
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1987

An Experimental Implementation of the Tilde Naming System An Experimental Implementation of the Tilde Naming System

Douglas E. Comer
Purdue University, comer@cs.purdue.edu

Ralph E. Droms

Thomas P. Murtagh

Report Number:
86-642

Comer, Douglas E.; Droms, Ralph E.; and Murtagh, Thomas P., "An Experimental Implementation of the
Tilde Naming System" (1987). Department of Computer Science Technical Reports. Paper 558.
https://docs.lib.purdue.edu/cstech/558

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4971495?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

An Experimental Implementation
of the Tilde Naming System

Douglas Comer
Ralph E. Droms

Thomas P. Murtagh

Computer Science Department
Purdue University

West Lafayette, IN 47907

CSD·TR·642
February 1, 1987

An Experimental Implementation

of the Tilde Naming System

Abstract

The Tilde naming system identifies files in a dilltributcd computing system in a novel

way, providing a consistent, transparent mechanism for referencing both local and re­

mote files. Several contemporary distributed systems try to provide transparent naming

by hiding complex, heterogeneoul computing Iydems beneath a uniIonn, global name

evaluation environment. In the Tilde naming system, on the other hand, transparency

is achieved by providing each uscr with control of an independent, local RBme evaluation

environment. The local Raming environment supported by Tilde naming integrate local

and remote names into a single naming rneclumism while improving software portability

and retaining the familiar advantages of hierarchical file naming systems.

We have constructed an experimental implementation of the Tilde naming system,

and created a computing environment sufficiently rich to support significant sonware

development. With this prototype, we have been able to Itudy the effects of the Tilde

narning scheme on uler environment maintenance, soItware project development, infor­

mation sharing and other issues. This paper liummarizes Tilde naming and discu8Ses

insights into naming mechanisms gained through the Ule of the experimental system.

1 Introduction

The success with which a computing system provides an abstract view of the user's envi.

ronment can be measUl'ed by the system's tranlparency. Transparency is important to the

users of a computing system, in that increased transparency implies increased flexibility

and decreased dependency on the specific architectme of the underlying system. To the

I

extent that a system is not transparent, users must be conscious of changes in the comput·

ing environment, and software systems must be altered in response to modifications in the

computing system itself.

The TILDE Project [Com84] is an investigation into distributed computing systems

in which the user 'interface is used to hide the heterogeneous natuze of the underlying

hardware. A TILDE Computing Engine is a cluster of UNIX·like systems loosely coupled

with high speed interconnection networks. These computing sites each provide a process- .

oriented style of computation, in which processes communicate with other local and remote

processes through the interconnection networks.

The Tilde naming system is based on a collection of small, disjoint namespaces, which

replace the single, global namespace of UNIX I and UNIX-like systems~. There are two

primary motivations for this fundamental difference between Tilde naming and more familiar

naming mechanisms. First, the local naming environment and name evaluation mechanism

separate the identification of files from the location of files, increasing the transparency

of the naming system. Second, the organization of files into disjoint namespaces, which

can then be identified by local names, provides a valuable style of abstraction to software

subsystems. This new naming mechanism provides transparent identification of local and

remote files, while enhancing software system modularity and portability. The primary

penalty associated with Tilde naming is the added burden to the user of managing a local

naming environment.

To evaluate methods for II'lininWing the impact oC name management, and to explore

the effect of Tilde naming on file naming transparency and software portability, we have

constructed an experimental implementation of the Tilde naming system. This paper con·

centrates on our experiences with the experimental system.

We have organized the remainder of this paper into three parts. The next section

summarizes the Tilde naming system, which has been described in more detail elsewhere

[CoD85,CoM85,Dr086]. Section :3 outlines the Tilde naming prototype system. The third

'UNIX is a trademark of AT&T.
3We anume the reader is familiar with hierllrchical naming .",fem, such as provided by UNIX and its

derivatives. Thompson [Tho78] Ind Quarlerman, et 11.1. [QSP8S]. have written excellent descriptions of the

details of the UNIX file naming mechanism.

2

part of the paper, Sections 4, 5 and 6, illustrates the use of the Tilde naming mechanisms,

discusses insights into Tilde naming gained through the use of the experimental system,

and presents futme directions for this research.

2 The Tilde NllIIling System

In the Tilde naming system, a process identifies files within a local environment called its,

Tilde Fared! which is composed of disjoint naming hierarchies known as Tilde Tree,. A

Tilde Forest represenb the entire file naming environment for a process. That is, a process

can..gnly access files in the Tilde Trees within its Tilde Forest. File names are of the form

-~ree/pa~h where -tree selects a Tilde Tree, and path gives a complete path from t.he root

of the Tilde Tree to the file itself. The first, or Tilde Name component of a file name is

interpreted relative to the collection of Trees in the Tilde Forest. The process chooses its

own Tilde Names as identifiers for the roob ofthe Tilde Trees in its Tilde Forest. Figure 1

shows an example of a process and its Tilde Forest.

Each Tilde Tree also has a location independent name which is unique throughout the

Computing Engine. The name resolution mechanism identifies a Tilde Tree by this unique

name, which we call a Med'lua Name4• A Tilde Forest is represented by a list or bindings

from Tilde Names to Medusa Names, so that a file's Tilde Name is first resolved to a Medusa

Name} which the resolution mechanism then uses to locate the Tree itseU.

In the figure, the Tilde Forest extends across t.he Tilde Computing Engine t.o Tilde Trees

residing on several remote nodes. The naming environment provided by the Tilde Forest

is, therefore, not limited to a single node, but can span the entire Computing Engine.

In Figure 2, the process has three Trees in its Tilde Forest. The figure shows the internal

structure of a Tree identified by the Tilde Name .system, and illustrates the resolution of

the file name ·system/cmd/ls. The resolution begins by parsing the file name into two

components, ·system and Icmd/ls. The Tilde Tree named by t.he component ·system is

identified by the entry in the Tilde Forest that maps .system to the root of the Tree. The

JThe Tilde namins system aho IUpporh the resolution oC file names rdative 10 a current workin! directory,

which are resolved in the same way as UNIX relative file nameS.

tS o named because Medusa Names are ugly and always hidden from the user.

3

D DITildeProcess F I 0ores

6
Execution Server Storage Server

D /\ /\ D
D D

Storage Server Storage Server

Figure 1: A Process and its Tilde Forest

remaInIng component of the file name, /cmd/ls, thell identifies the desired file within the

Tilde Tree through the file name resolution mechanism.

3 A Prototype Implementation of the Tilde Naming System_

We have constructed a prototype implementation of the Tilde naming system, based on the

4.2 Berkeley Software Distribution (4.2BSD) of the UNIX operating system [BSD83J and Sun

Microsyslems' Network File System (NFS) [SUN85]. The prototype runs on a network oC

4

<md

/\
,,'

t-~,~Y~,~,,~m~~~==~Process -smith
wedit

"-------."

Jib exec

Figure 2: Tilde Name Resolution lIIechanism

VAXsand SUN·2 computers6
. The goal of the prototype was to gain insight and experience

with distributed narning ithin a computing environment which is capable of supporting the

typical edit-compile-test program development cycle. In addition to implementing support

oC Tilde naming in the modified UNIX kernel, we com'crted a subset of UNIX commands to

work under the experimental Tilde environment.

The prototype includes several main components;

Modified UNIX kernel: The Tilde system [unctions, illcluding simulation of Tilde Trees,

interpretation of Tilde file names and management of Tilde Forests are implemented

through changes to the UNIX kernel.

SVAX is a trademark of Digital Equipment Corporation.

'SUN-2 is a trademark of SUN 1I,ticrosystcms Inc.

5

Re:mote file access: Sun Microsystems' NFS is incorporated into the Tilde proto'ype

through modifications to the UNIX kernel.

Forest of Tilde Treesl Users of 'he prototype operate within an environment of Tilde

Trees that include UNIX utilities such as " and rm, program development tools such

89 ce and ld. editors such as vi and emae8, and other software subsystems to support

significant software development under the Tilde system prototype.

Modified UNIX utilities: We have converted a subset of the UNIX system utilities to use

the Tilde naming system.

Modified comnumd interpreter: The user interface to the Tilde naming system is in­

corporated into the UNIX command interpreter, e,h [BSD83], along wit.h other mod­

ifications to convert e8h to use the Tilde file naming scheme.

The key problems in the development of the Tilde prototype included the simulation of

Tilde Trees, the implementation of the Tilde Forest, the interpretation of Tilde file names,

the use of NFS as a remote file access mechanism for Tilde Tree access and the implemen­

tation of the user interface to Tilde naming. We will concentrate on the management of the

Tilde naming environment in this paperj other details of the prototype implementation are

discuslled in "Naming of Files in Distributed Systems" [Dr086J.

The details of the Tilde Forellt management mechanisms are the result of a conscious

effort to build an experimental system suitable for extension. As a result, a) the kernel

primitives are minimal and b) 'he e,h interface is extensible. The Tilde Forest management

system consists of fOUl main components:

Kernel - new sys'em services are used by a process to manage its Tilde Forellt

Csh - e8h commands give the user access to the kernel primitives for management of the

elh process' Tilde Forest.

Csh scripts - the primitive elh interface is extended through the use of the elh command

language to provide more powerful Tilde Forest management tools

Tilde Tree Registry - identifies the Trees within the collection of Trees managed by the

Tilde Computing Engine.

6

The fust two components were construded as part of the initial prototype implementation,

and are discussed here, while the remaining components were developed tluough the use of

the prototype and are covered in Section 4.

3.1 The Kernel Interface

The TILDE Computing Engine employs the UNIX model of process creation, in which a

new child process is instantiated as an exad copy of the requesting parent process. The

child process inherits the execution environment of the parent process, including open files

and cwrent working directory. Under Tilde naming, this inheritance model is extended

to include the Tilde Forest, 50 that a new process inherits its initial Tilde Forest from its

parent. A child process, therefore, initially resolves file names in the same environment as

its parent process, just as the child process shares other parts of its execution environment

with its parent process. Once a process begins independent execution, it can dynamically

alter its local Tilde Forest without affecting the naming environment of any other processes.

A process' requirements for modification of its Tilde Forest are simple. As mentioned

earlier, the Tilde Forest consists of a list of bindings from Tilde Names to Medusa Names. A

process can modiIy its Tilde Forest by adding a new binding to t.he Forest or by deleting an

existing binding from the Forest. A process can also list the bindings in its Tilde Forest to

obtain information about its cunent naming environment. Adding a new binding between

a Tilde Name and a Medusa Name effectively adds a new Tilde Tree to the process' naming

envilonment, making files in that new Tilde Tree accessible to the process. Similarly,

deleting a binding from the Forest effectively removes the Tree from the process' naming

environment. These simple management mechanisms can be combined into more complex

operations, as we will see in a later section.

3.2 The Csh Interface

The clh interface to Tilde naming is simply an extension of the Forest management. mech­

anisms described in the previous section. A user's initial Tilde Forest, established by the

Computing Engine's session initiation mechanism, consists of a small set of Tilde Trees,

7

including a Tree in which the user can store session customization information7. Once the

initial Forest is estabfuhed, the user can interactively estabfuh a Tilde Forest with bindings

to a working collection of Tilde Trees. The basic c,h interface consists of a small set of

functions similar 1.0 the Tilde Forest management functions available to a process, so that

the user can add a new tree to his Forest, delete a Tree nom his Forest, and can fut the

CUIlent contents of his FOlest.

The c,hinterface is implemented as follows: The Tilde Computing Engine uses a process­

based command interpreter mechanism, an extension of the UNIX c,h, which executes com­

mands on behalf of the user as separate, child processes. Command processes, instantiated

by the command processor,' inherit the command processor's Tilde Forest and, therefore,

execute in the same naming environment as the command processor itself. The command

processor's Tilde Forest can be thought of as the user's Tilde FOIest. Modifications to the

command processoI's For-est alter the naming environment peIceived by the nser. Thus,

the c,h inteIface includes additional command interpretation to recognize user requests for

FOIest modification and to execute the appropriate kernel commands fOI modifying c,h

process' Tilde Forest as requested.

4 Experience with Tilde Naming

We now present an infoImal summary of OUI expeIiences with our experimental Tilde nam­

ing implementation. First, we describe extensions to the c,h interface that support two

diffeIent classes of users: novice U6frl, who work in a static environment of globally shared

Tilde Trees, and eqJfrt uaer" who modify their Tilde Forests dynamically to shale Tilde

Trees with other groups of users. Section 4.3 explains the Tilde Tree Registry mechanism

for identification of Tilde Trees. The next two subsections illustrate the use of Tilde nam­

ing to solve naming conflicts between software subsystems and how Tilde naming provides

transparent file identification in a distributed computing environment. This section then

concludes with 8 descIiption of a unil'oIm olg8ni:zation of the components of a Tilde Ttee

that enhances the pIoject subtree abstraction.

'This mechanism is analogous to initial profile mechanisms such as the UNIX .login or the VM/CMS

PROFILE EXEC files.

8

4.1 Novice Users

The goal of minimizing the impact of Tilde naming on novice users led us to design static,

unobhusive mechani!Jms that can be used and managed with little interaction on the part

of the user. Ideally, the user interface should consUlt of a single command, perhaps under

the conhol of a system adm.inistrator, that establishes a standard, consistent Tilde Forest

at the initiation of a computing session. The novice user or the system administrat.or can.

add that single command to the user's session initiation file, so t.hat. the user need never

issue any explicit Tilde Forest management commands.

We take advantage of t.he ability of uh to read sequences of commands from command

Icripb to extend the basic Tilde naming interface mechani!Jms to include simple primitives

for management of a standard Tilde Forest. For example, t.he Computing Engine admin­

istrator can maintain command scripts that define lisLs of Thees, such as standard system

Trees or users' home ·Trees, so that the user can, with a single c,h command, incorporate

standard sets of Trees into his Forest when initiating a computing session. These lists

of Tilde Trees al.!o allow the system administrator t.o install new system Trees by simply

changing the lists of standard Trees.

A user who wishes to establish a personalized Forest, different. from the standard system

Forests, at t.he beginning of each computing session, can define his own list of Trees in a

local file. Reading the file during session initiat.ion then aut.omatically sets up the desired

local naming environment. The mechanism for listing the user's Tilde Forest is integrated

with the other Forest management primitives, so that a personalized Forest can be created

by int.eractively conshueting the desired Tilde Forest and saving a lliting of the Forest in a

local file.

4.2 Expert Users

More experienced users can also use command scripts to enhance their interface to t.he Tilde

naming system. A user who makes modifications to his Tilde Forest may want to maintain

a consistent environment across computing sessions, retaining changes t.o the environment

rather than establishing a standard, default environment. If t.he user saves a copy of his

Forest when he terminates a session, and reestabllihes that Forest when he initiates the

9

next session, the user's naming environment can be retained aClOSS sessions.

The ability to quickly switch between multiple naming environments u useful to soft­

ware developels. For example, when developing a softwale subsystem for distribution to

othel Computing Engines, the user will want to test the components of the system in a min­

imal Tilde naming environment composed of only commonly available Tilde Trees, while

developing the code in a more extensive environment. This management function can be

accomplished by listing both Tilde Forests in disk files, and creating a command script that

deletes the existing Forest and reads in a new Forest from a disk file.

4.3 The Tilde Tree Registry

The environment management primitives discussed in the previous sections assume a mech­

anism for the identification of Tilde Trees that are not in the Tilde Forest. While the kernel

and csh primitives for Forest management use Medusa Names for this purpose, Medusa

Names are not an appropriate mechanism for users to identify Tilde Trees. Medusa Names

are not mnemonic and are not chosen by the userj they exist only for the convenience of the

underlying name resolution mechanism. Therefore, in the Tilde naming system plototype,

we constructed another mechanism for the identification of Tilde Trees.

The Tilde Tree Regiltry is a collection of information describing each of the Trees man­

aged by the Tilde Computing Engine. Each Tilde Tree has an entry in the Registry that lists

the Tree's distinguishing characteristics. The Registry accepts database-style queries and

returns information about identified Trees. The Registry mechanism is cooldinated with

the user interface to the Tilde Forest, so that the results of Registry request! can be com­

posed with Tilde Forest management commands into more powerful mechanisms. Figure 3

illustrates the information retained in the Tilde Tree Registry database. The information

stored in the Registry include! the Tilde Tree's owner and creation date, a" short comment

describing the contents of the Tilde Tree, and the Tree's Tilde and Medusa Names.

4.4 Establismnent of New Project Subtrees

Frequently, new subtrees are added to exi.9ting naming orgaIili;ations to install new software

subsystems, add 8 new user to a computing environment or develop an experimental version

10

Medusa Tilde Name Owner Creation Comment
Name Date

biaysOOOO -system binary 11/02/85 blays' sy6tem Tilde Tree
merlinOOOO -syatem binary 01/04/86 merlin', system Tilde Tree
biaysOO80 ~edit binary 01/10/86 experimental Edit
blaysOO7Q ~edit binary 01/05/86 production Edit
merlin0132 ~smith smith 12/10/86 user smith's home Tilde Tree

Figure 3: Tilde Thee Registry Database

of an existing software subsy_stem. In a globally shared hierarchical naming system, each

new subtree must be given a system-wide unique name.

Consider the development of a new version of a software subsystem, in an environment

where there is a large user community that depends on the availability and stability of the

original, or production, version of the subsystem. One solution is to create a copy of the

subsystem's project subtree, which can then be modified without affecting the users of the

original version. Figure 4 gives an example of a global naming hierarchy in which a new,

experimental version of the edit project subtree has been installed under the directory

edit-expo In Figure 4, reCerences to the components oC the experimental version of the

editor subsystem must all be changed from !cmds!edit to !cmds!edit-e::J:p to reflect the

new name of the root of the project subtree. In typical sonware subsysteIrul, these reCerences

are scaUered tmoughout the subsystem source code, and generated -in obscure and arcane

ways, so that it is inconvenient to locate and alter all these internal references.

In the Tilde naming environment, the experimental version of the editor can be created

as a new Tilde Thee containing copies of all the components oC the production Tilde Tree.

The experimental Tilde Tree is entered into the Tilde Tree Registry with the same Tilde

Name as the production Tree, but with a unique Medusa Name differentiating the experi­

mental and production Trees. In this instance, then, a user developing the new version of

the editor can bind the development Tree into his Tilde Forest under the Tilde Name -edit,

while the rest of the user community will continue to bind the production Tree to the name

-edit. Figure 5 gives an example of two processes, both of which use -edit to reference

the production and experimental versions of the editor subsystem. In the figure, the two

II

cmd

/
edit

I... \

exec exec

edit-exp

I... \
cmd lib

/. .. "-.
cmd exec

/. .. "-.
,earch sort search sott

Figure 4: Cleation of an Experimental Version of a Software Subsystem

Tilde Ttees 8re identified by their respective Medusa Names. The two processes are able to

use the two versions of the editor without making changes to the software !Iubsystemsj the

bindings in lohe Tilde Forests cause internal references between editor system components

to resolve to files in the appropriate Tilde Tl:ee.

4.6 Use of Tilde Naming in the Client-Server Model

We have explained how the Tilde naming mechanism supports transparency through in­

heritance of the Tilde Forest by child processes. There is another mechanism fOI remote

execution, called the Client-Server model, which uses inter-process communication between

clients and servers for the execution of services, as opposed to the command interpreter's

use of child processes. Inheritance of the Tilde Forest does not apply, since the two com­

municating processes do not share a common ancestor.

Members of the DASH projed[Kor84] experimented with the sharing of Tilde Forests

between Client and Server processes [Wil86J. The DASH system uses a Client·Server mech·

anism for service execution, in which Client processes on workstations request services from

12

-system
Process ·smith

A
-edit

r
cmd exec

/ ..."
search sort

(Tilde Tree blays0079)

·system
Process -smith ...

B
-edit ,md exec

/. .."
search sort

(Tilde Tree blays0080)

Figure 5: Creation of an Experimental Tilde Tree

13

Sener processes on hosts. To presene transparency, a Client must transmit its execution

environment to the Sener, so that the service can be performed in the expected environ­

ment. For example, a Client can share its Tilde Forest with a Server by first listing the

Forest, sending a representation of the Forest bindings to the Sener, and requesting that

the Sener establlih those bindings in its Tilde Forest.

This mechanism for passing a Tilde Forest between processes is equivalent to the in­

heritance of an initial Tilde Forest by B child process. However, there is a potential for

conllict between the Client and the Server, because the two processes may bind a plUticular

Tilde Name to two different Tilde Trees. In practice, this conflict did not arise and was not

thought to be a serious problem.

4.6 Organization of Tilde Trees as Projed Subtrees

The set of Tilde Trees in the experimental system represents a reorganization of the files

supplied with the UNIX operating system. The Trees are organized according to the project

subtree paradigm, so that each Tilde Tree represents a separate software subsystem. Com­

ponents of a software subsystem are collected into a single Tilde Tree, :rather than stored

in directories shared by many software subsystems.

As work on the experimental system progressed, we found that many software subsys­

tems share a common internal organization. Reorganizing the files in these subsystems

according to a standard structure creates a uniform external interlace for the sonware

packages. Components of software subsysterrn fall into senn categoriess:

Commands - conunands executed by the userj the system's external interface.

Exeeutables - executable modules not directly invoked by the users.

Databases - text-oriented data files shared by the system components.

Libraries - collections of non-textual information (e.g., separately compiled modules)

Sourees - used to construct the system components.

IThe5e categorin are defined based on our experience with UNIX-ba!ed 50flware lab,ystem,. We do not

claim that thi, organilltion would be useful in other environment!.

14

emd tXtC lib db &Ie include doc

Figure 6: Skeletal Tilde Tree Structure

Included files - t.ext modules shared among !'Iystem source files.

DOCUlTlentBtion - all documentation such as user manual entries and descriptive papers.

Figure 6 gives a diagram of the skeletal Tilde Tree structure showing the file names

chosen for the diJ:ectories representing each orthe seven major components. The components

of the C language subsystem illustrate the use of several of the component directories in

Figures 7 and 8.

6 Conclusions

In the introduction to this paper , we state that the design offtexible, effective and convenient

naming systeIrul is a difficult problem, especially in distributed computing envuonrnents.

Through OUI experience with distributed computing environments, we have established

several important features desirable in naming mechanisms. The Tilde naming system

incorpolates those features by replacing the single, globally shaled naming environment

with local, per-process naming environments.

To investigate Tilde naming in a real-world environment, we have constlucted an ex­

pedmental network operating system that incorporates a prototype or the Tilde naming

mechanism. This expelimental computing environment includes modifications to the UNIX

opelating system kernel, modified versions of existing application pIOglams and newly Cle­

ated software which supports significant computation lIuch as software development.

15

-ee

1\ 1\
emd exec lib db ore include doc

cc as Id ceom c2 libe.a cmd-exec

1\
Cc As (d.c

stdio.h man

manl

1\
ce.l as.I Id.l

Figure 7: Stluduze of t.he C Compiler Tilde Tree

Component

cc,as,ld
ccom,c2
Iibc.a
Cc,As,ld.c
stdio.h
cc.l,ls.l,ld.l

Description
application programs

executable submodules of compiler
subroutine library
source code files
shared header files
online documentation

Location
~cc/cmd

~cc/exec

-cc/lib
~cc/stc/cmd-exec

~cc/include

~cc/doc/man/manl

FigUIe 8: Component.s of the C Compiler Tilde Tree

]6

Experience with the prototype implementation has supported t.he basic design of t.he

Tilde naming system, and has directed our research int.o dist.ribut.ed naming systems. We

have experimented with extensions to the user int.erface oC t.he Tilde naming environment,

and have constructed new software subsystems t.hat utilize t.he enhanced portability pro­

vided by Tilde naming. As a result of our effort. 1.0 convert existing UNIX software 1.0 t.he

Tilde naming system, we have identified a useful strategy for the organillation of the files

within a Tilde Tree.

There are several directions for future work in this area:

• The current experimental system uses a broadcast mechanism 1.0 locate a Tilde Tree

in the Computing Engine. This mechanism will not scale well t.o larger Computing

Engines, and should be replaced by a dynamic location mechanism.

• Trusted software can be spoofed by the current Tilde Forest inheritance mechanism.

To ensure security, a trusted process must be able to verify its file naming environment

by examining and speciCying its Tilde Forest.

• There is no inherent limitation that precludes the extension of t.he Tilde naming

envuonment across administrative boundaries between TILDE Computing Engines.

However, the details of Tilde Tree identification and locat.ion in an inter-Computing

Engine environment. will require changes in our basic assumptions. For example, a

Tree's Medusa Name may be dependent on the Computing Engine at which the Tree

is stored (but not on the Tree's specific location within the Computing Engine).

The Tilde naming system increases the t.ransparency of a distributed system and en­

hances software portability by isolating the identification of a file from the acce81 to that

file. The local, per-process Tilde naming environment provides storage and resolution site

tramparency, and an abstract st.yle of identifying collections of files with a single name.

These advant.ages incur an additional overhead of name environment management; t.his

overhead is minimized t.hrough careful design of the process and user interfaces to the Darn­

ing mechanism. Through the use of an experimental computing envuonment based on the

Tilde naming system, we have found Tilde naming to be a viable, productive and useful

alternative to contemporary distributed naming systems.

17

References

[BSD83]

[Com84]

[CoD8S]

[CoM8S]

[Dro86]

[Kor84]

(QSP8S]

[SUN8S)

[Tho78)

UNIX Programmer'8 Manual, 4.! Berkeley Software DiltribuHonJ Virtual

VAX-ll Ver8ion, Computer Science Division, Department of Electrical En­

gineering and Computer Science, University of California, Berkeley, CA, 1983.

Comer, D., Tramparent Integrated Local and Distributed Environments

(TILDE) Project Overview, CSD-TR-466, Department of Computer Sciences,

Purdue Univenity, West Lafayette, IN, 1984.

Comer, D. and R. E. Droms, Tilde Trees in the UNIX Environment, Proc. of

the Winter 1985 U8enix Conf., Dallas, TX, Jan. 1985.

Comer, D. and T. P. Murtagh, The Tilde File Naming Scheme, Proceedings

of the Sixth Int. Con!. on Distributed Computing Systems, Cambridge, MA,

May, 1986 (S09-S14).

DroJW, R. E., Naming of Files in Distributed Systems, Ph. D. dissertation,

Department of Computer Sciences, Purdue University, West Lafayette, IN,

1986.

Korb, J. T., An Overview of the DASH Intelligent Terminal Project, CSD-TR­

492, Department of Computer Sciences, Purdue University, West Lafayette,

IN, Sep. 1984.

Quarterman, J. S., A. Silberschatz and J. L. Peterson, 4.2BSD and 4.3BSD as

Examples ofthe UNIX System, ACM Compo Sur. 17,4 (Dec. 1985), 379-418.

Networking on ehe Sun Workltation, Sun Microsystems, Inc., Mountain View,

CA, May 1985.

Thompson, K., UNIX hnplementation, The Bell SY8tem Technical Journal 57,

6 (July-Aug. 1978), 1931-1946.

18

IWil86J Wills, C. E., The Use of Services in the TILDE Environment, CSD-TR-656,

Depattment of Computer Sciences, Fmdue University, West Lafayette, IN,

Dec. 1986.

19

	An Experimental Implementation of the Tilde Naming System
	Report Number:
	

	tmp.1307986960.pdf.MtkzO

