
Purdue University Purdue University 

Purdue e-Pubs Purdue e-Pubs 

Department of Computer Science Technical 
Reports Department of Computer Science 

1986 

The Costs and Benefits of a Teaching Laboratory for the The Costs and Benefits of a Teaching Laboratory for the 

Operating Systems Course Operating Systems Course 

Douglas E. Comer 
Purdue University, comer@cs.purdue.edu 

Report Number: 
86-589 

Comer, Douglas E., "The Costs and Benefits of a Teaching Laboratory for the Operating Systems Course" 
(1986). Department of Computer Science Technical Reports. Paper 508. 
https://docs.lib.purdue.edu/cstech/508 

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. 
Please contact epubs@purdue.edu for additional information. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4971496?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci


THE COSTS AND BENEFITS OF A
TEACIllNG LABORATORY FOR THE

OPERATING SYSTEMS COURSE

Douglas Comer

CSD-TR-589
March 1986



The Costs and Benefits of a Teaching
Laboratory for the Operating Systems Course

Douglas Comer

Computer Science Department
Purdue University

West Lafayette, IN 47907

TR·CS·S89
March, 1986

During the 1985-86 academic year. the graduate-level operating systems course at
Purdue University witnessed a dramatic shift in emphasis and content when we aug
mented the classroom lectures with supervised, hands-on laboratory work. The lectures
continue to present concepts, but focus has moved from the traditional survey of topics in
concurrent computing to topics more closely related to system design. Meanwhile, the
laboratory fills two important needs: it gives the student a concrete example of the prin~

ciples discussed in class, and it introduces tools and techniques used to design, build, and
manage complex systems.

Results from the first two offerings of the laboraatory show that it is an outstanding
success. Students enjoy the opportunity to learn and use good programming tools, and to
see how a large, complex system fits together. They often spend time outside the
required laboratory hours extending assignments, and" experimenting with the system.
Surprisingly, students who learn concrete system details in lab seem to understand con
cepts better than students from previous semesters who concentrated all their efforts on
studying abstractions.

This report gives a short history of the move to laboratories, and summarizes our
experiences with the operating systems lab. It discusses the assignments, laboratory
staff, and facilities, and assesses costs including the hardware, software, and space used.



-2-

1. Introduction

In fall, 1985, the Computer Science Department at Purdue University moved into a
newly remodeled building that had been carefully planned to encourage experimental
research and encourage increased emphasis on experimentation in courses. In the new
building, 22% of the floor space was devoted to laboratories that are being used for
teaching and research.

Laboratory space in the new building was not an accident, but part of a conscious
plan to change the department. The shift to experimental computer science began over
five years earilier when we realized that both our courses and research suffered because
faculty (and students) were deprived of adequate experimental facilities. The few faculty
who managed to acquire equipment had (literally) no floor space to use it. Most realized
lhat without adequate space, power and cooling, or professional staff, equipment was
useless and experiments hopelessly difficult. So when the opportunity came to com
pletely redesign the interior of a building, the department chose to allocate significant
portions of the space to laboratories for teaching and research.

While the new building was still a dream, we proposed new experimental research
programs, and contemplated how undergraduate and graduate courses could use labora
tory facilities. We presented the administration with a plan to make programming labs a
required part of the undergraduate core courses, and outlined the need for instructional
laboratory space. We requested equipment grants from vendors and made good use of
the resulting donations. We started to offer graduate seminars in the areas of networks
and operating systems, allowing a few advanced Ph.D. students to use the meager facili
ties.

Students, who were eager for hands-on experience and willing to test their ability to
put knowledge to use on real software, made the early systems seminars exciting and pro
ductive. It became apparent that we would soon have more students interested in taking
them than we could accommodate comfortably.

2. The Xinu Project

One of the early systems seminars focused on the design and implementation of a
hierarchically structured operating system. Digital Equipment Corporation had donated
five LSI 11 microcomputers to the department, and these became the basis for a proto
type. We set the goal of producing a system capable of supporting concurrent processing
and network connections among the machines. The real goal, of course, was to under
stand operating system components, and to find an organization that was both useful and
interesting.

Surprisingly, living with the constraints of microcomputers proved to be valuable
because it made us consider the design carefully. Small memory size forced economy of
space; slow processor speed forced economy of code. Early in the project, we decided to
follow a hierarchical design in which successive levels of functionality are built using
primitives provided by lower levels; in the ideal case, no function would be duplicated.
The resulting system, called Xinu, provides impressive functionality in very little space.
It is both useful and elegant.

The Xinu project worked well because it provided a faculty member with the oppor
tunity to explore operating systems design and students an opportunity [0 become



- 3-

directly involved in the project In the first fews sernmars. st'udents built cross
development tools like compilers, loaders. and linkers, as well as downloaders and
debugging aids. They tracked down hardware details and conducted experiments to
solve small problems. Other students read design notes and code carefully (even before a
compiler was available). Within eight weeks we had successfully downloaded and exe
cuted the basic parts of an operating system; by the end of the first semester we demon
strated a ring of LSI lIs sending packets.

3. Need for a Text

During the time Xinu was built, the Department began to discuss introducing more
experimentation into conventional courses. Although extremely successful, systems
seminars involved only between 6 and 12 of the most advanced students each semester.
We talked abollt how to provide more students with the same experience. For example,
Xinu technology provided a convenient environment for learning about operating sys
tems and for testing new ideas. But the standard operating system course contained
much material, and it was not obvious how to squeeze in experimentation as well, espe
cially if students had no background.

The lack of a textbook posed the most serious problem. Few of the existing texts
discussed operating system design at all. Most surveyed topics related to operating sys
tems, dealing only with abstractions or languages for concurrent programming. Students
were left with little or no information about the internals of a system, or worse, the
impression that a special language or compiler was needed to build an operating system.

4. The Four Pieces Fall Into Place

One: A Tex,. During the 1982-83 academic year, while on sabbatical at Bell Labs,
the author wrote a textbook on operating system design using the Xinu system as an
example [COJvIE84]. The text provided one of the essential ingredients for a laboratory
oriented operating systems course, a source of infonnation on system structure and
design details.

Two: Student Background A second key ingredient occurred when faculty teaching
the compiler course switched to a UNIX-based environment, and began using C the
implementation language. Having written a compiler in C, students were prepared to
read and write C code, the implementation language for Xinu.

Three: Facilities. The third ingredient needed for a laboratory was computing facil
ities. During the 83-84 academic year, we hooked our LSI lIs to an instructional UNIX
system, and had students cross-compile and download Xinu as part of their programming
assignments. Although high machine loads made the environment less than ideal, our
early experiences with experimental facilities reinforced our belief that they would make
a significant improvement in the way students learn. Our efforts convinced the university
that we had made a serious commitment to laboratories, and showed that we desperately
needed better facilities.

We submitted proposals to Digital Equipment Corporation, and by late spring, 1985,
we had acquired a VAX 11/785, 8 LSI 11/23 systems, and two Microvax I machines for
the lab. The LSI 11/235 were faster than the early LSI 11125, and had Ethernet connec
tions, providing an environment that supported network communication as well as



- 4-

conventional operating system development. The Microvax I systems provided an
environment with paging hardware, allowing students to experiment with virtual
memory. More important, the VAX 111785 provided the computing power needed to
have multiple students in a lab working concurrently on their own operating system.

Four: The Space. The final requirement for a lab is one of the most difficult in most
universities - space. In our case, the department was preparing to move, and building
rennovations had been planned while we were acquiring equipment and planning labs. In
fact, a Xinu lab had been included in some of the earliest building plans. Thus, the lab
was in use shortly after the move.

5. The Xinu Laboratory

Currenr Faciliries. The Kinu lab currently consists of 986 square feet of fioor space
partitioned into two areas by a semipennanent, sound-absorbing wall 7 feet high. The
outer area consists of 15 work areas, each with a 3X5 table and desk area, CRT tenninal
as well as a white board which is used for instruction. Behind the wall are 7 machine
racks that house 17 Digital Equipment Corporation LSI 11s, 5 Intel Corporation 8086
machines, 2 Microvax I systems, and miscellaneous other systems. The main computing
engine is a dedicated VAX 11/785, located in an adjacent machine room.

Purpose. The Xinu lab supports both instruction and research. Students in the
operating systems course are required to enroll in one of the 3-hour sections where they
go each week to work on assigned problems. The lab problems involve modifying, rest
ing, measuring, or extending the operating system. Additional lab hours are provided to
allow students to access the facilities outside their assigned formal lab session. The lab
also supports advanced students in a graduate systems seminar, as well as several
independent study projects each semester. Finally, the lab is available to Ph.D. students
working in the general area of operating systems.

Supervision. A key part of the instructional laboratory concept is supervision. The
lab is not merely a computing facility or a quiet place to work; it is a teaching facility
where students work under the supervision of lab instructors. We want students to learn
good habits, to use tools well, to understand the concepts underlying design, and to learn
how to construct and debug systems systematically. Thus, the focus shifts from an end
product (i.e., the program) to a process (i.e., the design and implementation).

Personnel. At present, two half-time Teaching Assistants assigned to the operating
systems course supervise the lab (in addition to their usual duties in the course). They
give a short background lecture at the beginning of the lab and explain the problem to be
solved. During the lab, they visit each station, monitoring students, offering advice, and
answering questions. At the end of the lab period, they check each student's progress
and assign a grade of superior, satisfactory, or unsatisfactory. They invent supplemental
software and make sure the hardware and software are operating correcdy. The assis
tants have taken an active role in suggesting problems and preparing small pieces of
software for the assignments.

Modus Operandi. in the lab, students use the 11/785 and UNIX* Timesharing sys
tem for software development activities. They prepare a new version of their operating

'" UNIX is a trndemark of Bell Labs.



- 5-

system and then download it into one of the LSI 11 machines. Once resident, their
operating system executes independentlyJ and the software we supply automatically con
nects the student's tenninal to the console of the LSI 11 to observe results. If the operat
ing system crashes, the student can restart it, abandon it, or upload a copy of the LSI 11
memory to the VAX. Once a copy of the memory has been uploaded, the student can use
a post mortem program to pick through the image and print out information on !he
activity of each process.

6. Student Reaction

Student reaction to the hands-on laboratory experience has been almost unanimous
and positive. In the beginning, we worried that the best students would complete the
assigned problem and leave, but that has not been a problem. Students with previous sys
tems experience are eager to extend the assignments, and to explore additional parts of
the operating system. Even the students who find the assignments difficult indicate that
the lab is a positive learning experience.

Because the operating system course is not required, enrollment gives a good indi
cation of student interest. At the beginning of Spring semster 1986, the course was filled
to capacity (40), and an additional 16 students were waiting for admission. The systems
seminar was also flooded with 15 people participating. Such enrollments are especially
significant in our environment,. because students often seek advice on courses from their
predecessors and unpopular seminars vanish quickly. Thus, one generation of students is
encouraging the next generation.

Another measure of student interest is their willingness to tolerate inconvenience.
Before fall of 1987, laboratories were not part of the official registration, so students had
to adjust their schedules to squeeze in a laboratory on the first day of class. In Spring,
1986, when it became apparent that we could not accommodate the entire class during
the working week, the students themselves suggested an evening lab.

Finally, we have had increased interest in teaching assistantships. Assistants enjoy
the opportunity to devise interesting exercises, and often spend extra hours helping stu
dents with both the concepts and system details.

7. Lessons Learned.

In general, the laboratory has been a positive and stimulating experience. Students
show genuine excitement about taking concepts out of the classroom and use them to
make real systems run. Beyond that endorsement, we can relate several specific lessons
learned from the labs.

There is no replacemenr for experience. We have found that students who work on
a real system appreciate the intellectual content of the course much more than those who
do not. Faced with the difficult task of modifying or extending a system, they
comprehend the design issues, and seek principles that will help them solve problems.
We use their inquiries to point them to fundamentals, relieving us from constantly trying
to motivate them to read and study.

Robust hardware and sofnvare is needed. Because students push our systems to the
limit,. having a reliable, robust environment is essentiaL This many seem absurd in the
context of a lab that allows students to write operating systems that completely control a



- 6 -

machine. In fact, the students' code often causes the microcomputer to halt in a catas
trophic way. If any part of the support environment is unreliable, however, students tend
to blame it for their problems. Thus, we need to be able to depend on every peice we
give them so we can confidently point to their work as the problem. They need to know,
for example, that our compiler and downloader produce a reliable, correct translation of
their program; that our library procedures are correct and robust; and that our hardware is
reliable and fault tolerant.

Having a design-orienced text is essential. Our lab requires studems to apply con
cepts to practical, working systems. The lab concentrates on system details, tools, and
the problem to be solved; students depend heavily on the text for background infonna
tion. Texts that discuss only abstract concepts leave them unable to see how concepts
apply to real systems, whereas texts that present case studies concentrate on details and
fail to associate concepts with the code. Students need a text that bridges the gap and
shows principles of design that translate concepts into working systems.

Labs should be imegrated wich che course. Early laboratory assignments grew out
of conventional programming exercises. They used laboratory work to reinforce ideas in
the weeks following their presentation in class. We found by trial and error that close
coordination between lab and class works much better. \Ve now try to coordinate assign
ments so that laboratory work parallels topics in class, extending and motivating the
classroom presentation. As a result, labs deepen and broaden understanding.

Experience Wich Real Machines is Helpful. The Xinu lab grew from work on real
machines, and in the beginning we wondered whether students would learn more from a
simulated environment. In particular, we were worried that giving students a raw
machine would make their sysrems too difficult to debug. From previous experience
with a simulated environment [Comer76] we knew that they could provide detailed diag~

nostics and reproductability, making it much easier to write and debug systems. As it
turns out, having a real machine has worked well in three ways. First, students have
adapted to real machines better than expected. Although using real machines makes
debugging difficult, they have accepted the challenge and worked hard to make their
code correct. Second, dealing with hardware has added a sense of realism to the lab. For
many students, the lab is their first experience with machines that they can touch and
control. They find it satisfying and exciting to know that their operating system is not
just a toy. They take pride in making their systems work correctly. Third, having real
hardware has helped us expand and try new projects. Because it is possible to attach new
devices, or to interconnect machines, students have been able to experiment with new
disks, vinual memory, serial line interconnection among systems, and Ethemets.

Operacing System Design Is Best Understood Through Experience. Perhaps the
most important lesson we have learned is about teaching operating systems. Over two
decades of basic research has taught us much about operating systems. We know much
about individual system components, and we even know good ways to organize them.
We understand how to build reliable, useful systems, and how to reason about them. It is
time to shift emphases from courses that talk about operating sysrems to courses that
teach students how to build operating systems. There are two aspects to system
building;abstract concepts and practical knowledge. The combination of a course that
emphasis concepts and a lab that emphasizes practical systems building satisfies both.
The lab pushes students closer to the design process. They appreciate the difficulties of



- 7-

design and learn to assess the consequences of design decisions. They see, first hand,
how scientific principles guide design, and learn that concurrency is both subtle and
deep. They learn that a real operating system is among the most difficult programs to
conceive, understand, or modify. They grasp the importance of concepts and learn tools
and techniques needed for system design.

References

[Comer76] Comer, D.,"HAU411 Simulator: Software Support for a Course
in Operating Systems," froc. Texas Con! on Computing
Sysrems, Austin, Texas, 1976, 152-156.

[Corner84] Comer, D., Operating System Design: The Xinu Approach,
Prentice-Hail, 1984.


	The Costs and Benefits of a Teaching Laboratory for the Operating Systems Course
	Report Number:
	

	tmp.1307986960.pdf.DuswE

