s

transaction log; to help in improving the record linkage

accuracy. We characterized the behavior in two main

dimensions; actions repetition pattern and actions features.

When comparing two entities for matching; first, their

transactions are merged and then, we measure the

improvement in identifying the behavior.

Since the transaction log is expected to be long, we

proposed a two-phase matching process; in the first phase,

candidate pairs are quickly generated for matching, while

having negligible false negatives and many false positives.

The second matching phase improves the matching precision

by eliminating the false positives. The second phase is based

on a heuristic called compressibility. It is based on the fact

that repeated patterns and stable features result in a Behavior

Matrix that is more compressible. Our experiments prove that

the technique can effectively improve the matching quality,

while being practical to handle large logs. Also, the run time

performance is dramatically affected by the number of actions

and entities in the system, while it is slightly affected by the

total number of transactions.

REFERENCES

[1] G. K. Wallace, “The JPEG Still Picture Compression Standard,” IEEE

Transaction on Consumer Electronics, Vol. 38, No 1 , Feb 1992.

[2] K. R. Rao and P. Yip, “Discrete Cosine Transform: Algorithms,

Advantages, Applications”, Academic Press Professional, Boston,

1990.

[3] I. Bhattacharya and L. Getoor, “Collective Entity Resolution in

Relational Data”, ACM Transactions on Knowledge Discovery from

Data. Vol. 1, Article 5, March 2007.

[4] X. Dong, A. Halevy and J. Madhavan, “Reference Reconciliation in

Complex Information Spaces”, Proceedings of the 2005 ACM

SIGMOD, June 2005.

[5] S. Tejada, C. Knoblock, and S. Minton. “Learning domain-independent

string transformation weights for high accuracy object identification”.

In SIGKDD, 2002.

[6] W. W. Cohen, H. Kautz, and D. McAllester. “Hardening soft

information sources”. In SIGKDD, 2000.

[7] A. K. McCallum, K. Nigam, and L. H. Ungar. “Efficient Clustering of

High-Dimensional Data Sets with Application to Reference Matching”.

In SIGKDD, 2000.

[8] S. Sarawagi and A. Bhamidipaty. “Interactive deduplication using

active learning”. In SIGKDD, 2002.

[9] A. McCallum and B. Wellner. “Toward conditional models of identity

uncertainty with application to proper noun coreference”. In IIWEB,

2003.

[10] A.K. Elmagarmid, G.I. Panagiotis, S.V. Verykios, “Duplicate Record

Detection: A survey”, IEEE TKDE 19 (2007), no. 1

[11] N. Koudas, S. Sarawagi and D. Srivastava, “Record Linkage:

Similarity measures and algorithms.” In Proc of ACM SIGMOD, 2006.

[12] W. Shen, P. DeRose, L. Vu, A. Doan and R. Ramakrishnan, "Source-

aware Entity Matching: A Compositional Approach", In the Proc of

ICDE, 2007.

[13] S. Chaudhuri, A. D. Sarma, V. Ganti and R. Kaushik, "Leveraging

aggregate constraints for deduplication", In the Proc. of ACM

SIGMOD, 2007.

[14] O. Benjelloun, H. Garcia-Molina, D. Menestrina, Q. Su, S. E. Whang, J.

Widom, "Swoosh: A Generic Approach to Entity Resolution", The

VLDB Journal, 2008.

[15] M. G. Elfeky,A. K. Elmagarmid and V. S. Verykios,"TAILOR: A

Record Linkage Tool Box", In the Proc. of ICDE, 2002.

[16] H. Pasula, B. Marthi, B. Milch, S. Russell, and I. Shpitser. "Identity

Uncertainty and Citation Matching". In NIPS, 2002.

[17] Parag and P. Domingos. “Multi-relational Record Linkage”. In MRDM,

2004.

[18] I. Bhattacharya and L. Getoor. “Iterative Record Linkage for Cleaning

and Integration”. In DMKD, 2004.

[19] D. V. Kalashnikov, S. Mehrotra, and Z. Chen. “Exploiting

Relationships for Domain-independent Data Cleaning”. In SIAM Data

Mining (SDM), 2005.

[20] X. Dong, A. Halevy, E. Nemes, S. Sigurdsson, and P. Domingos.

“Semex: Toward on-the-fly Personal Information Integration”. In

IIWeb, 2004.

[21] A. Doan, Y. Lu, Y. Lee, and J. Han. “Object Matching for Information

Integration: A Profiler-based Approach”. In IIWeb, 2003.

[22] X. Dong and A. Halevy. “A Platform for Personal Information

Management and Integration”. In Proc. of CIDR, 2005.

[23] I. P. Fellegi and A. B. Sunter, "A theory for record linkage," Journal of

the American Statistical Association, vol. 64, no. 328, pp. 1183-1210,

1969.

[24] D. Gusfield and R. Irving. “The Stable Marriage Problem: Structure

and Algorithms”. MIT Press, Cambridge, MA, 1989.

[25] L. Lovasz and M. Plummer. “Matching Theory”. North- Holland,

Amsterdam, 1986.

[26] S. Melnik, H. Garcia-Molina and E. Rahm, "Similarity flooding: a

versatile graph matching algorithm and its application to schema

matching", In the Proc. of ICDE, 2002.

	Record Linkage Based on Entities' Behavior
	Report Number:
	

	tmp.1307986960.pdf.Z3wLq

