View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Purdue E-Pubs

Purdue University

Purdue e-Pubs

Department of Computer Science Technical

Reports Department of Computer Science

1987

An Experimental Implementation of the Tilde Naming System

Douglas E. Comer
Purdue University, comer@cs.purdue.edu

Ralph E. Droms

Thomas P. Murtagh

Report Number:
86-642

Comer, Douglas E.; Droms, Ralph E.; and Murtagh, Thomas P, "An Experimental Implementation of the
Tilde Naming System" (1987). Department of Computer Science Technical Reports. Paper 558.
https://docs.lib.purdue.edu/cstech/558

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://core.ac.uk/display/4971495?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

An Experimental Implementation
of the Tilde Naming System

Douglas Comer
Ralph E. Droms
Thomas P. Murtagh

Computer Science Department
Purdue University
West Lafayette, IN 47907

CSD-TR-642
February 1, 1987

An Experimental Implementation

of the Tilde Naming System

Abstract

The Tilde naming system identifies files in & distributed computing system in & novel
way, providing e consistent, transparent mechanism for referencing both local and re-
mote files. Severel contemporary distributed systems try to provide transparent naming
by hiding complex, heterogeneous computing systems benesth a uniform, global name
evaluation environment. In the Tilde naming system, on the other hand, transparency
is achieved by providing each user with control of an independent, local name eveluation
environment. The locel naming environment supported by Tilde naming integrate local
and remote names into & single naming mechenism while improving software portability
and retaining the familiar advantages of hierarchical file naming systems.

We have constructed an experimental implementation of the Tilde neming system,
and created & computing environment sufficiently rich to support significant software
development. With this prototype, we have been able to study the effects of the Tilde
neming scheme on user environment maintenance, software project development, infor-
mation sharing and other issues. This paper summarizes Tilde naming and discusses

insights into naming mechanisms gained through the use of the experimental system.

1 Introduction

The success with which & computing system provides an abstract view of the user’s envi-
ronment can be measured by the system’s iransparency. Transparency is important to the
users of a computing system, in that increased transparency implies increased flexibility

and decreased dependency on the specific architecture of the underlying system. To the

extent thal a system is not transparent, users must be conscious of changes in the comput-
ing environment, and software systems must be altered in response to modifications in the
computing system itself.

The TILDE Project [Com84] is an investigation into distributed computing systems
in which the user interface is msed to hide the heterogeneous nature of the underlying

hardware. A TILDE Computing Engine is a cluster of UNIX-like systems loosely coupled

with high speed interconnection networks. These computing sites each provide a process- -

oriented style of computation, in which processes communicate with other local and remote
processes through the interconnection networks.

The Tilde naming system is based on a collection of smﬁ].l, disjoint namespaces, which
replace the single, global namespace of UNIX' and UNIX-like systems?. There are two
primary motivations for this fundamental difference beiween Tilde naming and more familiar
naming mechanisms. First, the locel naming environment and name evaluation mechanism
separale the tdentificalion of files from the location of files, increasing the transparency
of the naming system. Second, the organization of files into disjoint ramespaces, which
can then be identified by local names, provides a valuable style of abstraction to software
subsystems. This new naming mechanism provides transparent identification of local and
remote files, while enhancing software systern modularity and portability. The primary
penalty associated with Tilde naming is the added burden to the user of managing a local
naming environment.

To evaluate methods for minimizing the impact of name management, and to explore
the effect of Tilde naming on file naming transparency and software portability, we have
constructed an experimental implementation of the Tilde naming system. This paper con-
centrales on our experiences with the experimental system.

We have organized the remainder of this paper into three parts. The next section
summarizes the Tilde naming system, which has been described in more detail elsewhere
[CoD85,CoM85,Dr086]. Section 3 outlines the Tilde raming prototype system. The third

'UNIX is u trademark of AT&T.
IWe assume the reader is familiar with hierarchical naming sysiems such as provided by UNIX and its

derivatives. Thompson [The78] and Querlerman, et al. [QSP85], have written excellent descriptions of the
details of the UNIX file naming mechanism.

part of the paper, Sections 4, 5 and 6, illustrates the use of the Tilde naming mechanisms,
discusses insights into Tilde naming gained through the use of the experimental system,

and presents future directions for this research.

2 The Tilde Naming Systemn

In the Tilde naming sysiem, a process identifies files within a local environment called its,
Tilde Forest, which is composed of disjoint naming hierarchies known as Tilde Trees. A
Tilde Forest represents the entire file naming environment for a process. That is, a process
can gnly access files in the Tilde Trees within its Tilde Forest. File names are of the form
-tree/path where -tree selects a Tilde Tree, and path gives a complete path from the root
of the Tilde Tree to the file itself®. The first, or Tiilde Name component of a file name is
interpreted relative to the collection of Trees in the Tilde Forest. The process chooses its
own Tilde Names as identifiers for the roots of the Tilde Trees in its Tilde Forest. Figure 1
shows an example of a process and its Tilde Forest.

Each Tilde Tree also has a location independent name which is unique throughout the
Computing Engine. The name resolution mechanism identifies a Tilde Tree by this urique
name, which we call a Medusa Neme!. A Tilde Forest is represented by a list of bindings
from Tilde Names to Medusa Names, so that a file's Tilde Name is first resolved to a Medusa

Name, which the resolution mechanism then uses to locate the Tree itsell.

In the figure, the Tilde Forest extends across the Tilde Computing Engine to Tilde Trees
residing on several remote nodes. The naming environment provided by the Tilde Forest
is, therefore, not limited to & single node, but can span the entire Computing Engine.

In Figure 2, the process has three Trees in its Tilde Forest. The figure shows the internal
structure of a Tree identified by the Tilde Name -system, and illustrates the resolution of
the file name -system/cmd/1s. The resolution begins by parsing the file name into two
components, -system and /cmd/1s. The Tilde Tree named by the component -system is

identified by the entry in the Tilde Forest that maps -system to the root of the Tree. The

¥The Tilde naming system also supports the resolution of file names relative 1o a current working directory,
which are resolved in the same way a5 UNIX relative file names.

1So named because Medusa Names are ugly and slways hidden from the user.

;’ilde A N\ A A
orest) \\ A

Ptocess

+ Execution Server Storage Server

AN KA A
/\ /\

Storage Server Storage Server

Figure 1: A Process and its Tilde Forest

remaining component ol the file name, /emd/1s, then identifies the desired file within the

Tilde Tree through the file name resolution mechanism.

3 A Prototype Implementation of the Tilde Naming System

We have constructed a prototype implementation of the Tilde naming system, based on the
4.2 Berkeley Software Distribution (4.2BSD) of the UNIX operating system [BSD83] and Sun
Microsystems® Network File System (NFS) [SUN85]. The protolype runs on a network of

cmd lib exec

cat m

4 N

Is
-system %A
N\

Process [smith
“edil,

N y /\

Figure 2: Tilde Name Resolution Mechanism

VAX®and SUN-2 computers®. The goal of the prototype was to gain insight and experience
with distributed naming within a computing environment which is capable of supporting the
typical edit-compile-lest program development cycle. In addition to implementing support
of Tilde naming in the modified UNIX kernel, we converted a subset of UNIX commands to
work under the experimental Tilde environment.

The prototype includes several main components:

Modified UNIX kernel: The Tilde system functions, including simulation of Tilde Ttees,
interpretation of Tilde file names and management of Tilde Forests are implemented
through changes to the UNIX kernel.

*VAX is n trademark of Digital Equipment Corporation.
*SUN-2 is & trademark of SUN Microsystems Ine.

Bemote flle access: Sun Microsystems’ NFS is incorporated into the Tilde protoiype
through modifications to the UNIX kernel.

Forest of Tilde Trees: Users of the prototype operate within an environment of Tilde
Trees that include UNIX wutilities such as ls and rm, program development tools such
as cc and ld, editors such as vi and emacs, and other sofiware subsystems to snpport

significant software development under the Tilde system prototype.

Modified UNIX utilities: We have converted a subset of the UNIX system utilities to use

the Tilde naming system.

Modifled commend interpreter: The user interface to the Tilde namirg system is in-
corporated into the UNIX command interpreter, csh [BSD8$3], along with other mod-

ifications to converi csh Lo use the Tilde file naming scheme.

The key problems in the development of the Tilde prototype included the simulation of
Tilde Trees, the implementation of the Tilde Forest, the interpretation of Tilde file names,
the use of NFS as a remote file access mechanism for Tilde Tree access and the implemen-
tation of the user interface to Tilde naming. We will concenirate on the management of the
Tilde naming environment in this paper; other details of the prototype implementation are
discussed in “Naming of Files in Distributed Systems” [Dro86].

The details of the Tilde Forest management mechanisms are the result of a conscious
effort to build an experimental system suitable for extension. As a result, a) the kernel
primitives are minimal and b) the csh interface is extensible. The Tilde Forest management

system consists of four main components:
Kernel - new system services are used by a process to manage its Tilde Forest

Csh - csh commands give the user access to the kernel primitives for management of the

csh process’ Tilde Forest.

Csh scripts - the primitive cah interface is extended through the use of the cskh command

language to provide more powerful Tilde Forest management tools

Tilde Tree Registry - identifies the Trees within the collection of Trees managed by the
Tilde Computing Engine.

The first two components were constructed as part of the initial prototype implementation,
and are discussed here, while the remaining components were developed through the use of

the prototype and are covered in Section 4.

3.1 The Kernel Interface

The TILDE Computing Engine employs the UNIX model of process creation, in which a

new child process is instantiated as an exact copy of the reguesting parent process. The
child process inherits the execution environment of the parent process, including open files
and current working directory, Under Tilde naming, this inheritance model is extended
to include the Tilde Forest, so that a new process inherits its initial Tilde Forest from its
parent. A child process, therefore, initially resolves file names in the same environment as
its parent process, just as the child process shares other parts of its execution environment
with its parent process. Once 2 process begins independent execution, it can dynamically
alter it local Tilde Forest without affecting the naming environment of any other processes.

A process’ requirements for modification of its Tilde Forest are simple. As mentioned
earlier, the Tilde Forest consists of a list of bindings from Tilde Names to Medusa Names. A
process can modify its Tilde Forest by adding a new binding to the Forest or by deleting an
existing binding from the Forest. A process can also list the bindings in its Tilde Forest to
obiain information about its current naming environment. Adding a new binding between
8 Tilde Name and a Medusa Na;me eflectively adds a new Tilde Tree to the process’ naming
environment, making files in that new Tilde Tree accessible to the process. Similarly,
deleting a binding from the Forest effectively removes the Tree from the process’ naming
environment. These simple management mechanisms can be combined into more complex

operations, as we will see in a later section.

3.2 The Csh Interface

The csh interface to Tilde naming is simply an extension of the Forest management mech-
anisms described in the previous section. A wuser’s initial Tilde Forest, established by the

Computing Engine's session initiation mechanism, consists of a small set of Tilde Trees,

incleding a Tree in which the user can store session customization information’. Once the
initial Forest is established, the user can interactively establish a Tilde Forest with bindings
to a working collection of Tilde Trees. The basic csh interface consists of a small set of
functions similar 1o the Tilde Forest management functions available to a process, so that
the mser can add a.l new tree to his Forest, delete a Tree from his Forest, and can list the
current contents of his Forest.

The cshinterface is implemented as follows: The Tilde Computing Engine uses a process- -
based command interpreter mechanism, an extension of the UNIX csh, which executes com-
mands on behalf of the user as separate, child processes, Commmand processes, instantiated
by the command processor, inherit the command processor’s Tilde Forest and, therefore,
execute in the same naming environment as the command processor itself. The command
processor’s Tilde Forest can be thought of as the user’s Tilde Forest. Modifications to the
command processor’s Forest alter the naming environment perceived by the user. Thus,
the cah interface includes additional command interpretation to recognize user requests for
Forest modification and to execute the appropriate kernel commands for modifying csh

process’ Tilde Forest as requested.

4 Experience with Tilde Naming

We now present an informal summary of our experiences with our experimental Tilde nam-
ing implementation. First, we describe exiensions to the csh interface that support two
different classes of users: novice users, who work in a static environment of globally shared
Tilde Trees, and ezpert users, who modify their Tilde Forests dynamically to share Tilde
Trees with other groups of users. Section 4.3 explains the Tilde Tree Regisiry mechanism
for ideniification of Tilde Trees. The next two subsections illustrate the use of Tilde nam-
ing to solve naming conflicts between software subsystems and how Tilde naming provides
transparent file identification in & distributed computing environment. This section then
concludes with a description of a uniform organization of the components of a Tilde Tree

that enhances the project subtree abstraction.

"This mechanism is analogous to initial profile mechanisms such as the UNIX .login or the VM/CMS
PROFILE EXEC files.

4.1 Novice Users

The goal of minimiring the impact of Tilde naming on novice users led us to design static,
unobtrasive mechanisms that can be used and managed with little interaction on the part
of the user. Ideally, the user interface should consist of a single command, perhaps under
the control of a system administrator, that establishes a standard, consistent Tilde Forest

at the initiation of a computing session. The novice user or the system administrator can

add that single command to the user’s session initiation file, so that the user need never
issue any explicit Tilde Forest management commands.

X/e take advantage of the ability of csk to reed sequences of commands from command
scripis to extend the basic Tilde naming interface mechanisms to include simple primitives
for menagement of a standard Tilde Forest. For example, the Computing Engine admin-
istrator can maintain command scripts that define lists of Trees, such as standard system
Trees or users’ home Trees, so that the user can, with a single csh command, incorporate
standard sets of Trees into his Forest when initiating a computing session. These lists
of Tilde Trees also allow the systern administrator to install new system Trees by simply
changing the lists of standard Trees.

A user who wishes to establish a personalized Forest, different from the standard system
Forests, at the beginning of each computing session, can define his own list of Trees in a
lIocal file. Reading the file during session initiation then automatically sets up the desired
local naming environment. The mechanism for listing the user’s Tilde Forest is integrated
with the other Forest management primilives, so that a personalized Forest can be created
by interactively constructing the desired Tilde Forest and saving a listing of the Forest in a
local file.

4.2 Expert Users

More experienced users can also nse command scripts to enhance their interface to the Tilde
naming system. A user who makes modifications to his Tilde Forest may want to maintain
a consisten! environment across computing sessions, retaining changes to the environment
rather than establishing a standard, default environment. If the user saves a copy of his

Forest when he terminates a session, and reestablishes that Forest when he initiates the

next session, the user’s naming environment can be retained across sessions.

The ability to quickly switch between multiple naming environments is nseful to soft-
ware developers. For example, when developing a software subsystem for distributior to
other Computing Engines, the user will want to iest the components of the system in a min-
imal Tilde naming environment composed of only commonly available Tilde Trees, while
developing the code in a more extensive environment. This management function can be
accomplished by listing both Tilde Forests in disk files, and creating a command script that

deletes the existing Forest and reads in a new Forest from & disk file,

4.8 The Tilde Tree Registry

The environment management primitives discussed in the previous sections assume a mech-
anism for the identification of Tilde Trees that are not in the Tilde Forest. While the kernel
and csh primitives for Foresi management use Medusa Names for this purpose, Medusa
Names are not an appropriate mechanism for users to identify Tilde Trees. Medusa Names
are not mnemonic and are not chosen by the user; they exist only for the convenience of the
underlying name resolution mechanism. Therefore, in the Tilde naming system prototype,
we constructed another mechanism for the identification of Tilde Trees.

The Tilde Tree Registry is a collection of information describing each of the Trees man-
aged by the Tilde Computing Engine. Each Tilde Tree has an entry in the Registry that lists
the Tree's distinguishing characteristics. The Registry accepis database-style queries and
relurns information about identified Trees. The Registry mechanism is coordinated with
the user interface to the Tilde Forest, so that the results of Registry requesis can be com-
posed with Tilde Forest management commands into more powerful mechanisms. Figure 3
illustrates the information retained in the Tilde Tree Registry database. The information
stored in the Registry includes the Tilde Tree’s owner and creation date, a short comment
describing the contents of the Tilde Tree, and the Tree’s Tilde and Medusa Names.

4.4 Establishment of New Project Subtrees

Frequently, new subtrees are added to existing naming organizations to install new software

subsystems, add a new user io a computing environment or develop an experimental version

10

Medusa Tilde Name Owner Creation Comment

Name Date
blays0000 -system binary 11/02/85 blays’ systemn Tilde Tree
merlin0000 -system binary 01/04/86 merlin’s system Tilde Tree
blays0080 ~edit binary 01/10/86 experimenta! Edit
blays0079 ~edit binary 01/05/86 production Edit
merlin0132 ~smith smith 12/10/86 user smith’s home Tilde Tree

Figure 3: Tilde Tree Registry Database

“of an existing software subsystem. In a globally shared hierarchical naming system, each
new subtree must be given a.system-wide unique name.

Consider the development of a new version of a software subsystem, in an environiment
where there is a large user community that depends on the availability and stability of the
original, or production, version of the subsystem. One solution is to create a copy of the
subsystem’s project subtree, which can then be modified without affecting the users of the
original version. Figure 4 gives an example of a global naming hiexarchy in which a new,
experimental version of the edit project subtree has been installed under the directory
edit-exp. In Figure 4, references to the components of the experimental version of the
editor subsystem must all be changed from /cmds/edit to /cmds/edit-exp to reflect the
new name of the root of the projeci subtree. In typical software subsystems, these references
are scaltered throughout the subsystem source code, and generated in obscure and arcane
ways, so that it is inconvenient to locate and alter all these internal references.

In the Tilde naming environment, the experimental version of the edilor can be created
as a new Tilde Tree containing copies of all the components of the production Tilde Tree.
The experimental Tilde Tree is entered into the Tilde Tree Registry with the same Tilde
Name as the production Tree, but with a urniqne Medusa Name differentiating the experi-
mental and production Trees. In this instance, then, a user developing the new version of
the editor can bind the development Tree into his Tilde Forest under the Tilde Name -edit,
while the rest of the nser community will continue to bind the production Tree to the name
-edit. Figure 5 gives an example of two processes, both of which use -edit to reference

the production and experimental versions of the editor subsystem. In the figure, the two

11

cmd exec exec

\

edit edit-exp

/N /\

exec

N 7N\

search sort search sort

Figure 4: Creation of an Experimental Version of a2 Software Subsystem

Tilde Trees are identified by their respective Medusa Names. The two processes are able to
use the two versions of the editor without making changes to the software subsystems; the
bindings in the Tilde Forests cause internal references between editor system components

to resolve to files in the appropriate Tilde Tree.

4.6 TUse of Tilde Naming in the Client-Server Model

We have explained how the Tilde naming mechanism supporis transparency through in-
heritance of the Tilde Forest by child processes. There is another mechanism for remote
execution, called the Clienl-Server model, which uses inter-process communication between
clients and servers for the execuilion of services, as opposed to the command interpreter’s
use of child processes. Inheritance of the Tilde Forest does not apply, since the two com-
municating processes do not share a common ancestor. -

Members of the DASH project[Kor84] experimented with the sharing of Tilde Forests
between Client and Server processes [Wil86). The DASH system uses a Client-Server mech-

anism for service execution, in which Client processes on workstations reqnest services from

12

a I

~system (
Process -smith

A
~edit ’) cmd exec

X) AN

search sort
(Tilde Tree blays0079)

4)

~system
ProBcess —smith
-edit cmd exec

search sort
{Tilde Tree blays0080)

Figure 5: Creation of an Experimental Tilde Tree

13

Server processes on hosts. To preserve transparency, a Client must transmit its execution
envitonment to the Server, so that the sexrvice can be performed in the expected environ-
ment. For example, a Client can share its Tilde Forest with a Server by first listing the
Forest, sending a representation of the Forest bindings to the Server, and requesting that
the Server establish those bindings in its Tilde Forest.

This mechanism for passing a Tilde Forest between processes is equivalent to the in-
heritance of an initial Tilde Forest by s child process. However, there is a potential for
conflict between the Client and the Sezrver, because the two processes may bind a particular
Tilde Name to two different Tilde Trees. In practice, this conflict did not arise and was not

thought to be a serious problem.

4.8 Organizgation of Tilde Trees as Project Subtrees

The set of Tilde Trees in the experimental system represents a reorganisation of the files
supplied with the UNIX operating system. The Trees are organired according to the project
subtree paradigm, so that each Tilde Tree represents a separate software subsystem. Com-
ponents of a software subsystem are collected into & single Tilde Tree, rather than stored
in directories shared by many software subsystems.

As work on the experimental system progressed, we found that meny software subsys-
tems share a common internal organization. Reorganising the files in these subsystems
according to a standard structure creates a uniform external interface for the soflware

packages. Components of software subsystems fall into seven categories®:

Commends - commands executed by the user; the system’s external interface.
Executables - executable modules not directly invoked by the users.

Databeses - text-oriented dala files shared by the system components.

Libraries - collections of non-textual information (e.g., separately compiled modules)

Sources - used to construct the system components.

*These categories are defined based on our experience with UNIX-based software subsystems. We do not

claim that this organizetion would be useful in ether environments.

14

~“CC

cmd exec lib db src include doc

Figure 6; Skeletal Tilde Tree Structure

Included files - text modules shared among system source files.

Documentation - all documentation such as user manual entries and descriptive papers.

Figure 6 gives a diagram of the skeletal Tilde Tree structure showing the file names
chosen for the directories representing each of the seven major components. The components
of the C language subsystem illustrate the use of several of the component directories in

Figures 7 and 8.

B Conclusions

In the introduction to this paper, we state that the design of flexible, effective and convenient
naming systems is a difficnlt problem, especially in distributed computing environmments.
Through our experience with distributed computing environrments, we have established
several important features desirable in naming mechanisms. The Tilde naming system
incorporates those features by replacing the single, globally shared naming enviromment
with local, per-process naming environments.

To investigate Tilde naming in a real-world environment, we have constructed anr ex-
perimental network operating system that incorporates a prototype of the Tilde naming
mechenism. This experimental compating environment includes modifications to the UNIX
operating system kernel, modified versions of existing application programs and newly cre-

ated software which supports significant computation such as software development.

15

“cC

cmd exec Iib db 8IC include doc
cc as Id ccom ¢2 libc.a cmd-exec stdio.h man
Cc As Id.c manl

cc.l as.1 Id.1

Figure 7: Structure of the C Compiler Tilde Tree

Component Description Location
cc,as,Id application programs ~cc/emd

ccom,c2 executable submodules of compiler -~cc/exec -

libc.a subroutine library ~cc/flib

Cc,As,ld.c source code fileg ~cc/srcfcmd-exec
stdio.h shared header files ~cc/include
cc.l,ls.1,ld.1 online documentation -cc/doc/man/manl

Figure 8: Components of the C Compiler Tilde Tree

Experience with the prototype implementiation has supported the basic design of the
Tilde naming system, and has directed our research into distributed naming systems. We
have experimented with extensions to the user interface of the Tilde naming environment,
and have constructed new software subsystems that utilise the enhanced portability pro-
vided by Tilde naming. As a result of our effort to convert existing UNIX software to the
Tilde naming system, we have identified a useful strategy for the organisation of the files
within a Tilde Tree.

There are several directions for futuvre work in this area:

e The curreni experirnental system uses a broadcast mechanism to locate a Tilde Tree
in the Computing Engine. This mechanism will not scale well to larger Computing

Engines, and should be replaced by & dynamic location mechanism.

o Trusted software can be spoofed by the current Tilde Forest inheritance mechanism.
To ensure security, a trusted process must be able to verify its file naming environment

by examining and specifying its Tilde Forest.

o There is no inherent limitation that precludes the extension of the Tilde naming
environment across administrative boundaries between TILDE Computing Engines.
However, the details of Tilde Tree identification and location in an inter-Computing
Engine environment will require changes in our basic assumptions. For example, a
Tree’s Medusa Name may be dependenl on the Computing Engine at which the Tree
is stored (but not on the Tree's specific location within the Computing Engine).

The Tilde naming system increases the transparency of a distributed system and en-
hances software portability by isolating the identification of a file from the access to that
file. The local, per-process Tilde naming environment provides storage and resolution site
transparency, and an absiract style of identifying collections of files with a single name.
These advantages incur an additional overhead of name environment management; ihis
overhead is minimized through careful design of the process and user interfaces to the nam-
ing mechanism. Through the use of an experimental computing environment based on the
Tilde naming system, we have found Tilde naming to be a viable, productive and unseful

alternative to contemporary distributed naming systems.

17

References

[BSDS3]

[Com84]

[CoD85]

[CoM85]

[Dro86)

[Korg4]

[QSPs5]

[SUN85)

[Tho78]

UNIX Programmer’'s Manual, {.2 Berkeley Software Distribution, Virtual
VAX-11 Version, Computer Science Division, Department of Electrical En-

gineering and Computer Science, University of California, Berkeley, CA, 1983.

Comer, D., Transparent Integrated Local and Distributed Environments
(TILDE) Project Overview, CSD-TR-466, Department of Computer Sciences,
Purdue University, West Lafayette, IN, 1984,

Comer, D. and R. E. Droms, Tilde Trees in the UNIX Environment, Proc. of
the Winter 1985 Ureniz Conf., Dallas, TX, Jan. 1985.

Comer, D. and T. P. Murtagh, The Tilde File Naming Scheme, Proceedings
of the Sixth Int. Conf. on Distributed Computing Systems, Cambridge, MA,
May, 1986 (509-514).

Droms, R. E., Naming of Files in Distributed Systems, Ph. D. dissertation,
Department of Computer Sciences, Purdue University, West Lafayette, IN,
1986.

Korb, 1. T., An Overview of the DASH Intelligent Terminal Pzoject, CSD-TR-
492, Department of Computer Sciences, Purdue University, West Lafayette,
IN, Sep. 1984,

Quarterman, J. S., A. Silberschatz and J. L. Peterson, 4.2BSD and 4.3BSD as
Examples of the UNIX System, ACM Comp. Sur. 17, 4 (Dec. 1985), 379-418.

Networking on the Sun Worksiation, Sun Microsystems, Inc., Mountain View,
CA, May 1985.

Thompson, K., UNIX Implementation, The Bell System Technical Journal 57,
6 (July-Aug. 1978), 1931-1946.

18

[Wilg6) Wills, C. E., The Use of Services in the TILDE Environment, CSD-TR-656,
Department of Computer Sciences, Purdue University, West Lafayette, IN
Dec. 19886.

19

	An Experimental Implementation of the Tilde Naming System
	Report Number:
	

	tmp.1307986960.pdf.MtkzO

