
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1988

Efficient Interprocess Communication Using Shared Memory Efficient Interprocess Communication Using Shared Memory

Douglas E. Comer
Purdue University, comer@cs.purdue.edu

Steven B. Munson

Report Number:
88-744

Comer, Douglas E. and Munson, Steven B., "Efficient Interprocess Communication Using Shared Memory"
(1988). Department of Computer Science Technical Reports. Paper 640.
https://docs.lib.purdue.edu/cstech/640

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

EFFICIENT INTERPROCESS COMMUNICAnON
USING SHARED MEMORY

Douglas E. Comer
Steven B. Munson

CSD·1R·744
February 1988

Efficient Interprocess Communication Using Shared Memory

Douglas E. Comer
Steven B. Munson

Computer Science Department
Purdue University

West Lafayette, IN 47907

CSD-TR-744
January 1988

Abstract

Multitasking operating systems allow multiple application programs to execute con
currently without interference. Each task generates addresses starting at zero and the operating
system uses memory management hardware to map each task's addresses into a unique part of
physical memory. The memory management unit maps all the addresses a task generates into
an area of physical memory reserved for that task; one task carmot accidentally read or alter the
memory assigned to another wk. Only the operating system itself can access unmapped physi
cal memory. Isolation of tasks makes it easy to write or debug a given application program but
it makes sharing memory among multiple tasks impossible. Thus, when tasks need to commun
icate, one task must ask the operating system to copy the data from its address space to another
task's address space.

This article reports the results of a research project that is exploring how to support
memory sharing among multiple tasks. The scheme described here uses convenlional memory
management hardware in a new way. It has all the advantages of task isolation, but allows
cooperating sets of tasks to share parts of their address spaces. The chief advantage of our
scheme is that it pennits tasks to share objects that contain pointers (addresses) like linked lists,
even though each task usually interprets memory addresses privately. In our scheme, a task
dynamically establishes an area of memory to be shared and grants other tasks access to that
area. Access to objects in the shared area is no more expensive than access to objects in any
other pan: of memory.

• This work was supported in part by granlS from the National Science FOWldation's Office of Ad
vanced Scientific Computing (NSF-851·8369), with additional support from Digital Equipment Corpora
tion, CSNET, AIT Foundation and Purdue Univen;ity

-2-

1. Introduction

In any multitasking computer system, the part of the operating system known as the task
manager or process manager switches the CPU among multiple tasks. It meticulously saves
the registers and machine state for one task and loads the saved machine state for another.
When a multitasking system suppons virtual memory, each task, sometimes called a process I

executes in its own private memory address space without knowledge of the address spaces of
other tasks that execute concurrently. That is, each task uses memory addresses starting at zero
and extending upward. and the operating system arranges for the memory management hardware
to map each task's addresses into a different region of physical memory. The operating system
must save and restore the mappings from a task's address space to physical memory, just as it
saves other machine registers, when it switches the CPU from that task to another.

In a vinual memory system, each task imagines that it has all of memory to use, starting at
location zero. As we have said, memory management hardware maps the addresses a task gen
erates into an area of physical memory reserved for that task. We say that the task generates a
virtual address to distinguish those addresses from the physical or real addresses that the
underlying hardware uses. Later sections describe the mechanism most commonly used to per
fonn the mapping. For now, it is only important to understand that each application program is
written to use addresses starting at zero, and that conventional operating systems arrange to keep
tasks completely isolatcd when they execute.

The key concepts of virtual memory that we will discuss in this paper are protection and
communication. Clearly, isolating each task in a separatc address space protects the task's
memory, because other tasks cannot read or change data values. On some hardware, the operat
ing system, or kernel, executes in its own vinual address space, called kernel space, which is
distinct from that of any task. In such cases, the operating system must execute special instruc
tions to address physical memory directly.

The consequence of using vinual memory for protection is that tasks cannot easily move
data among themselves. It is impossible, for example, to have one task assign a value to an
integer variable that belongs to another task. All communication between tasks must go through
the operating system. However, placing a request with the operating system, or moving dala
between the task's address space and the operating system's address space can be expensive.
On most processors, a task must execute a special machine instruction known as a trap or sys
tem call to make such transfers. The system call instruction transfers control to the operating
system and makes it possible for the system to access data in the task's address space. The
operating system copies the data into its address space and changes the memory mapping.
Later, when some other task places a system call to extract the data, the operating system must
copy the data into that task's address space.

To understand how inefficient communication can be, consider an example from UNIX.
The command

who I wc-l

creates two tasks (processes), one to execuLe the "who" command and one to execute the "we"
command, and connects the output of one task to Lbe input of the other. The "who" command
produces a list of users who are logged into the computer, with one user per line. The "wc"
command counts lines in its input. Thus, the effect is to count the number of users logged into
the computer. Because the two tasks each execute in their own address space, communication

- 3 -

between them must go through the operating system. As a result, the operating system must
copy the data from the address space of the "who" command into the address space of the
operating system, and from there into the address space of the "we" command. In this exam
ple, the amount of data being transferred is so small iliat communication costs are unnoticeable
compared to processing costs. However, if we consider tasks like print spooters that transfer
large volumes of data. the communication costs can dominate ~e cost of the computation.

Memory sharing is not new to operating systems. In the xmu operating system
[Com84], the operating system and all tasks share the same address space. and they communi
cate by sending pointers to global data. V [Che83] and THOTH [Che79] allow tasks to be
grouped into teams, and, within a team, all tasks share their whole address space. TENEX
[Bob72] has system calls that change a task's address mapping so that different tasks can share
memory. DEMOS [Bas77] uses links for communication which allow the communicating tasks
to read or write sections of each other's memory. Accent [Fit86] has a system call called Move
Words, which moves data between tasks or between a task and the operating system by sharing
the memory the data occupies until one of the tasks attempts to write in the shared memory, in
which case the operating system traps the attempt and makes a copy first.

2. Hardware Page Tables

The hardware memory management unit (MMU) perfonns two functions that are essential
to memory sharing; it maps addresses used by a program into addresses in physical memory,
and it provides access protection. It perfonns both of these tasks using page tables. Each task
has its own set of page tables, each of which describes a segment of its address space. A page
table is simply an array of page table entries. each of which describes how to map addresses
within a fixed range, called a page, onto a section of real memory, called a frame. Hardware
designers determine the choices of page sizes (ie., the range of addresses controlled by a single
page table entry) when they build the MMU. Usually, they choose to make the page size a
power of 2 bytes (e.g., 512, 1024 or 4196 bytes). A page table entry must specify the address
of the frame in which the system has chosen to store the page. Since frames have to start at an
address which is a multiple of the page size, only the multiple, called the frame nwnber, has to
be stored in the page table entry.

The page table entry must also specify what access is allowed for each page. The access
control mechanism allows the operating system to specify, for example, that a given page is
read-only, or that it can only be accessed by the operating system.

Figure 1 shows one of the page table entry fonnats for the Motorola MC68851 PMMU,
used with the popular Motorola MC68020 processor. The page size for the MC68851 is
software selectable, and must be a power of 2 from 256 bytes to 32K bytes. Hence, the frame
number never occupies the low-order 8 bits of !.he page table entry, and might occupy less than
24 bits.

3. Implementation of Shared Memory
It might seem that a paging system makes memory sharing trivial. To share an object, lhe

system arranges to have entries in two different tasks' page tables point to the same frame in
real memory. However, if the shared memory contains structured objects like linked lists, the
shared memory must appear at the same address in the address space of all tasks that share it.
To achieve this goal, our sharing scheme requires the operating system to reserve a fixed seg·
ment of the address space of each task. We call the reserved space the shared segment. Tasks

- 4 -

~Q ~~ 45~ ~41~D38~J6~J4nn

~r-------L-im-i-'-F~-'-N-=-",-,--I RAL I WAL~

31------------------- 8 7 0

Supervisor (S):
Modified (M):
Used (U):
Write Protect (WP):
Frame Number:

Access restricted to supervisor mode if S=1.
Page has been written to if M=l.
Page has been referenced if U=1.
No writing to this page allowed in any mode if WP=1.
Most significant 24 bits of page frame address.

Figure 1. Motorola MC68851 page table entry fannat. Each entry tells
how to map one page into a frame in physical memory.

get access to the shared segment by asking the operating system to allocate pieces of it, called
shared objects. The operating system keeps a table that describes the state of the shared seg
ment and modifies the tasks' page tables to give them access to shared objects. Tasks acquire
access rights to shared objects by allocating them, receiving them from another task, or inherit
ing them from their creating task. Tasks invoke system calls to allocate and delete shared
objects, give access rights to other tasks, and alter the length and access rights of a shared
object.

In order to prevent shared objects wilh different access rights from overlapping the same
page, the operating system allocates memory for all shared objects in multiples of the page size
used by the hardware. The operating system keeps all the information about the shared segment
in the shared segmeru frame table, which has one entry for each page frame in the shared seg
ment. An entry in the table contains a frame number, a length, and a reference count. For
frames that are part of a shared object, the frame number points to the first frame of the object,
the length is the total length of the object, and the reference count of the first frame in the
shared object is equal to the number of tasks lhat have access to the object. There is also a free
list of blocks of frames; the first entry in each block contains the frame number of the next free
block, the length of the block, and a reference count of zero. Figure 2 gives an example of a
frame table with a shared object allocated that takes up three frames. Notice that the reference
count field of the first entry for the shared object contains the actual reference count, and thosc
for its other frames are only non-zero to indicate that that frame is part of an allocated object, so
that the reference count can be updated efficiently. Also, lengths are in bytes, so that a shared
object might not be as large as the space allocated for it, which is rounded up to the nearest
page size.

A shared object can be marked wifu the access rights read or write. The access righLs
each task has to an object are kept in its page table, and the operating system only implemcnts
the access rights supported by the hardware. Hence, access rights are checked directly by the
hardware with every access, and the operating system only has to intervene when an access vio
lation occurs.

A task allocates a shared object by executing the systcm call:

- 5 -

I free -'

/
frame number length , ref count 0
frame number length -r ref count - 0

rr. frame number length ref count - 2
~frame number length ref count - 1

frame number length ref count I... frame number length ref count - 0

frame number I length ~ I ref count - 0

Figure 2. Shared segment frame table.

obj =shalloc(size. access),

where size is the requested size of the shared object in bytes and access specifies the requested
access rights. Tasks communicate by passing access rights to shared objects. Access to a
shared object can be given to another lask with the system call

shsend(pid. obj, access).

This gives task pid access rights to the shared object obi speci fled by the intersection of access
and lhe access rights of the calling task. When a task is ready to receive a shared object. it exe
cutes

obj =shreceive(pid),

which blocks until access to a shared object is sent to the calling task by task pid, or by any
task if pid is the constant ANYPROCESS I and then returns the address of the shared object. An
error value is returned if task pid does not exist or dies before it sends a shared object.

When a task is finished using a shared object, it calls

shdeleLe(obj),

which makes the object inaccessible to the calling task, decrements its reference count, and adds
it to the free list if the count goes to zero. An additional system call,

obj2 = shexchange(pid, objl, access),

is equivalent to

shsend(pid, objl, access);
shdeleLe(objl);
obj2 = shreceive(pid),

and is added for convenience. There are also functions that set and retrieve the length and
access mode of a shared object:

- 6 -

shsellen(obj, len);
len = shgetlen(obj);
shsetaccess(obj, access);
access = shgetaccess(obj).

A task can shorten a shared object. but CaIUlot lengthen it, and it can restrict its own access
rights, but cannot extend them.

4. More Efficient Communication

We now show some examples of communication using the the shared memory primilives,
beginning with a task sending data to a print spooler. The client makes itself known to the
server by sending its task id in a shared object. The server just waits for clients to send it
shared objects and then spools data to print by exchanging shared objects with the client and
writing the data in them to the spool area. Here is what the server and client might look like:

-7-

printspoolerQ
(

char "'bur;
int clienlpid;

while (TRUE) (
buf = shreceive(ANYPROCESS);
clientpid = *(int *) buf;
while «but = shexchange(clientpid, buf, RW» != NULL

&& buf != ERROR)
spool(buf, shgetlen(buf));

client(fd, serverpid)
int Cd, serverpid;
(

char *buf;

j* file to print and server pid */

buf = shalloc(BUFLEN, RW);
O(int O)buf = getpidO;
shsend(seIVerpid, buf. RW);
huf = shalloc(BUFLEN, RW);
while ((len=read(fd, huf, BUFLEN)) = BUFLEN)

buf = shexchange(serverpid, buf, RW);
if (len> 0) (

shsetlen(buf, len);
buC = shexchange(servcrpid, buf, RW);

}
shdelele(buf);
buf = shexchange(serverpid, NULL, 0);
shdelete(buf);

Very little copying is done in this example. The server passes to its print spooling roUline the
very same buffer that the client used to read the data. Hence, the copies from the client address
space into a buffer in kernel space, and from kernel space into the server address space are elim
inated.

The shared segment can also make writing data to a disk file faster. One might consider
this to be a slow operation anyway, because it involves disk I/O, but the write function does not
actually wait for the data to be transferred to lhe disk. Instead, the operating system places the
data to be written in a queue of disk I/O requeslS and returns control to the task, Irnowing that
the disk driver will eventually write the data to the disk. Hence, copying the data from the
task's address space to kernel space adds significantly to the cost of the operation. To make the
write faster, the operating system can include a new system call,

shwrite(fd, buf,len),

-8-

which adds the shared buffer, bul. to kernel space and removes it from the task's address space,
eliminating the copy to kernel space.

S. Conclusion
One of the hidden costs in an operating system is the time spent copying data. Communi

cation in a multitasking, virnlal memory system, whether between tasks or between a task and
the operating system, usually requires copying to get data from one address space [0 another.
One way to eliminate the need for copying between address spaces is to provide a mechanism
by which sections of memory can be shared among tasks and the operating system. Using con
ventional memory management hardware, we have proposed simple system calls that make it
possible to share memory among different address spaces while still providing protection from
non-cooperating tasks. Examples have shown the elegance and efficiency of the shared segment
primitives.

Some preliminary work has been done to implement a prototype system that uses the
shared segment concept. At the Department of Computer Sciences at Purdue University, the
4.2BSD UNIX kernel and linker have been successfully modified to insert an inaccessible
shared segment at the beginning of each task's address space, shifting the program text, dam,
and heap upward. A team of graduate students has written a version of the XINU operating sys
tem which uses the hardware memory management on a Digital Equipment Corporation Micro
VAX to implement virtual memory and a shared segment through which tasks can share
memory. The experiments show that lhe proposed mechanism is easy to implement and that it
works well in practice.

6. REFERENCES

[Bas??J F. Baskett, J. H. Howard, and 1. T. Montague, "Task Communication in DEMOS",
In Proceedings of the 6th Symposium on Operating Systems Principles, (Purdue
University, Nov. 16-18), ACM, New York, 1977, pp. 23-31.

[Bob72] D. G. Bobrow, J. D. Burchliel, D. L. Murphy, and R. S. Tomlinson, "TENEX, a
Paged Time-Sharing System for the PDP-IO", CACM 15, 3 (March 1972), pp.
135-143.

[Che?9] D. R. Cheriton, M. A. Malcolm, L. S. Melen and G. R. Sager, "Thoth, a Portable
Real-Time Operating System", CACM 22, 2 (Feh" 1979), 105-115.

[Che83J D. R. Cheriton and W. Zwaenepoel, "The Distributed V Kernel and its Perfor
mance for Diskless Workstations", In Proceedings of the 9th Symposium on
Operating Systems Principles, (Bretton Woods, NH, Oct. 11-13) ACM, New York,
1983.

[Com84] D. Comer, Operating System Design, the Xinu Approach, Prentice-Hall, Englewood
Cliffs, New Jersey, 1984.

[Fit86J R. Fitzgerald and R. F. Rashid, "The Integration of Virtual Memory Management
and Inlerprocess Communication in Accent", ACM Transactions on Computer Sys
tems 4, 2 (May 1986), pp. 147-177.

	Efficient Interprocess Communication Using Shared Memory
	Report Number:
	

	tmp.1307986960.pdf.3nc92

