
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1975

The Difficulty of Optimum Index Solution The Difficulty of Optimum Index Solution

Douglas E. Comer
Purdue University, comer@cs.purdue.edu

Report Number:
77-248

Comer, Douglas E., "The Difficulty of Optimum Index Solution" (1975). Department of Computer Science
Technical Reports. Paper 182.
https://docs.lib.purdue.edu/cstech/182

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4971517?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

The Difficulty of Optimum Index Selection

Douglas Comer

Computer Sciences Department

Purdue University

CSD-TR 248
September 1977

The Difficulty of Optimum Index Selection

Douglas Comer

Keywords and Phrases: attribute selection, secondary index, index

selection, complexity

CR categories: 3.73, 3.74, 4.33, 4.34

Abstract

Given a file on a secondary store in which each record has several

attributes, it is usually advantageous to build an index mechanism to

decrease the cost of conducting transactions to the file. The problem

of selecting attributes over which to index has been studied in the

context of various storage structures and access assumptions. One

algorithm to make an optimum index selection requires 2 steps in the

worst case, where k is the number of attributes in the file. We examine

the question of whether a more efficient algorithm might exist and show

that even under a simple cost criterion the problem is computationally

difficult in a precise sense- Our results extend directly to other

related problems where the cost of the index depends on fixed values

which are assigned to each attribute. Some practical implications are

discussed.

1. Introduction:

For a file on a secondary store in which each record has several

attributes, it is usually advantageous to build an index mechanism to

decrease the cost of conducting transactions to the file. The problem

is to determine which attributes to include in the index.

Any solution to the index selection problem must consider the

file organization, the transactions conducted with the database, the

cost of index creation and maintenance, and the potential value of an

index in decreasing access costs. The problem has, therefore, been

studied in a wide variety of contexts. Lum and Long [6] give an

impirical evaluation of index selection, while others [6,9,10,11]

provide a model for analysis purposes.

An approach taken in [2] is to provide an independent index for

each attribute in the file. But the time and space required to maintain

and update the separate indices may not be worthwhile. One alternative

is to combine all attributes into one and use a single index. This is

advocated in [7). On the other hand, it was demonstrated in [3] that

a complete knowledge of all queries to the database could lead to an

optimum"index.

We assume that the attributes of the file are not to be combined.

Furthermore, we assume that although the complete set of queries is

not known in advance, statistical properties can be obtained. These are

a reasonable assumptions for most situations since it is usually possible

to collect statistics about queries automatically even if the exact set

of transactions to the database are not known.

Of particular interest to us is [10] which gives a model for the

optimum index selection problem and provides an algorithm for solving

2

the problem under similar assumptions. Two parameters are calculated

for each attribute from which the algorithm makes an index selection.

It is suggested that the algorithm be used in the following manner.

Since the users' requests may change over time, the system keeps

statistics about the recent transactions to the file. Periodically,

an optimum set of indices for the file is computed using the algorithm

and the system then discards those indices which are no longer cost

effective and keeps (or creates) those which are. Moreover, it is

suggested that this process be repeated only after some fixed time

because the algorithm requires substantial running time. The worst

case running time is, in fact, exponential in the size of the input

(although it is much less on the average).

We examine the question of whether a faster algorithm might be

possible. Unfortunately, the question is answered in the negative.

The result and some consequences are given in section 3, following

precise definitions of a file and the index selection problem.

2. Definitions:

We will assume the relational model of data [4] and consider the

case where there is a single relation in the database. Our results

extend trivially to multi-relational systems. A file is defined,

consistent with [10], as follows:

Let A^, A^ > •••» ^ b e fini-te sets of attributes. A file F

consists of n records r = (v , v v ^) where each v^ e A^, the

i attribute. Thus, A^ x A^ x ...x A^. In a given file not all
th elements of an attribute may be present. The value set of the i

attribute for a file F is V. = U v . . Note that V. C A., 1 < i < k. i i i — I — — reF

The degree of a file F is given by maxQvJ , JV-2f , ..., [VjJ}, where

IV,[represents the number of elements in value set V.. Files with i i
degree 2 will be referred to as binary files. The basic notion is

that if a file has degree p then there is a file in which no entry

is greater than p for which the index selection problem, as defined

below, is equivalent.

The following ideas are used in the definition of the index

selection problem. Attribute i is said to distinguish two records,

r and s, iff they differ in the i^1 component (i.e. v^ in r differs from

v^ in s). I is an indexing set for a file F with k attributes iff

I C {1, 2, ..., k} and any pair of records in F is distinguished by

some attribute in I. The size of an indexing set is the number of

elements in it.

We think of a file as a 2-dimensional table in which rows correspond

to records and columns correspond to attributes. An indexing set is a

subset of the columns such that no two rows of the table have identical

values for every attribute in the subset.

The Optimum Index Selection Problem (OISP) is defined as:

Given: A file F with n records and k attributes, and an integer p.

Question: Does there exist an indexing set for F with size no more than p?

OISP is stated in this simplistic form because we are interested in

a proof of its difficulty. Later we will show how the results extend

to seemingly more complicated problems which arise in practice.

Main Result:

In this section we show that OISP is difficult to solve computationally

and show how this result extends to the kinds of problems that occur in

practice.

4

THEOREM 1; OISP is NP-Complete1 for files of degree d, d > 2.

PROOF: The details of an NP-Completeness reduction are given in

Appendix A. £

This theorem says that OISP is in a large class of combinatorial

problems which are known to be difficult. The class of NP-Complete

problems includes well-known problems such as the traveling salesperson

problem and the bin packing problem. Although there is no proof that an

NP-Complete problem is inherently difficult, no algorithm has been found

for any problem in this class which has less than exponential running

time for arbitrary inputs. Furthermore, finding an efficient algorithm

for any problem in the class would be tantamount to finding an efficient

algorithm for all NP-Complete problems. Thus, one should assume that

a program to solve OISP on an input file of k attributes might require

as many as 2 steps (or worse). And running the same program on a file

with k + 1 attributes might take twice as long. So the program will

only be practical for small values of k (if it is practical at all).

Observe that we have selected a rudimentary problem and shown that

any program to solve it will be inefficient. Since this simple problem

is difficult, it follows that more complicated forms of the problem

would also require large amounts of computer time to solve. Furthermore,

the result is strong in that it applies even if the attribute values

are restricted to the binary range. To see how this result extends to

the case where the indexing set selection is also based on a value

function, consider a Modified Index Selection Problem (MISP) which is

a simplification of the one given in [10). Lot tlx- probability of acccss

"'"The reader is referred to Aho et al [1] for details of NP-Complete
problems. It is reasonable to substitute "computationally difficult"
in place of "NP-Complete".

k
of attribute A^ be given by p. (subject to J p. = 1). Let the access

i=l
value of an indexing set I be the sura over all attributes in I of p . i
It is desirable to choose an indexing set with highest access value;

and yet/ one would not like to index over every attribute in the file.

One compromise might be to select a minimum size indexing set which had

the highest access value. Let MISP be the problem of finding a minimum

size indexing set of maximum access value.

THEOREM 2; MISP is at least as difficult as OISP.

PROOF: Suppose that there were an efficient program, say P, to solve

MISP. We could use P to solve OISP as follows. Let = 1/k, 1 <_ i _< k.

A minimum size indexing set would be produced by P efficiently. From the

size of the set OISP could easily be answered. But this is a contradiction

we know that OISP is difficult to solve, so program P could not exist. If

no efficient program for MISP exists, then MISP is as difficult as OISP. Q

In essence we have argued that if MISP were easy, OSIP would be easy.

Similar arguments apply to other problems in index selection.

Consequences and Conclusions?

We have shown that the index selection problem can be difficult even

for simple cost criterion using only binary files. It follows that more

complicated criteria only serve to make the problem harder. This result,

then, is a warning: although the computation time to find an optimum

index may be tolerable for some files, there are cases for which it will

be exponential.

We conclude that: 1) any program to solve the index selection problem

may require large amounts of computer time (on some inputs), 2) adding

even 1 attribute to a file could double the running time of such a program,

3) it would be unwise to incorporate such an algorithm in a database

6

system in which optimum indices were recomputed after every update

(or every few updates), and 4) the algorithm given in [10] will probably

not be improved.

Looking at our result in a different way, one can see that any

"efficient" program to solve the index selection problem (one which

requires only a polynomial amount of running time for any input) cannot

always choose an optimum set of attributes. In a sense, any fast program

must be incorrect, at least some of the time.

Despite the fact that an optimum indexing set is difficult to find,

it may be easy to approximate a solution quickly. In fact, this result

motivates the study and analysis of efficient approximation algorithms.

In situations where an approximation algorithm produced a good (but not

optimum) index selection, it could be used more often to keep the file

close to optimum. Over the long run such a solution could prove to be

quite beneficial. Therefore, more work in this area is encouraged.

7

Appendix A

(reduction for Theorem 1)

We will reduce SAT3 (satisfiability with exactly 3 literals per

clause) to OISP. Karp (3) shows that SAT3 is NP-Complte.

Let an instance of SAT3 be a Boolean formula in conjunctive normal

form with exactly 3 literals in each of its m clauses. Let there be

2n literals in B (denoted x, x, y, y, z, z in the construction). Construct

a file of 2m + n + 1 records and m + 2n attributes as shown in Figure 1.

We claim that there is an indexing set for F of size n + m iff B is

satisfiable.

Suppose B is satisfiable. Let H be a set of n literals which

satisfy B such that no pair of complementary literals appears in H.

Form an indexing set as follows: select all m attributes from set P

(as shown in Figure 1) and n attributes from set Q which correspond to

literals in H. Clearly the records in set K are distinguished by the

n selections from Q. Furthermore, records in set J are divided into

pairs by the selections from set P. Since H satisfies B, it must be

that for each pair of records in J there is some attribute in Q which

corresponds to a literal in H that is selected and hence distinguishes

the two records in the pair. Thus, if B is satisfiable, n + m attributes

are sufficient to distinguish all records.

Now suppose that there is an indexing set, I, of size n + m. At

least m attributes from set P must be in I or records 2, 4, 2m

could not be distinguished from the last record. Similarly, at least n

attributes from set Q must be included in I, one from each pair of

attributes corresponding to complementary literals, or records in set

K could not be distinguished from the last record. But consider the

8

Q

C1 C2 C3 x x y y z z

1 1

1 1 1

1 1 1

1 1
1 1

1 1

records for clause C*

records for clause C,

records for clause C.

records for clause C.,

Figure Is Sample construction for

Cj = (x+y+z), C 2 = (x-ty+z). Cj =

There are m attributes in set P,
attributes in Q which correspond
not shovm are zero,

B = ' C2 ' C3 ' % 1 w h e r e

(x-ty-te), and C^ = (x+y+z) .

one for each clause of B, and 2n
to the 2n literals of B. All values

9

pairs of records formed by selections of attributes in set P. It must be

that for each pair at least one attribute was selected from Q which

distinguished the pair. Let H be the set of n literals in B which

correspond to the n selections made from set Q. From the construction

we have that H O C^ j* 0r for 1 < i < m. Thus, H satisfies B.

Since OISP can be solved on a nondeterministic Turing Machine in

polynomial time, the theorem follows.

10

References

[1] Aho, A., Hopcroft, J., and Ullman, J., The Design and Analysis of
Computer Algorithms, Addison Wesley, 1974.

[2] Blier, R. and Vorkaus, A., "File Organization in the SCD Time Shared
Data Management (TDMS) System," Proc. of the 1968 IFIP Congress.

[3] Casey, R., "Design of Tree Structures for Efficient Querying," Comm.
of the ACM, vol 16:9 (Sept 73), pp. 549-556.

[4] Codd, E., "A Relational Model of Data for Large Shared Data Banks,"
Comm. of the ACM, vol 13:6 (June 70), pp. 377-387.

[5] Karp, R., "Reducibility Among Combinatorial Problems," in Complexity
of Computer Computations, R. E. Miller and J. W. Thatcher eds.,
Plenum Press, N.Y., 1972, pp. 85-103.

[6] King, W., "On the Selection of Indices for a File," IBM research
report RJ 1341, San Jose, CA, January 1974.

[7] Lum, V. and Long, H., "Multi-Attribute Retrieval with Combined
Indexes," Comm. of the ACM, vol 13:11 (Nov 70), pp. 660-665.

[8] Lum, V. and Long, H., "An Optimization Problem on the Selection of
Secondary Keys," Proc. ACM National Annual Conference, 1971.

19] Palermo, F., "A Quantative Approach to the Selection of Secondary
Indexes," IBM research report RJ 730, San Jose, CA, July 1970.

[10] Schkolnick, M., "The Optimal Selection of Secondary Indices for
Files," Information Systems, vol 1:4 (1975), pp. 141-146.

[11] Stonebraker, M., "The Choice of Partial Inversions and Combined
Indices," International Journal of Computer and Information
Science, vol 3:2 (June 74), pp. 167-188.

	The Difficulty of Optimum Index Solution
	Report Number:
	

	tmp.1307986960.pdf.evPeN

