
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1985

TILDE Trees in the UNIX Environment TILDE Trees in the UNIX Environment

Douglas E. Comer
Purdue University, comer@cs.purdue.edu

Ralph E. Droms

Report Number:
85-503

Comer, Douglas E. and Droms, Ralph E., "TILDE Trees in the UNIX Environment" (1985). Department of
Computer Science Technical Reports. Paper 424.
https://docs.lib.purdue.edu/cstech/424

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4971502?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

TILDE TREES IN TIlE UNIX ENVIRONMENT

Douglas Comer
Ralph E. Droms

CSD-TR-503
January 1985

Tilde Trees in the UNIX
Environment

Tilde Report CSD-TR-503

January 28, 1985

Douglas C011U!T'
RJJ.[ph E. Drom!1

ABSrRACf

TILDE is a multi-year research project exploring distributed computing in an environ
ment where the primary computing engine consists of a cluster of UNIX·liket systems
loosely coupled with high-speed local area networks. The goal of 'IU.DE is to extend UNIX
to provide a transparent integration of local and remote facilities, allowing the user access
to remote files and services without forcing the user to know about the location of data,
processes, or other objects such as servers. One important aspect of TILDE is the Tilde
naming scheme. The TILDE approach to naming objects in a distributed system provides a
transparent, consistent mechanism-fol refer~!l.cingboth local and remote objects..

The Tilde naming scheme substitutes a collection of directory hierarchies. known as
Tilde trees. for the single UNIX directory hierarchy. A program executes in an environ
ment composed of a forest of Tilde trees, which can be selected from the collection of
Tilde trees known to the distributed computing system. In the prototype, each of the Tilde
trees is mapped onto a UNIX subdirectory. As in UNIX, files are named either relative to
the current working directory, or by a full pathp.ame. Full path names begin with tilde, and
the first component identifies the appropriate Tilde tree, while the remainder of the

t UNIX is a trademark of Bell Laboratories.

·2-

pathname completely specifies the file within the Tilde tree. (The naming scheme c<:.n be
viewed as an extension to C-sbeU naming mechanism.) A particular process executing
within the TILDE system need not know the details of the storage organization or file loca
tion in the distributed '1O)'Stem; rather, there is a uniform mechanism for searching and
accessing Tilde trees.

This paper describes the naming scheme and a prototype implementation. It discusses
alternative designs and compromises imposed by the limitations of a single-processor UNIX
environment, as well as the impact of using the Tilde environment for tasks such as
software development. We show how our Tilde naming software makes it possible to move
large programs from one directory' to another or from one UNIX system to another without
recompiling (even if path names have been bound into the code). Finally, future directions
for this work, including extension to coUections of UNIX systems and modifications to
include the Tilde tree naming system in the UNIX kernel, are also discussed.

1. Introduction

1TI..DE is a multi-year project exploring distributed computing in an environment

where the primary computing engine consists of a cluster of UNIX-like systems loosely cou·,
pled with high-speed local area networks. The project addresses many research issues,

,

including naming objects in a distributed environment. The goal of "Ill.DE is to extend

UNIX to provide a transparent integration of local and remote facilities, allowing the user

access to remote files and services without forcing the user to be aware of the location of

-data, processes or other objects such a servers. Naming is the key issue involved in making

access transparent. In order to provide flexible, convenient and p>rtable names, the notion

of a single, rooted directory tree must be abandoned. For example, solutions that impose a

virtual root above all UNIX machines (e.g., [1. 2D are nontransparent because they imply

that users understand locations of files and must change software when data or programs

referenced by that software--moves. -We p~~ instead a new scheme that permits large,

complex software systems to be constructed in such a way that the directory in which the

system resides can be moved without requiring programs to be recompiled.

The conceptual change from UNIX to ow new naming scheme is simple. UNIX

employs a single directory tree per machine, with authority for names in the upper part of

the tree vested with the system programmer. Our new scheme employs a set of

-3-

independent trees, with authority for the structure of each tree vested in its owner. We

claim that:

By repladng the UNIX rree-per-machiM naming sysum with TTWltip/e independcl11

trees. we will iTllegrate local and remote nomes in10 a single mechanism, improve

software portabilif}', and retain the advantages of a hrerarchical directory system.

Our new system substitutes a collection of directory hierarchies, known as Tilde trees,

for the single UNIX directory hierarchy. A program executes in an environment composed

of a forest of Tilde trees. Each user maintains a private forest. which can be thought of as

an active subset of all Tilde trees available throughout the distributed computing system.

Each Tilde tree has a name, selected by its owner when the tree is created. Thus, a private

forest is represented by a set of tree names. The user's private forest establishes the Tilde

environment for any processes executed by the user.

Running programs, including command interpreters (which are called shells in UNIX),

reference files using names of the form:

-tree/path

where tree corresponds to the Tilde tree in which the file is located. and path pves a com·

plete path from the root of the tree to the file. For example, the name "-dedbinlxinu"

references a file named xirw in directory bin located just under the root in Tilde tree dec.

A particular process executing within the m.DE system need not know the details of the

storage organization or file location in the distributed system; rather, there is a uniform

mechanism for searching and accessing TIlde trees. Tilde trees may, in fact. be distributed

across a network transparently to the process. The process knows to name a particular file

by its Tilde name, regardless of whether the TLlde tree containing that file exists on a local

or a remote system.

·4·

2. The Tilde Tree Abstraction

A di5tributed computing environment such as 'lTI.DE provides access to objects on

many computing machines. The naming policies and name interpretation mechanisms in a

distributed environment limit the extent to which programs, processes. connections, and

data can be exchanged meaningfully. Moreover, poor names may impact program p'rtabil

ity or may restrict the usefulness of a system merely by making it inconvenient to exchange

objects or share computing services.

In distributed environments, the question of naming is central to system design. A

good naming scheme permits efficient exchange of objects by permitting processes to

exchange object names. However, names can only be exchanged freely among parts of the

system that dereference them the same way. We capture this measure of exchangability by

saying that naming is transparent if all names are known globally (i.e., if a given name

refers exactly to tbe same object independent of the context in which it is interpreted).

Name transparency is desirable, at least for names that users learn and manipulate. because

it decouples object management from object naming.

Transparency can be achieved by making all names unique. Uniqueness requires

either a central authority to designate all names, or an agreement by which individual

"sites" (e.g., a computing mechanism) can assign names. The establishment of a central

naming authority was appropriate when computing systems were independent. However, a

central naming authority becomes inefficient and a bottleneck in a distributed system. A

central naming authority also reduces the flexibility and imposes a rigidity of structure on

distributed systems. All modifications to the system structure and naming conventions must

be registered withe the central authority. Finally, naming provided by a central authority

will not be convenient for users and will not meet the users' needs for short, mnemonic

names.

-5-

Distributing the authority for Dame assignment introduces conflict (XlSSibilities because

multiple sites may choose the same name for different objects. One way to solve the

conflicts is to use location dependencies. For example. each site can be assigned a unique

site identifier, denoted sireid, and assign names as a pair (siteid/Jlherid). In practice, the

resulting name is only valid as long as the referenced object remains at its original site;

moving the object requires inventing a new name.

Site identifiers have been used to exte"lid UNIX file names to a multiple-machine

environment in [1. 2]. Both systems overload the syntax of UNIX path names, relaxing the

usual interpretation. mrs prepends machine names onto file names, making names take the

fonn TTIllchine.jile. Names in which the first component does not end with a colon are

assumed to be local file names. The Newcastle connection [1] also provides an extension to

UNIX by allowing names of the form u'..Isiteidlpath". Names that do not begin with .'/....

are interpreted with respect to the local system, so all existing software continues to operate

correctly. Because the reference _~.'I.•" does not occur in standard use, there is little possibil·

ity for inadvertent reference to a remote file. Note. however. that both examples employ

nOD-uniform names for local and remote references.

In addition to syntactic inconsistencies, location dependent schemes tie the naming of

objects to the physical organization of the distributed system, much the same as early file

systems tied the name of a file to the physical storage device on which it resided. A con·

nection between the hardware organization and the naming scheme is in.8exible because it

means that references to named objects must be changed whenever an object moves from

one machine to another.

The Tilde naming scheme solves the problem of naming in a distributed environment

in a novel way: it replaces a per-machine name binding mechanism with a per-user name

binding mechanism.. Thus, names are relative to the individual, not to the machine on

-6-

which the computation is performed. In a Tll.DE system, users can refer to a .file without

knowing the file's physical location or the location of the computational service they invoke.

Furthermore, a default set of Tilde Dame bindings. established when the user logs on the

system, allows users to refer to system directories and to each other's files almost exactly as

they would on a single UNIX system. More importantly, the Tilde naming scheme makes

local and distant file names uniform and transparent, allowing consistent access to files on

both the local and distant computing mechanisms.

3. The Prototype System.

We have implemented a prototype of Tilde naming system that executes on a conven·

tional UNIX operating system. The prototype consists of a layer of software that runs out-

side the kernel. but captures and interprets system calls (e.g.• chdlr, creal and open). The

goal of the prototype was to create an execution environment capable of supporting the typ-

ica1 edit-eompile-test program development cycle. As an experiment, we converted a subset

of the UNIX commands to run under our Tilde environment.

The prototype, which currently executes under 42bsd UNIX, can coexist with UNIX.

It maps Tilde trees onto UNIX directories and .even allcnvs the user to specify that UNIX

path names are allcnved. Our prototype includes the following components:

• A modified C library that contains, in addition to conventional C library routines, a,
set of procedures that correspond to UNIX system calls.

'.

• A modified C s~tI that supports the user interface to the Tilde environment.

• Modified utilities that have been converted to use the Tilde naming system.

• A forest of Tilde trus that provide a UNIX-like for Tilde system program execution

The components of the prototype combine to form. an experimental environment in

which users can:

-7-

• Initiat~ a session as though logging into a 'IU.DE system

• Create software that uses the Tilde naming scheme and takes advantage of the result·

ing portability aad access transparency

• Change their private Tilde forest

The next "sections describe tbe prototype in more detail.

Modified C Library. The new C library includes procedures that intercept system calls, map

references to Tilde names onto UNIX names according to the user's TIlde mapping, and call

appropriate operating system routines to access files. The new library is constructed so that

programs can be prepared to execute in the Tilde environment merely by linking them with

the new library.

The prototype passes the user's Tilde tree name bindings to subprocesses through the

UNIX environment. Tilde tables are files of mappings from Tilde Dames ooto UNIX names.

These files contain pairs of bindings. They are represented as ASCn text according to the

simple syntax:

-tildename IUNIX-path-name

where tbe symbol "I" is used to separate the Tilde tree name from the UNIX directory to

which it is bound. For example, the standard system Tilde table TILDE_SYS includes the

entries:

Din I/uSl/tildeibin
-tmp I/uSl/tildeJtmp
-etc I/ete

Because they contain ASCII text representations, Tilde tables can be manipulated just as

any other text files using utilities such as vi, sed and grep. The environment variable

TILDE_PAm defines a list of Tilde tables which are to be used in looking up a Tilde

name. When a Tilde name is encountered, the TLlde environment software performs a

linear search of the Tilde tables in the order specified by TTI...DE_PATH to find the UNIX

- 8-

name round to the Tilde na.."'DC. For the sake of efficiencyJ an in-core Tilde directory is

constructed from the environment variables at the time of the first Tilde reference. Since

the in-core di.:iectOry is constructed at the time of the first reference to a Tilde name, a pro

cess can give itself a trusted Tilde environment by making a call to a new procedure reset·

pathO that resets the Tilde diJ"ectory and TILDE]ATH to a ~t of trusted system Tilde

tables.

Modified C shell. We modified the C sheU to:

• process names that begin with ..-.. according to the Tl1de naming system•

• initiate a Tilde system session without logging out of UNIX,

- include builtin commands to manipulate the rude environment.

The Tilde csh presents users with an environment closely analogous to the initial UNIX sys

tem environment when they begin. For example. -oserld refers to the home directory of

the user with login id userld, just as with the conventional esh.

-The Tilde csb allows simulated log in making it possible to switch to a Tilde environ

ment and experiment without permanently changing login shells. The Tilde csh initializes

its TILDE_PATH to include the system Tilde tables TILDE_SYS and TILDE_USR. As

mentioned above, Tll.DE_SYS includes standard system mappings. Tll.DE_USR include:;;

mappings of userid to home diIectory for all system users, providing a mechanism similar to

the UNIX csh tilde shorthand naming. To simulate login, the Tude csh changes its working

directory to the users home directory, and maintains an internal copy of the name of its

current working directory. This current Tude directory is passed to any subprocesses

through the TILDE_CWD environment variable. Once logged in, a user invokes com

mands as usual, except that all full paths must begin with "-tree". Tilde csh. expands argu

ments into full Tilde names as well, so "echo -declbinf·" produces names like

-9-

U-dec!bin/Iriyspell" and wdeclbinlmanual", The Tr.1de esh allows modi..fication of its environ·

ment variables to allow the user to dynamically alter the tilde mappings. To keep the m

core Tilde directory up to date. it is reinitialized after every modification of an environment

variable with the prefix TILDE_"

Modified commands. We converted a subset of the utilities provided by the UNIX. system to

use the Tilde naming system. Many of the conversions involved only changing all UNIX

system names to Tilde names, and recompiling using the Tilde library.

Default Forest. The Tilde forest is composed of directories dedicated to the Tilde prototype

and directories shared with the standard UNIX system. For example, "bin maps to a new

directory that holds the modified commands. Similarly, lib and -f.m.p map to new direc

tories which we created just for the Tilde prototype. Some directories must be shared,

however. with the existing UNIX system. For example. -dey, -usradm and -etc are bound to

UNIX. directories Idev. Inst/wm and fete. respectively. Thus. Tilde prototype utilities such

as dt and who continue to function normally concurrently with the UNIX system.

Currenl prototype status. The Tilde execution environment has been used to bootstrap a

copy of all the prototype software. Temporarily, full UNIX path Dames are allowed to ease

the migration to the Tilde prototype (they can be disallowed by the user). The prototype

reports warnings of UNIX path name references. The user can suppress warnings setting

environment variable TILDE_WARN to "NO". Setting environment variable

TILDE]ULL]ATH Ie "NO" disallows any full path lelelences. Tilde !lees, as imple

mented in the prototype, do not fully conform to the abstract definition of TIlde trees. The

major difference is that the prototype's Tilde trees are not entirely disjoint, due primarily to

the mapping onto the UNIX file hierarchy. The prototype maintains its notion of current

working directory based on the Tilde name specified by cd, and does prohibit exiting the

root of a Tilde tree by changing to directory No effort is made, however. to

. ,

·10·

determine if a Tilde tree is a subset of another Tilde tree, or if subtrees of different Tilde

trees are connected by links.

Another restriction on users of the Tilde prototype is the small subset of the UNIX

utilities which has been converted to date. For example, we bave not yet tackled the

conversion of EMACS to the Tilde environment. We expect to convert more utilities after

expanding the Tilde prototype to include network file access.

4. Experiences with the Tdde System

Most of the work done under the Tilde prototype bas been software development.

We are currently using the Tilde prototype to work on the next revision of the system

itself. During development of the Tilde prototype's user environment, we discovered many

instances of the close connection between the UNIX file system naming scheme and the

UNIX utilities. We attempted to construct the rude forest to mi..J:nic the UNIX file hierar-

chy as closely as possible by defining Tilde trees such as Din, 1..ib, -tmp, etc., that

correspond to existing directories in the UNIX file hierarchy. We expected that this

correspondence would allow easy substitution of tilde names for UNIX names in the utility

programs (e.g., globally substitute ""bin for !bin), and would ease the conversion of existing

software. Unfortunately, UNIX software derives many names in Don-obvious (and generally

,
undocumented) ways. For example, the loader ld searches libraries in directories /usrllib

and /lib. This search is performed by first ~nsttueting a string "/usrmh'libname.a" and

anempting to open the file. H the open fails, the pointer is simply incremented by 4 (to

point at "l1ibllibname.a"), and the open is anempted again. Merely replacing "'usrllib" with

"-usrlib" does not produce the intended result. Csh makes use of the shared string genera--

tioo package xv. To prevent certain strings (which are dynamically altered during csh

execution) from being shared, they are declared as arrays of characters:

- 11-

char pstr[] = { '/'. 'h'. 'ii, '0'•... 0 };

(xstr does not recognize such a declaration as a character string). Of course, a global

replacement of "lbin" by "Din'" also fails to replace these declarations corre...."1.ly. Much

effort was spent in tracking down these declarations and converting them to tilde names.

5. Futon: directions

One project of immediate interest is the incorporation of the Tilde naming scheme

into the make utility. We expect to take advantage of the Tude naming scheme concept to

allow the compilation of one set of source code (maintained in a single TLlde tree) into exe

cutable code in several Tilde trees (e.g., one Tilde tree of code for each machine in a net

work). We also realize that there is work to be done to make the interface to the user's

Tilde environment more convenient. Utilities for easy modification of the Tude environ-

ment are under development. The long range goal of this project is to incorporate the

Tilde naming system into the UNIX kernels of the machines in tbe "IU..DE computing engine.

The next step is to move the translation step of the Tilde naming scheme into the kernel.

We expect, as a transition step, to build a system which supports both a standard UNIX

directory and a collection of Tilde trees, perhaps as entries in the root directory. Finally,

we will incorporate a remote file access system to provide user access to remote Tilde trees

in a transparent fashion.

6. References

(I] Brownridge, D. R., L. F. Marsba1l and B. Randell, 'The Newcastle Connection

or UNIXes of the World Unite!", Software Practice and Experience. Vol. 12

(1982), 1147-1162.

[2] TIchy, Walter F. and Zuwang Ruan, "Towards a Distributed File System,"

Proceedings of the SIll1U1IO USENlX Corrferer.ce (June, 1984), F:7-fJ7.

	TILDE Trees in the UNIX Environment
	Report Number:
	

	tmp.1307986960.pdf.t4A45

