
HAL Id: hal-00904069
https://hal.archives-ouvertes.fr/hal-00904069

Submitted on 13 Nov 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Combining finite and continuous solvers Towards a
simpler solver maintenance

Jean-Guillaume Fages, Gilles Chabert, Charles Prud’Homme

To cite this version:
Jean-Guillaume Fages, Gilles Chabert, Charles Prud’Homme. Combining finite and continuous solvers
Towards a simpler solver maintenance. The 19th International Conference on Principles and Prac-
tice of Constraint Programming, Sep 2013, Uppsala, Sweden. TRICS’13 Workshop: Techniques foR
Implementing Constraint programming Systems. �hal-00904069�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49714842?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-00904069
https://hal.archives-ouvertes.fr

Combining finite and continuous solvers

Towards a simpler solver maintenance

Jean-Guillaume Fages and Gilles Chabert and Charles Prud’Homme

TASC - Ecole des Mines de Nantes,
LINA UMR CNRS 6241,

FR-44307 Nantes Cedex 3, France,
{Jean-Guillaume.Fages,Gilles.Chabert,

Charles.Prudhomme}@mines-nantes.fr

Abstract. Combining efficiency with reliability within CP systems is one
of the main concerns of CP developers. This paper presents a simple and
efficient way to connect Choco and Ibex, two CP solvers respectively spe-
cialised on finite and continuous domains. This enables to take advantage
of the most recent advances of the continuous community within Choco

while saving development and maintenance resources, hence ensuring a
better software quality.

1 Introduction

The Constraint Programming (CP) community is witnessing the emergence of
numerous new solvers, most of them coming up with new features. In this com-
petitive context, integrating latest advances and ensuring software quality is
challenging. From a more general point of view, spending effort on develop-
ing something already well handled by other libraries can be argued to be a
waste of resource. Choco [9] and Ibex [2] are two such solvers, respectively spe-
cialised on Finite Domains (FD) and Continuous Domains (CD). While they
already have some history, they have recently been completely re-engineered
to brand new improved versions.

This paper presents a bridge which has been made so that Choco can use
Ibex as a global constraint. The interval arithmetics provided by Ibex greatly
enhances modeling possibilities of Choco. It enables to express naturally the
wide family of statistical constraints [6, 7], but also non-linear physics constraints
as well as many continuous objective functions. This bridge enables to take
advantage of the most recent advances of the CD community within Choco for
free. It saves development and maintenance resources, and contributes to the
software quality. In this way, Choco and Ibex developers can focus on what
they do best, being respectively FD and CD reasonings, and users have access
to the whole.

2 Solver overviews

2.1 Choco 3.0

Choco is a java library for constraint satisfaction problems and constraint op-
timisation problems. This solver already has a long history and has been fully
re-engineered this year, to a 3.0 version [4, 9]. It roughly contains 60, 000 lines
of code.

The Choco library contains numerous variables, constraints and search pro-
cedures, to provide wide modeling perspectives. Most common variables are
integer variables (including binary variables and views [8]) but the distribu-
tion also includes set variables, graph variables and real variables. The con-
straint library provided by Choco contains many global constraints, which gives
a very expressive modeling language. The search process can also be greatly
improved by various built-in search strategies (such as DomWDeg, ABS, IBS,
first-fail, etc.) and some optimisation procedures (LNS, fast restart, etc.). More-
over, Choco natively supports explained constraints. Last, several useful extra
features, such as a FlatZinc (the target language of MiniZinc [5]) parser and
some viewing tools, are provided as well.

Choco is used by the academy for teaching and research and by the industry
to solve real-world problems, such as program verification, data center man-
agement, timetabling, scheduling and routing.

2.2 Ibex 2.0

Ibex (Interval-Based EXplorer) is also a library for constraint satisfaction and
optimization, but written in C++ and dedicated to continuous domains. This
solver has been fully re-engineered to a 2.0 version this year [2]. Ibex consists
of roughly 40, 000 lines of code.

From the perspective of solver cooperation, two features of Ibex are of in-
terest: the modeling language and the contractors.

Compared to Choco, the modeling language is much simpler in the sense
that constraints are either numerical equations or inequalities. However, the
mathematical expression involved in a constraint can be of arbitrary complex-
ity. The expression is obtained by composition of standard mathematical oper-
ators such as +, ×, √, sin, etc. (see §3.2). The modeling language also allows
vector and matrix operations; it shares some similarities with Matlab on pur-
pose.

A contractor [3] is the equivalent of a propagator in finite domain except
that it is considered as a pure function: it takes a Cartesian product of domains
as input and returns a subset of it. Ibex contains a variety of built-in contrac-
tors for acheiving different level of bound consistency with respect to a set of
numerical constraints such as HC4, Shaving, ACID, X-newton, q-intersection,
etc.

Finally, Ibex also comes with a default black-box solver and global opti-
mizer for immediate usage. It is mainly used so far in academic labs for teach-
ing and research. Its main application field is global optimization and robotics.

3 Embedding Ibex into a Choco constraint

3.1 Motivation

It is worth noticing that combining FD with CD in a CP solver is not new.
Since its early beginning, the Choco solver has supported real variables, hence it
has always been able to solve hybrid discrete continuous problems. However,
these older versions included their own interval arithmetics implementation.
Another example is the Gecode 4.0.0 solver [1], which has recently added float-
ing variables to its distribution, by following the same approach.

Interestingly, it appeared that most of Choco users and contributors were
concerned by FD problems. Thus, for historical reasons, the Choco module over
reals has not evolved much within the last years. In the meanwhile, people
working on continuous problems have proposed new solvers, such as Ibex,
able to handle efficiently continuous non-linear equation systems. As a coun-
terpart, such solvers are not competitive on problems involving finite domains,
if ever they can handle them.

If no theoretical pitfall stands in the way of implementing state-of-the-art
CD techniques in Choco, this would require significant resources and ensuring
its maintenance over time is presumably even more expensive. Moreover, it
would require Choco developers to have a high level of expertise on both FD
and CD. A symmetric reasoning holds if one would like to implement advanced
FD features within Ibex. Thus, instead of reimplementing the wheel, it has been
decided to make a bridge between Choco and Ibex. This provides a very good
trade-off between solver features and implementation effort.

The choice of using Ibex within Choco, instead of the opposite, is based
on practical reasons. First of all, the functional architecture of contractors in
Ibex enables to call them from another program very easily. Second, Choco has
more variable types, hence using an opposite design would require a heavier
interface. In particular, Ibex would have to implement finite domains. Third,
Choco offers richer resolution options (black-box search procedures, LNS, ex-
planations...) than Ibex so it is better to give the control of the search to Choco.
Last, calling Java from C++ is more cumbersome since a virtual machine has to
be loaded prior to function calls.

3.2 A simple but yet expressive interface

The bridge linking Choco and Ibex is organised in a master-slave architecture
where Choco integrates Ibex within a global constraint. This constraint, referred
to as RealConstraint, has no particular semantics but is used as a shell to en-
capsulate continuous propagators. Each equation system of the model is asso-
ciated with one generic propagator, RealPropagator, in Choco and one con-
tractor in Ibex. Continuous expressions can embed integer variables by using
views. Choco drives the propagation algorithm: on domain modifications, tar-
geted propagators are scheduled for a future execution. Any call to the prop-
agation algorithm of a RealPropagator is then automatically delegated to

Ibex contractors; the resulting domain modifications, if any, are recovered and
transmitted back to Choco. Ibex contractors are called through the Java Native
Interface (JNI) which enables a Java program to call functions of a C++ library.
Comments apart, this native interface only includes 40 lines of code, whence
the easy maintenance. An overview of the Choco-Ibex framework is given in
Figure 1.

Real

Variable

Integer

Variable

Real

Propagator

Real Constraint
CHOCO

Contractor

IBEX

domains

views

JNI

Fig. 1. Scheme of the Choco-Ibex bridge.

Listing 1.1 provides the filtering algorithm of RealPropagator. First, the
propagator copies variable domain bounds in an array (l. 5 − 10). Second, it
calls the contract method of the Ibex JNI class (see Listing 1.2), with this
array and the contractor identifier as input (l. 11 − 12). This method updates
the array of bounds in argument (for a further filtering) and returns an en-
tailment statement. Third, it incorporates these changes into variable domains
and, possibly, fails or becomes silent (l. 13 − 28). As any constraint of Choco, a
RealConstraint can be reified.

Regarding the management of object creations and Java/C++ communica-
tion, this architecture does not bring any significant overhead. When the first
RealConstraint is created, the Ibex library is loaded once and for all by the
system. Each Ibex contractor is created once during the model creation, and its
reference is kept in memory. Calling an Ibex contractor from a Choco propaga-
tor has no particular overhead but the translation of the Java primitive double
array which represents variable bounds to a native double array. This takes a
linear time over the number of variables that are involved, which is presumably
less or equal to the contractor time complexity.

Listing 1.1. Ibex-based domain reduction of RealPropagator
1 protected RealVar[] vars;
2 protected final int contractorIdx;
3 public void propagate(int event_mask) throws ContradictionException {
4 // make variable domain bounds input array
5 double domains[] = new double[2 * vars.length];
6 for (int i = 0; i < vars.length; i++) {
7 domains[2 * i] = vars[i].getLB();
8 domains[2 * i + 1] = vars[i].getUB();
9 }

10 // call Ibex (note that it overwrites the input array "domains")
11 int result = ibex.contract(contractorIdx, domains);
12 switch (result) {
13 case Ibex.FAIL: // trigger a failure
14 contradiction(null, "Ibex failed");
15 case Ibex.CONTRACT: // filter domains
16 for (int i = 0; i < vars.length; i++) {
17 vars[i].updateBounds(domains[2 * i], domains[2 * i + 1], aCause);
18 }
19 break;
20 case Ibex.ENTAILED: // filter domains and become silent
21 for (int i = 0; i < vars.length; i++) {
22 vars[i].updateBounds(domains[2 * i], domains[2 * i + 1], aCause);
23 }
24 setPassive();
25 break;
26 default: // do nothing
27 }
28 }

Listing 1.2. The contract Ibex function
/**
* Call the contractor cont_index associated to a continuous (in)equation system

* seen as a function of the form c(x_1,...,x_n), where x_1...x_n are n real variables

*
* @param cont_index − Number of the contractor (in the order of creation)

* @param bounds − The bounds of domains under the following form:

* (x1−,x1+,x2−,x2+,...,xn−,xn+), where xi− (resp. xi+) is the

* lower (resp. upper) bound of the domain of x_i.

*
* @return The status of contraction or fail/entailment test.

* − FAIL: No tuple satisfies c.

* − ENTAILED: The bounds of x may have been contracted. All remaining tuples satisfy c.

* − CONTRACT: At least one bound of x has been reduced by more than 1%.

* − NOTHING: No bound has been reduced and nothing could be proven.

*/
public native int contract(int cont_index, double bounds[]);

The expression of the continuous constraint (equation or inequality) is en-
coded in a simple String. To simplify the interpretation of this String by
Ibex, variables are represented by their indices, surrounded by braces. For in-
stance, the constraint "({0}+{1}+{2})/3={3}" means that the fourth vari-
able is the average of the three first ones.

This framework handles any equation system involving the following oper-
ators:

+, -, *, /, =, <, >, <=, >=,

sign, min, max, abs, sqr, sqrt, exp, log, pow,

cos, sin, tan, acos, asin, atan,

cosh, sinh, tanh, acosh, asinh, atanh, atan2

This provides wide modeling perspectives. In particular, the family of statistical
constraints, such as Spread [6] and Deviation [7], can be expressed natu-
rally and extended by using neither monolithic ad hoc algorithms nor refor-
mulations. Of course, in continuous domains, equations and inequalities are
ubiquitous.

Besides being both simple and expressive, the use of Strings enables to
get very concise models. As a counterpart, it has no safeguard against user mis-
takes in the declaration of continuous constraints. Hence building a framework
which generates those Strings may be a good perspective to make the use of
this bridge safer.

4 Practical example: using CD to express balancing

This section introduces the Santa Claus problem as a simple illustration of this
framework. Given a set of kids and a set of gifts, the Santa Claus problem con-
sists of giving a gift to each child. The average deviation of gift values must be
minimised so that the gift distribution is fair.

The Choco model associated with this problem is given in Listing 1.3. It in-
volves integer assignment decision variables as well as real variables related
to the average and the average deviation of gift prices. In particular, the objec-
tive variable is real, hence the hybrid nature of the problem. On the one hand,
the AllDifferent constraint is typically not implemented in Ibex, as differ-
ences have no much meaning over reals. On the other hand, the average and
the average deviation constraints are straightforward to formulate as general
Ibex arithmetic expressions. Thus, we take the best from each solver. The pos-
sibility to have real views of integer variables enables to consider integer vari-
ables within continuous systems. Hence, even on purely integer problems, this
framework makes available a wide family of constraints, for free.

Listing 1.3. Santa Claus Choco model
// input data
int n_kids = 3;
int n_gifts = 5;
int[] gift_price = new int[]{11, 24, 5, 23, 17};
int min_price = 5;
int max_price = 24;

// solver
Solver solver = new Solver("Santa Claus");

// FD variables
// VF is the factory for variables' declaration
IntVar[] kid_gift = VF.enumeratedArray("g2k", n_kids, 0, n_gifts, solver);
IntVar[] kid_price = VF.boundedArray("p2k", n_kids, min_price, max_price, solver);
IntVar total_cost = VF.bounded("total cost", min_price*n_kids, max_price * n_kids, solver);

// CD variable
double precision = 1.e−4;
RealVar average = VF.real("average", min_price, max_price, precision, solver);
RealVar average_deviation = VF.real("average_deviation", 0, max_price, precision, solver);

// continuous views of FD variables
RealVar[] realViews = VF.real(kid_price, precision);

// kids must have different gifts
// ICF is the factory for integer constraints' declaration
solver.post(ICF.alldifferent(kid_gift, "AC"));

// compute cost
for (int i = 0; i < n_kids; i++) {

solver.post(ICF.element(kid_price[i], gift_price, kid_gift[i]));
}
solver.post(ICF.sum(kid_price, total_cost));

// compute the average and average deviation costs
RealVar[] allRV = ArrayUtils.append(realViews,new RealVar[]{average, average_deviation});
RealConstraint ave_cons = new RealConstraint(solver);
ave_cons.addFunction("({0}+{1}+{2})/3={3}", allRV);
ave_cons.addFunction("(abs({0}−{3})+abs({1}−{3})+abs({2}−{3}))/3={4}", allRV);
solver.post(ave_cons);

// set search strategy (selects smallest domains first)
solver.set(IntStrategyFactory.firstFail_InDomainMin(kid_gift));

// find optimal solution (the gift distribution should be fair)
solver.findOptimalSolution(ResolutionPolicy.MINIMIZE, average_deviation);

The output stream (Listing 1.4) then provides the following solution:

Listing 1.4. Output

********* Optimal solution
Kids #0 has received the gift #4 at a cost of 17 euros
Kids #1 has received the gift #3 at a cost of 23 euros
Kids #2 has received the gift #1 at a cost of 24 euros
Total cost: 64 euros
Average: 21.333333333333332 euros per kid
Average deviation: 2.8888888888888866

5 Conclusion

We have proposed a bridge between Choco and Ibex so that Choco can use
Ibex as a global constraint. We have shown that this framework offers wide
modeling possibilities while being simple and generic. This work enables the
FD and the CD communities to benefit from the work of each other and focus
and their respective field of expertise. It enables to provide a rich and reliable
solver while saving development and maintenance resources.

Acknowledgements. The authors thank the anonymous referees for their work
and interesting comments.

References

1. Gecode 4.0.0. http://www.gecode.org/index.html, 2013.
2. Gilles Chabert. Ibex 2.0. http://www.emn.fr/z-info/ibex/, 2013.
3. Gilles Chabert and Luc Jaulin. Contractor programming. Artif. Intell., 173(11):1079–

1100, 2009.
4. Jean-Guillaume Fages, Narendra Jussien, Xavier Lorca, and Charles Prud’homme.

Choco3: an open source java constraint programming library. Research report
13/1/INFO, Ecole des Mines de Nantes, 2013. to appear.

5. Nicholas Nethercote, Peter J. Stuckey, Ralph Becket, Sebastian Brand, Gregory J.
Duck, and Guido Tack. Minizinc: Towards a standard cp modelling language. In
CP, pages 529–543, 2007.

6. Gilles Pesant and Jean-Charles Régin. Spread: A balancing constraint based on statis-
tics. In CP, volume 3709 of LNCS, pages 460–474. Springer, 2005.

7. Pierre Schaus, Yves Deville, Pierre Dupont, and Jean-Charles Régin. The deviation
constraint. In CPAIOR, volume 4510 of LNCS. Springer, 2007.

8. Christian Schulte and Guido Tack. Views and iterators for generic constraint imple-
mentations. In CP, volume 3709 of LNCS, pages 817–821. Springer, 2005.

9. Choco Team. Choco 3.0. http://www.emn.fr/z-info/choco-solver/, 2013.

