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Abstract— Record linkage is the problem of identifying similar 

records across different data sources. Traditional record linkage 

techniques focus on using simple database attributes in a textual 

similarity comparison to decide on matched and non-matched 

records. Recently, record linkage techniques have considered 

useful extracted knowledge and domain information to help 

enhancing the matching accuracy. In this paper, we present a 

new technique for record linkage that is based on entity’s 

behavior, which can be extracted from a transaction log. In the 

matching process, we measure the improvement of identifying a 

behavior when comparing two entities by merging their 

transaction log. To do so, we use two matching phases; first, a 

candidate generation phase, which is fast and provide almost no 

false negatives, while producing low precision. Second, an 

accurate matching phase, which enhances the precision of the 

matching at high run time cost. In the candidates phase 

generation, behavior is represented by points in the complex 

plan, where we perform approximate evaluations. In the 

accurate matching phase, we use a heuristic called 

compressibility, where identified behaviors are more 

compressible. Our experiments show that the proposed technique 

can be used to enhance the record linkage quality while being 

practical for large logs. We also perform extensive sensitivity 

analysis for the technique’s accuracy and performance.  

I. INTRODUCTION 

Record linkage is the process of identifying similar records 

that represent the same real world entity. Linking records 

across different sources has many applications like improving 

the quality of the data by comparing to a more accurate source 

or for data analysis and mining. Record linkage is important 

when integrating two data sources into one. For example if 

two companies are merging, it is important for the merge to 

succeed that shared customers are discovered. Record linkage 

is also referred to duplicate detection when identifying similar 

records is performed within the same source. 

Prior work in record linkage focused on simple attributes 

similarities (refer to [10] for a recent complete survey). In the 

linking process, more than one technique is employed to 

enhance the matching accuracy. The techniques are also 

domain specific and depend on the availability of some data 

features. Recently, record linkage techniques have evolved to 

consider more information extracted from the existing raw 

data for enhancing the process of matching. 

In this paper, we observe that in some applications the 

entities to be linked have a behavior that is recorded in some 

transaction log. Such behavior can be then used to determine 

whether two entities are in fact the same. For example, in a 

super market, customers buying transactions are stored 

attached to some customer id. Most of the time, stores does 

not store customer’s personal information while depending on 

their credit cards to identify them in their databases. If two 

stores are considering merging, they can not use the credit 

card information for linking the records due to privacy. 

Therefore, the customer’s buying behavior which is stored in 

the transaction log is the only information that can help in 

identifying common customers.  In addition, in some 

surveillance systems, it may be possible to register entities’ 

actions in the premises being monitored. Linking the records 

across such systems may help in crime investigations. In both 

situations the entities’ behavior can play an important role in 

the linkage process since persons tend to follow similar or 

correlated behavior in different places. 

The behavior of an entity is usually represented in a 

transaction log as a set of actions performed at a given time 

with specific features, e.g. in the supermarket scenario, the 

actions are the items and the features are the quantities that the 

customer bought from each item.  

In this paper, we present a new technique for record linkage 

based on the entities’ behavior, which is stored in a 

transaction log. The transaction log registers each action 

performed and eventually the action’s feature describing how 

the action was performed. We should note however that when 

comparing two entities from two sources or within the same 

source for duplicate detection, we are not usually expecting to 

have exactly the same behavior or transactions in the two 

sources for the same entity. Instead, our objective is to analyze 

the “merged behavior” and determine how likely the merged 

behavior corresponds to the same entity. Our approach in 

comparing behaviors can be better described using the 

example in Fig. 1. We assume that there are two stores S1 and 

S2, where S1 has customers C1 and C2, and store S2 has 

customers C3 and C4. Beside each customer, the transactions 

of buying milk are shown. When linking the customers from 

S1 to the ones in S2, the similarity between the transactions 

cannot be a correct measure of similarity; it is not expected for 

the customer (entity) to buy the same items (perform the same 

actions) in two different stores (in two different systems) at 

the same time or with the same pattern. Let us now instead 

look at the merged transactions from the two stores. The 

merged transaction log  of C1 and C3, appears under C1C3. We 

note that a pattern or behavior in buying the milk can be 

recognized; C1C3 is a customer buying 3 gallons of milk every 

two days. Therefore, most probably C1 and C3 represent the 

same customer. Note also that each of C1 and C3 alone does 

not demonstrate a recognized behavior in buying milk. When 

merging C1 and C4, we cannot identify a behavior and 



consequently, C1 and C4 cannot be the same. In the case of 

C2C3, although there is a recognized pattern, where the 

customer buys milk every day, the numbers of gallon are 

different and deviate; thus C2 and C3 are not the same 

customer as well. 
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Fig. 1 illustrating example 

Based on the described example, the process of comparing 

two entities is performed by merging their transactions with 

the goal of obtaining a more identifiable behavior if these two 

entities represent in fact the same entity. Therefore, our 

approach focuses on measuring the improvement in 

identifying behavior after merging entities’ transactions. Since 

the transaction log is expected to be large, we avoid visiting it 

several times and instead proceed through a two-phased 

approach for matching the entities.  

In the first phase, we use a relaxed matching approach to 

quickly produce candidate pairs for matching. The matching 

in the first phase is meant to be fast and guarantee high recall 

(i.e. almost no false negatives) with minimum false negatives. 

The improvement in identifying the behavior is evaluated by 

representing every action as point in the complex plan. The 

representation is based on the time at which the action was 

performed. It can be explained as if the total period covering 

the transactions is distributed over a circle centered at the 

origin and every time the action is performed, the complex 

number point is pulled in the corresponding direction. Patterns 

with stable features (less deviated) become identifiable as the 

magnitude of the complex number is close to the origin. 

In the second phase, a more accurate but expensive 

matching function is used to improve the precision of the 

initial matching results. The underlying idea is that when 

performing actions, repeated patterns and stable features will 

be more “compressible” if a behavior can be well recognized. 

The compressibility heuristic stems from the idea of 

representing behaviors as images and compressing the images. 

Therefore, when merging two entities’ transactions, we 

propose to measure a compressibility gain for each of the 

entities to help each entity select its best match using a stable 

marriage technique. 

To the best of our knowledge this is the first work that 

considers the use of entities’ behavior for the record linkage 

purpose.  

The rest of the paper is organized as follows; we begin by 

discussing the behavior characteristics and formulate the 

problem studied in section II. Section III presents the 

candidates matching phase and section IV describes the 

accurate matching phase. In section V, we discuss the 

filtration of the matching results. The conducted experiments 

are discussed in VI. Section VII contains the related work and 

finally we conclude the paper in section VIII. 

II. PRELIMINARIES 

In this section, we first introduce a characterization of the 

behavior along two dimensions. We then outline the record 

linkage process through composite matchers and formulate the 

problem in the context of behavior identification improvement. 

A. Behavior Dimensions 

Informally, the behavior of a given entity, e.g., a person, a 

gene, or a particle, can be characterized through the actions 

this entity performs (using an action log for example) along 

two main dimensions: action repetition patterns and action 

features. 

Action repetition patterns can be recognized when an entity 

repeats specific actions on a regular basis following a pattern 

or trend. Such patterns could differ from an entity to another 

or could be similar. For example, a customer (entity) who 

buys cat food (action) every week (pattern). These patterns 

can also be fixed, increasing, decreasing, oscillating or 

seasonal.  

Action features are some attributes that are attached to 

every type of actions and describe how the action was 

performed. Entities could vary in their performance of the 

same action in terms of these features. Sometimes, there exists 

a preference to perform an action according to specific feature 

values. The features preference can be recognized in 

behaviors when stabilization is followed. For example, when a 

customer buys milk (action), he or she buys 3 gallons (feature 

of the action of buying milk) while other customers prefer 

buying 1 gallon. 

Other behavior characterization can be also considered like 

action relationships, which can take different forms including 

such as association and implication. However, in this paper, 

we focus on the action repetition patterns and features. 

From the above discussion, we propose a definition for a 

conceptual representation of behavior called Behavior Matrix. 

 

 



Definition: Behavior Matrix 

Given a finite set of n actions performed over a discrete 

finite period of time of length m by an entity E, the Behavior 

Matrix (BM) of E is an mn × matrix, such that : 
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Where, Cij represents the feature value when performing 

action j at time i, i = 0, 1, 2, …. , m-1 and j = 0, 1 ,…, n-1, 

The Behavior Matrix is an interesting conceptual approach 

for representing entity’s behavior. Using this matrix, we can 

visualize the behavior as an image where the actions’ features 

are considered as colors. This would allow to visually look at 

the two behavior’s dimensions. The action’s pattern and 

features, interpreted as repeated blocks in the images, led us to 

the compressibility heuristic approach described in section IV.  

B. Problem Definition 

Record linkage is a process of identifying pairs of records 

across two or more databases that correspond to the same real 

world entity. The behavior is considered as a complex 

attribute of an entity and can be used in improving the results 

of the record linkage problem. Basically, the process is 

composed of building Matching Functions that take as input a 

set of thresholds and a pair of records to classify them as 

match or mismatch according to a predefined decision rule. 

 

Definition: Matching Function  

Given two relations with the same attributes RA (a1, a2 …, 

ak) and RB (a1, a2 …, ak). A matching function MF takes as 

input triple }),...{,,( 1 kBA rr θθ  and produces a Boolean output 

{True, False} corresponding to {match, mismatch}, where: 

• rA ∈ RA is a record with attribute values 

(rA(a1),…rA(ak)) and rA(a1) ∈ Dom(RA.a1) … rA(ak) ∈ 

Dom(RA.ak).  

• rB ∈ RB is a record with attribute values 

(rB(a1),…rB(ak)) and rB(a1) ∈ Dom(RB.a1)…rB(ak) ∈ 

Dom(RB.ak). 

• },...{ 1 kθθ  are predefined similarity thresholds for the 

corresponding attributes a1, … ak in both the 

relations RA and RB. 

The output of the matching function MF is decided based on 
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Where +
ℜ→× ).().(: iBiAi aRDomaRDomf , i = 1,..k, are 

predefined similarity measures or distance functions defined 

over the domains of corresponding attribute ai for the relations 

RA and RB. 

The decision rule used in the above definition to identify a 

pair as matches or not is considered strict. Fellegi and Sunter 

[23] presented a more flexible formulation for the rules that 

depends on the output of the similarity functions fi 

Traditionally, the input to the matching function was simple 

database attributes and the function would compute the scores 

based on hamming or edits distances. Recently, many 

approaches targeted the use of other extracted information and 

sometimes adopt iterative approaches over the data aiming at 

returning more accurate similarity scores. For example, the 

use of the relationship with other referenced entities in a 

database [4] and same entity-to-entity relationship [3]. 

Practically, many matching functions are used with different 

types of input in a record linkage process, depending on the 

nature of the dataset.  

Sometimes, the matching function performs a relaxed 

matching [12], where it is expected to obtain accurate decision 

about mismatches, while decision about matches may not be 

accurate. Relaxed matching is used when the accurate 

matching function is computationally expensive and therefore, 

a relaxed cheap matching function is employed first to 

produce an input to a more expensive but accurate matching 

function. This usually leads to a two-phased approach. The 

first phase uses fast relaxed matching functions with the goal 

of eliminating the number of false negatives to maintain high 

recall. The second phase is more expensive and takes care of 

improving the precision. The blocking technique is an 

example of a two-level matching process that has been used in 

the record linkage problem [15]. 

We consider an entity’s behavior as a complex attribute 

with two components representing the two behavior’s 

dimensions described above (action repetition pattern and 

features). The process of determining similarity between two 

entities based on their behavior is composed of two steps: first, 

merge their transactions, representing the actions they perform 

and then determine to what extent the resulting merged 

behavior becomes identifiable compared to the original 

behaviors. To measure the identification of behavior, we need 

to measure the support improvement for the two behavior 

dimensions. Since, attacking this problem through accurate 

measurements is not practical; we introduce a combination of 

simple heuristic techniques instead. The proposed heuristic 

approach resulted in an acceptable accuracy as explained in 

section VI. 

We propose a technique that heuristically measures the 

enhancement in the two behavior’s dimensions to help better 

identifying the overall entity’s behavior. The technique is 

composed of two phases; candidate matches generation and 

accurate matching. In the candidates generation phase, the 

behavior is represented by points on the complex plan, where 

we apply distance measurements, while in the second accurate 

phase, we use a concept of compressibility to identify 

homogeneous behaviors. 

III. CANDIDATE MATCHES GENERATION 

In the candidate matches generation phase, we use the 

dimensions of the behavior mentioned in section II and 

generate candidates pairs of entities for matching. We 

represent the actions log in a compact way to allow for fast 



computations in generating candidate matches. However, this 

quick computation comes at the cost of poor precision while 

eliminating false negatives. 

The main goal of this phase is to minimize the number of 

candidate matches, while eliminating the false negatives. This 

phase should satisfy two important conditions; (1) Only one 

transaction log scan, and (2) use a small number of simple 

computations. 

The matching function represented in this section classifies 

the records as mismatch and likely-match. The accurate 

matching operation is left for the Phase 2 matching. 

Let Ex and Ey be two entities to be compared according to 

their behavior represented in their transaction log. In the 

following, we explain the use of the action pattern 

improvement and feature stabilization when merging two 

entities’ transactions to determine an eventual similarity 

between them.  

To compare two entities, each row in their Behavior Matrix, 

which corresponds to an action, is first converted to a complex 

number. Then, by merging the two entities’ transactions, we 

expect the resulting magnitude of the complex number to 

become smaller or close to the original entities’ magnitude if 

they are similar. This is because of filling gaps in the sequence 

and supporting the pattern. This observation will be illustrated 

shortly. 

Each row in the Behavior Matrix can be converted to a 

complex number as follows: Suppose that a row vector i in the 

Behavior Matrix of E contains the sequence x0,i, x1,i, …, xm-1,i 

for action ai, the complex number representation of this row 

can be computed as follow: 

∑
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Consequently, the entity’s behavior is represented by a 

vector of length n that contains complex numbers, where n is 

the number of actions performed by entity E. When 

comparing two entities’ behaviors, the merged transaction’s 

representation is obtained by adding two complex numbers 

without re-visiting the transaction log again. For example, 

suppose we are comparing the behavior of entities Ex and Ey 

when performing action ai. The complex number 

representation for Ex when performing ai is 
xxix iYXaEc +=).(  

and for Ey when performing ai is 
yyiy iYXaEc +=).( . Consequently, 

the merged transactions representation when performing ai 

is )()().( yxyxixy YYiXXaEc +++= . The complex numbers are 

represented by either two coordinates on the real and 

imaginary axis or using a magnitude and an angle. The 

magnitude and angle representation is more interesting in our 

case to compute matching scores.  

To see why the magnitude-angle representation can better 

help in detecting the existence of a similarity between two 

entities, consider the example described in Fig. 2. For clarity, 

we assume that there is only one action in the system and we 

need, by applying transactions merge, to know to what extent 

the behavior identification has been improved to suggest a 

potential similarity between the two entities. At the left of 

Fig. 2, entity E1 complex number results in mag1 = 4.45, and 

for E2, it is mag2 = 4.62. When merging E1 and E2’s 

transactions, a pattern can be recognized and surprisingly the 

resulting mag12 = 0.35, is a smaller magnitude. The smaller 

magnitude length resulted because E1 and E2 transactions 

together formulate a smooth pattern in performing the action 

by filling gaps in the action sequence. Moreover, the feature 

values are close to each other. In the resulted vector E12, the 

action is performed every 2 or 3 point of time and this 

produced a balanced vector, which is recognized as a pattern. 

Also, the feature values are close to each other, it is either 3 or 

4 (i.e. it is stabilizing around these values). When converting a 

balanced vector to a complex number as described, the 

magnitude becomes small, because every entry in the vector 

pulls the resultant magnitude to a direction along a circle 

centered in the origin. In this case, we say the action pattern 

was enhanced and the features stabilization is supported. At 

the right of Fig 2, E2 was merged with E3. mag3= 3.1 and 

mag2 = 4.62 and after merging the transactions, the resulted 

mag23 = 7.18, which is bigger. We should note that the 

resulting sequence from the merge does not have a recognized 

pattern; moreover, the feature values deviated further away 

(between 3 and 5). We are not interested in understanding the 

change in the angles and including it in the computations. Our 

aim is to come up with simple fast technique to produce 

candidate matches and minimize the cost spent in this 

operation. 
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Fig. 2 Actions patterns in the complex and the effect on the magnitude 



 

To develop a scoring formula based on the above 

observation, we consider merging the transactions of Ex and 

Ey with the assumption that there is only one action in the 

system. We also consider magx and magy as the magnitudes of 

the complex number representation of Ex and Ey respectively. 

The resulting magnitude of the merge, magxy, can take values 

between 0 and (magx+magy). The closer magxy is to 0, the 

more likely this supports the existence of pattern with similar 

features. The closer magxy is to (magx+magy) the less likely to 

have a pattern enhancement and consequently, the less likely 

for Ex and Ey to be similar. Accordingly, we propose a 

matching score formula as follow: 

 

yx

xy

yx
magmag

mag
EEsim

+
−=1),(  

 

When we have n common actions between Ex and Ey, then 

the final formula will be: 
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Where S(Exy.ai) is the number of occurrences of action ai in 

the merged transactions and S(Exy) is the total number of 

merged transactions. Note that this is applied to only common 

actions between Ex and Ey, since uncommon actions will not 

be affected by merging the transactions. 

The intuition behind including the percentage of the 

number of transactions of action ai within the total number of 

transactions is to give a weighted effect for the actions. In 

another word, the higher the relative number of transactions 

for a given action, the more effect is expected in computing 

the score.  

The proposed formula guarantees a score +
ℜ∈sim  

between 0 and 1. However, very low values are expected 

since a score equal to 1 is reached when all the actions 

performed by Ex are the same as Ey and the resulting 

transactions’ merge magnitude equal zero in all the actions. 

This situation can hardly happen in real world situations. 

Instead, we normalize the resulted scores according to the 

maximum reached score (i.e. if simmax is the maximum score 

reached, and then all scores are divided by simmax). In the 

experiment, we show how to select a threshold, tc, maintain no 

false negatives while achieving high reduction in the number 

of candidates generated. 

The advantage of the described technique is that, by 

performing a one scan on the entire transaction log, we can 

compute the complex numbers for each action per a given 

entity. When computing the matching scores to produce 

candidates, simple complex numbers operations are employed. 

In our implementation, the sine and cosine values are pre-

calculated to compute the complex numbers and all operations 

have been reduced to simple additions and multiplication in 

addition to small number of square roots to get the magnitudes. 

Efficiency: Suppose that there are two sources P and Q 

with p and q entities respectively and each source has a log of 

size Tp and Tq respectively. The number of actions that can be 

performed and registered is n. First, a scan to both the 

transaction logs is performed to represent each action per 

entity as a complex number. This takes time of O(Tp+Tq) and 

space of O(np) and O(nq) for sources P and Q respectively. 

Therefore, the total space requires is O(n(p+q)). Afterward, 

comparing every possible pq pairs of entities requires O(ncpq) 

since during the comparison all common actions nc between 

every two entities are used. According to a matching threshold, 

only candidates for Phase 2 are stored in O(C) space, where C 

is the number of resulted candidates and it is bounded by pq. 

Hence, the total time is O(Tp+Tq+ ncpq) and total space is 

O(n(p+q)+C). 

IV. ACCURATE MATCHING PHASE 

We now present the more accurate matching approach to 

identify similar entities that will have as input the candidate 

matches computed in the first phase. In this section, we 

propose the Compressibility approach that uses both actions 

repeating patterns and actions features stabilization to detect 

potential enhancements in identifying behavior that is more 

likely to represent one single entity. 

Identifying behavior through repeating patterns and 

stabilized features can be heuristically achieved by 

compressing all this information and comparing the 

compression ratio with the original data size. We conjecture 

that significant higher compression ratio implies better 

identification of behavior. We thus introduce compressibility 

as a measure of confidence to identify behaviors. High 

compressibility means improved resolution for behavior. 

Real world transaction logs usually build sparse Behavior 

Matrices with a lot of zeros. These zeros result in a miss-

leading compression ratio without signification information 

about the behavior itself. Therefore, we use the vector-pair as 

a more practical representation for the behavior aiming at 

getting more meaningful information from the compressibility 

process. 

In the Behavior Matrix, each action is represented by a row. 

In each row, at time point i, the cell contains either zero, if the 

action was not performed, or contains a feature value to 

represent how the action was performed. In the vector-pair 

representation, one vector represents the time at which the 

action was performed and the other stores the corresponding 

feature value. The time vector contains the inter-arrival time 

between every two consecutive occurrences of the action. 

Example: 

Suppose that an action has the following row in the 

Behavior Matrix 

{3,0,4,0,0,3,0,3,0,4,0,0,3,0,3,0} 

The vector-pair will be: 

{{1,2,3,2,2,3,2}{3,4,3,3,4,3,3}} 

If an entity performs an action regularly following a pattern, 

the time vector will contain inter-arrival time values that 

follow a certain level of correlation showing the action rate. 



Moreover, the features vector will contain similar values to 

represent how the action was performed. Consequently, with 

this representation, we get rid of the zeros and at the same 

time the compressibility technique becomes more appealing to 

produce more significant information about the behavior. 

Most of the existing compression techniques use data 

repetition and encodes it in a more compact representation. 

There are two types of compression techniques; lossless and 

lossy. Lossless techniques are used when every single bit in 

the compressed original data is important and should be 

exactly reconstructed upon decompression. Conversely, lossy 

techniques allow reconstructing data that is close enough to 

the original while achieving better compression ratio. In our 

case, the lossy compression is more attractive; we are not 

compressing the data for the sake of decompression, but rather 

we are trying to get a sense of how compressible the data is.  

The Discrete Cosine Transformation (DCT) is widely used 

in the signal and image processing, especially for lossy 

compression techniques. It has the property of strong “energy 

compaction” [2], that is if the original data (signal) exhibit a 

correlation then most of the signal information tends to be 

concentrated in a few low-frequency components of the DCT. 

Therefore, by storing low-frequency coefficient, we can 

reconstruct data that is close enough to the original.  

The most common DCT definition of a 1-D sequence x0, 

x1, …, xN-1 of length N is  
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coefficient is the average value of the sequence. Usually this 

value is referred to as the DC coefficient. All other 

transformation coefficients are called the AC coefficient. 

The cosine basis functions which are produced from 
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independent from the sequence x0, x1, …, xN-1. Therefore, these 

functions can be pre-computed and hence improving the 

performance. 

 

 

Fig. 3 Compression process 

To perform a compression for the behavior, we follow the 

same approach used in JPEG [1]. However, instead of 

applying the procedure in two dimensions, we apply it in one 

dimension for the vector-pairs. The compression operation is 

illustrated in Fig. 3. First, we compute the 1-D DCT for the 

vector. Then, we divide the resulted DCT vector by a 

quantizer vector then round each value to the nearest integer. 

The quantization values are computed based on the sequence 

average and the position in the vector to reduce the amount of 

information in the high frequency components. The lost data 

should help distinguish minor details in the behavior 

representation which are not important and most of the time is 

noise. Finally, a straightforward vector encoding technique is 

used to compress the transformed vector.  

Based on the compressibility approach, we can identify 

eventually similar behavior; if the merged transactions of the 

two entities Ex and Ey exhibit more compressibility, then they 

are more likely to match.  

To compute the matching score of two entities Ex and Ey, 

we define the directed compressibility gain g(Ex,Ey) and 

g(Ey,Ex). g(Ex,Ey) is the gain score for Ex when merged with Ey 

and g(Ey, Ex) goes in the other direction. To compute each of 

these gains, we suppose there are n actions. Assume also that 

when compressing the vector-pairs, we obtain a compression 

ratio cr(Ex.ai) for each action ai in Ex’s transactions and for Ey 

cr(Ey.ai). After merging their transactions and compressing 

the resulting vector-pairs, we obtain a compression ratio 

cr(Exy.ai) for each ai. The overall compression ratio of Ex and 

Ey: 
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Similarly, the compression ratio of Exy, 
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The support values are included to provide a weighted 

effect for the actions on the overall compression ratio for the 

entity’s behavior.  

The gain in the compressibility for Ex from the merge with 

Ey is: 
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In the following section, we see how to use these scores to 

produce the final matching results. 

Efficiency: Suppose that the number of candidate pairs is C 

and there are n actions in the systems that can be registered. 

Also, suppose the average vector-pair length is t` (note that 

the t` is bounded by the t, the total time period length). In our 

implementation, the transactions are stored in a database to 

facilitate the retrieval. For each candidate entity pairs, a query 



is submitted to get their transactions (i.e. O(C) queries). 

Afterward, for each action (i.e. O(n) ) a vector-pair is 

formulated to be compressed. The compression took O(t`
2
). 

Hence, the total time is O(Cnt`
2
). The space requirement is 

constant O(1). 

V. FILTERING MATCHES  

We discuss now how to use the computed scores from the 

compressibility phase to produce the final matches. The set of 

matched records are called a mapping, where every record is 

mapped to its matched one. The problem of finding the best 

mapping is closely related to well-known matching problems 

in bipartite graphs (see e.g. [24, 25]). A bipartite graph is one 

whose nodes form two disjoint parts such that no edge 

connects any two nodes in the same part. Thus, a mapping can 

be viewed as an undirected weighted bipartite graph. 

We use the intuition of the stable marriage [24] problem to 

help us finding the best mapping. In an instance of the stable 

marriage problem, each of n women and n men lists the 

members of the opposite sex in order of preference. The goal 

is to find the best match between men and women. A stable 

marriage is defined as a complete matching of men and 

women with the property that there are no two couples (x, y) 

and (x’, y’) such that x prefers y’ to y and y’ prefers x to x’. 

Such situation would be regarded as unstable.  

In our case, we do not have equal number of men and 

women (entities) on both sides and there are men and women 

(entities) that should not be mapped, but they will have a 

matching score anyway even if it is very low. We overcome 

this by small modification to (1) allow for non equal numbers 

of men and women to be mapped, and (2) use a threshold to 

filter entities that should not be mapped. This approach is 

similar to the SelectTheshold technique described in [26],  

with the difference that the authors used relative scoring in an 

undirected graph and we are using global scores in a directed 

graph.  

 

 

Fig. 4 Matching using stable marriage 

To demonstrate how the filtering works, consider Fig. 4, 

which shows 4 entities with the compressibility gain scores 

represented by the weights on the directed edges. First, we 

remove the directed edges with gain scores less than a 

threshold tm=0.3. The discarded scores are shown on the right 

of Fig. 4 with doted edges. The rest of the scores are then used 

to order the preference of each node to apply a stable marriage 

algorithm and finally get the mapping. In this case, b1 will 

reject a2 as a match and the final mapping will be (a1, b1), 

(a2,b2). 

VI. EXPERIMENTS 

In this section, we report the results of our experimental 

study. The goals of the study are as follows: 

• Evaluating the matching quality of the proposed 

technique and demonstrating the effectiveness of the 

two matching phases. Also, the data characteristics 

effect is considered in the study. 

• Studying the performance of the approach and the 

effectiveness of the candidates generation phase on the 

overall performance. Also the dataset characteristics 

are considered in the evaluation. 

• Demonstrating the scalability of the technique along 

three parameters; log size, number of entities and 

number of actions in the systems. 

In the experiments, we used a real world transactions log, 

representing transactions of a Walmart store customers. The 

transactions we have cover the period from July 31, 1999 to 

November 2, 2000 and contain more than 5 million customers, 

who can buy from 432,223 items. The total number of 

transactions is over 800 million. To simulate the existence of 

two data sources whose customers (entities) need to be linked, 

we divided the Walmart data into two. We randomly divide 

the transactions of some customers, selected randomly, 

between the two stores. We also control the expected 

overlapping between the customers in the two virtual stores. 

This large dataset helped us to create different datasets with 

different characteristics. This way, we can study our technique 

sensitivity with respect to different data properties. 

All the experiments were conducted on a PC with a 3 GHz 

Pentium 4 processor and 1 GB RAM running Windows XP. 

We used Java to implement the proposed technique and we 

used MySql DBMS to store and query the transactions for 

processing and to store intermediate results.   

A. Quality 

The matching quality of the proposed technique is studied 

by reporting precision and recall of the resulting mapping. 

The recall measures the percentage of correctly matched pairs 

over all pairs of records that refer to the same entity, and the 

precision measures the percentage of correctly matched pairs 

over all true matches. Since we are controlling the number of 

overlapping entities in each of the datasets, we can identify 

the already matched entities to get the precision and recall. In 

this experiment, we used two subsets from the divided 

Walmart datasets; one with about 1200 average number of 

transaction per customer. This is considered a dense dataset 

and referred as Dataset 1. The other has about 700 

transactions per customer, which is less dense dataset, and 

referred as Dataset 2. We used different density of transaction 

for the purpose of studying how this data characteristic will 

affect the matching accuracy. 



 

Fig. 5 Candidate phase effectiveness 

In Fig. 5.a and 5.b, we illustrate the effectiveness of the 

candidates generation phase for each of the two datasets. We 

report the recall, precision and the percentage of reduction on 

the number of candidates against the matching score threshold 

tc. The candidates’ reduction is computed as follows: suppose 

that the two data sources contain p and q records and that the 

number of generated candidates is C pairs. The reduction 

percentage r = 100(pq – C)/pq. For Dataset 1, it is noted that 

most of the time the recall is significantly high up to more 

than 90%. On the other hand, the precision takes low values 

and improves from 10% to about 80% with the increase of tc 

between 0.3 and 0.4. For high values of tc, the recall decreases 

and the precision increases. This is expected since the 

matching decision becomes stricter while using inaccurate 

matching in this phase and consequently; this leads to have 

more false negatives. The percentage of reduction in 

generated candidates started with low values and quickly 

increases to more than 90% with the increase in tc especially 

after 0.3. This is also because the matching becomes stricter. 

Minimizing the number of candidates results in less effort in 

the compressibility phase which is expensive.  
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Fig. 6 Overall accuracy: Dataset 1 & 2 

For Dataset 2 in Fig. 5.b, the precision increases slowly, 

while the recall drops much faster than for Dataset 1. This is 

because Dataset 2 is less dense and contains less information. 

The reduction in the candidate matches is almost the same as 

Dataset 1. For both Fig 5.a and 5.b, it is noted that the 

candidates generated for the compressibility phase is 

significantly reduced to more than 90% especially for tc values 

more than 0.25, while maintaining high recall. The precision 

is not expected to be high during this phase, however. Dataset 

1 showed a noticeable high precision for high tc values. This is 

because Dataset 1 is dense; the more transactions, the more 

information are available for better matching decision even in 

the first phase. 

The overall matching accuracy of the process after applying 

the compressibility phase and the mapping filter is illustrated 

for each of the two datasets in Fig 6. We report for each of the 

datasets the precision and recall. To get this results we used tc 

= 0.25 as similarity threshold value in the candidates 

generation phase. This value showed for both datasets more 

than 95% recall and more than 90% reduction in candidates’ 

number. In both datasets, high recall and precision values 

have been achieved for low mapping threshold values tm 

especially between 0.1 and 0.2. As tm decreases, the recall 

slightly deceases while the precision significantly increases. 

Dataset 1 showed higher recall and precision than Dataset 2 

for tm between 0.1 and 0.2. This is because Dataset 1 is denser 

and contains more information for matching. Generally, it is 

noted how significantly the precision and overall matching 

accuracy are improved by the compressibility phase. 

In our next experiment, we study the effect of distributing 

an entity’s transactions between the data sources. In our two 

stores example, a customer may use one of the stores more 

than the other, or he may equally use them. Therefore, we 

decide to study the effect of the percentage of distributing an 

entity’s transaction among the data sources. To do this, we 

used Walmart dataset to produce 3 pairs of datasets each 

representing different two stores. We managed in each of the 

dataset pairs to divide randomly some the customers’ 

transactions to reach the percentage of division 40%, 25%, 

and 10% respectively.  
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(a) Dataset 1      (b) Dataset 2 



 

Fig. 7 Studying the transactions division on the candidates matching performance. 

Fig. 7 shows the results of the first matching phase for each 

of the dataset pairs. We observe that as division percentage 

increases, the best achieved values for both the recall and 

candidates reduction increase. This can be noted in the three 

figures at thresholds between 0.2 and 0.3. In Fig 7.c where the 

percentage is 40%, we are able to reach 95% recall while 

achieving also more than 95% reduction in the candidates. 

The precision is very low as expected; however, it gets worse 

as the division percentage is reduced to 10% in Fig 7.a, where 

the precision can hardly reach 5%. 
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Fig. 8 Studying transactions division: Overall accuracy 

The overall accuracy when linking the three datasets pairs 

is illustrated in Fig. 8. We report in this figure the achieved 

precision and recall after applying the accurate matching 

phase. To get these results, we used in the first phase 

threshold value tc = 0.25, which demonstrated high recall and 

at the same time high reduction in the number of candidates. It 

is noted for all the datasets that the precision and recall 

behaves similar to the results achieved in Fig. 6 in the 

previous experiment. Both the precision and recall take 

reasonably high values between 77% and 95% for low tm 

values. As tm increases the recall values gets improved while 

the precision dramatically decreases. The effect of 

transactions percentage distribution is noticed such that pair 

datasets with smaller percentage values (i.e. customers tend o 

use one of the store most of the time) show worst precision 

and recall in its best cases at tm between 0.1 and 0.2. In the 

figure, pair dataset with division 10%, achieved around 80% 

recall and precision at the same time for tm between 0.1 and 

0.2. On the other hand, dataset pair with division 40% 

achieved more then 90% recall and precision for the same tm 

values. To conclude, when entities’ transactions are divided 

almost equally between two data sources, this helps in 

achieving high matching accuracy. Despite this fact, our 

technique matching quality for low transactions division was 

acceptable. 

B. Performance 

Our next set of experiments study the execution time of the 

matching process. We mainly focus on analyzing the time 

spent in each of the two phases of the proposed technique. 

Also, we illustrate the effectiveness of the threshold tc used in 

the candidates generation phase on the overall linking time.  
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Fig. 9 Studying execution time. 

To study the execution time of our technique, we linked 

two datasets each with about 1000 customers with average 

number of transactions for each customer is 1000. In Fig. 9 we 

report the total execution time in addition to the time spent in 

each phase against different values of tc threshold, which is 

used in the candidates phase. The candidates phase took 115 

sec; the candidate phase execution time is not affected by the 

tc, because all the pairs of records should be compared anyway 

and then filtered based on tc selected value. For each value of 

the threshold, the candidates are passed to the compressibility 

phase to produce the final mapping. 
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(a) Transactions divided by 10%                      (b) Transactions divided by 25%   (c) Transactions divided by 40% 

  



 

Fig. 10 Studying scalability sensitivity. 

For high tc values, the compressibility phase execution time 

is very low and hence the overall time is low. The reason is 

that the number of produced candidates for high tc is small. As 

illustrated in the previous experiment of Fig. 6, this comes at 

the cost of accuracy and results in a lot of false negatives. As 

tc decreases the compressibility time dramatically increases 

and consequently the overall time increases. For very low 

values of tc, the candidate phase produces almost all possible 

pairs to be match in the compressibility phase. We also note 

that the compressibility phase is very expensive if it is used 

alone without the candidates phase. 

A. Scalability 

In the following experiment, we study the scalability of our 

technique along three important data characteristics; the 

number of transaction, the number of entities and the number 

of actions that can be registered. We used Walmart dataset 

and constructed different pairs of datasets to be linked. In each 

dataset pair, we controlled the number of entities, the average 

number of transactions per entity and the number of actions. 

Note that the numbers of entities along with the average 

number of transactions per entity control the total number of 

transactions. 

The result of the experiment is depicted in Fig. 10 along 

three graphs. From left to right we use 400, 550 and 700 as 

average number of transactions per entity. Within each graph, 

we report the execution time when the number of entities 

takes the values 1000, 2000 and 3000 against changing the 

number of actions in the system among 100, 150 and 250.  

It is noted in each of Fig. 10.a and 10.b that with the 

increase in the number of actions, the execution time 

decreases; however, this property does not hold in Fig. 10.c 

where the average number of transactions per entity increased 

to 700. It is worthy noting that with the increase in the number 

of actions and fixing the average transactions per entity, the 

entity’s behavior will contain high number of actions that are 

rarely performed. In our implementation, we neglect such 

actions and so this minimizes the execution time, while 

maintaining more accurate results. In Fig. 10.c, increasing the 

average transactions allows for having more effective actions 

in the computations and consequently, increases the execution 

time. 
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Fig. 11 Scalability with log size 

Generally from the three graphs in Fig. 10, increasing the 

number of entities along with increasing their average 

transactions increases the total execution time because this 

results in larger log to be processed. However in Fig. 11 when 

reporting (for the same datasets used in Fig. 10) the execution 

time verses the size of the log, the performance vary because 

the log size is not the most effective parameter for our 

technique however; the number of entities and actions could 

be more effective and this supports the practical sense of the 

technique. 

VII. RELATED WORK 

Record linkage has received significant attention in the 

literature and it has many variations like de-duplication [8], 

hardening soft databases [6], reference matching [7], object 

identification [5], identity uncertainty [9], entity resolution [3], 

mention matching [12] and reference reconciliation [4]. 

Most of the existing techniques for record linkage depend 

on textual based attributes and use several approaches for 

string approximate matching (refer to [10] and [11] for recent 
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(a) Avg. transactions/entity = 400            (b) Avg. transactions/entity = 550  (c) Avg. transactions/entity = 700 



surveys). Recently, more involved techniques presented to 

make use of extracted information from the data to improve 

the linkage accuracy. We view our contribution as 

complementary to these techniques. 

The idea of extracting information and knowledge to 

capture similarities between entities has recently been 

explored in the data mining and machine learning community. 

In [16], a complex generative model is proposed that captures 

dependencies between various classes and attributes and also 

possible errors during entities matching. In [17], a dependency 

model is proposed that propagates similarity decisions through 

shared attribute values. Both the above approaches entail 

learning a global detailed probabilistic model from training 

data, and having the entire matching process guided by that 

probabilistic model. In [18] and [19], associations are used to 

compute similarities and relate matching decisions. [20] 

proposed an approach in which entities are matched by a 

sequence of comparison and matching steps with different 

similarity measures being used in different steps. Merging 

between steps was used to increase information about 

individual references. The use of negative information was 

proposed in [21] to validate individual resolution decisions. 

Also, an interesting approach for making use of aggregate 

constraints in a relational database to improve records 

matching was introduced in [22].  

Performing the records matching level-wise or on a 

compositional manner was introduced in [14], [15] and [12]. 

The work in [14] and [15] focuses on improving the run-time 

efficiency of the matching process. While the work in [12] 

introduces a more general, compositional, multi-component 

approach for records matching.  

VIII. CONCLUSIONS  

In this paper, we presented a new technique that uses a 

given entity behavior, which can be recognized in an entity’s 

transaction log; to help in improving the record linkage 

accuracy. We characterized the behavior in two main 

dimensions; actions repetition pattern and actions features. 

When comparing two entities for matching; first, their 

transactions are merged and then, we measure the 

improvement in identifying the behavior. 

Since the transaction log is expected to be long, we 

proposed a two-phase matching process; in the first phase, 

candidate pairs are quickly generated for matching, while 

having negligible false negatives and many false positives. 

The second matching phase improves the matching precision 

by eliminating the false positives. The second phase is based 

on a heuristic called compressibility. It is based on the fact 

that repeated patterns and stable features result in a Behavior 

Matrix that is more compressible. Our experiments prove that 

the technique can effectively improve the matching quality, 

while being practical to handle large logs. Also, the run time 

performance is dramatically affected by the number of actions 

and entities in the system, while it is slightly affected by the 

total number of transactions. 
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