
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1991

GCache: A Generalized Caching Mechanism GCache: A Generalized Caching Mechanism

Douglas E. Comer
Purdue University, comer@cs.purdue.edu

Shawn Ostermann

Report Number:
91-081

Comer, Douglas E. and Ostermann, Shawn, "GCache: A Generalized Caching Mechanism" (1991).
Department of Computer Science Technical Reports. Paper 920.
https://docs.lib.purdue.edu/cstech/920

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

GCACHE: A GENERALIZED CAClllNG MECHANISM

Douglas Comer
Shawn Ostermann

CSD·1R-91--081
November 1991

(Revised March 1992)

GCache: A Generalized Caching Mechanism

Douglas Comer
Shawn Ostermann

Computer Science Department
Purdue University

West Lafayette, IN 47907

November 22, 1991
Revised March 17, 1992

CSD-TR-91-081

Abstract

This paper discusses the issues and tradeoffs involved in designing a generalized
caching mechanism suitable for use in an operating system kernel. 1v; an example of
this approach, we describe GCache, a caching system implementation providing entry
insertion, lookup, deletion, and automatic timeout. GCache, designed and implemented
for the Xinu Operating System, interfaces transparently into existing systems and pro
vides a clean, concurrency-protected interface. GCache is also suitable for use in large
user applications. This paper serves both as an example of a practical caching system
and as an overview of the tradeoffs involved.

1 Introduction

It is widely understood that caching improves operating system efficiency and performance.
Unfortunately, the types of information that benefit from caching take different forms and
have different characteristics. These dlsparate forms often lead operating system designers
to consider separate caching systems for each type of information. Separate caching systems
require duplicated design effort, increase the possibility for error, and lead to multiple
versions of semantically similar routines.

We designed GCache for the Xinu Operating System, a small, hierarchical operating
system that runs on various Sunl , DEC2 , and PC platforms [Com84, Com87, ComSS].
Xinu supports threads, virtual memory, demand.loaded executable programs, and TCP lIT!
network communication. Many Unir applications, including the GNU project software
and the XlI Window System, run over Xlnu using a Unix emulation library that resides
outside the kernel.

The expense of an item of information is a measure of the amount of CPU time expended
deriving the information or waiting for it to arrive. Throughout the remainder of this
paper, we will use the term expensive information to refer to information that can be
cached to improve the performance of an application or operating system. Under this
definition, network communication generally produces expensive information. Even minimal
attempts to cache such information can have a dramatic effect on system performance.
Examples of expensive network information that can benefit from caching are name to
address translations, RPC program port number bindings, an~ NFS file handles.

The remainder of this paper consists of 5 sections. In section 2, we present an overview
of the most important issues involved, along with the goals for our design. Section 3 outlines
our implementation of GCache including its interlace and data structures. Section 4 dis
cusses alternate design possibilities along with their associated tradeoffs. Section 5 presents
results that show the benefits of our approach. The final section, section 6, summarizes
generalized caching and presents our conclusions.

2 Design Goals

A programmer must consider many design issues and associated tradeoffs in any attempt
to build a general-purpose mechanism. The decisions made during the design phase will
greatly affect the generality of the resultant system. To further clarify the problem and
to assist in the design of the system, this section outlines the goals that we adopted for a
general-purpose caching mechanism.

Interface
The interface must be clean and concise; simple tasks must be easy to accomplish.

Transparency
The mechanism must be transparent. Interaction between the caching routines and
the surrounding application should be limited to a few well-defined access routines.

ISun , as used, is a tradcmark of Sun Microsystcms, Inc.
2DEC is a tradcmark of Digital Equipmcnt Corporation.
3Unix is a. registcrcd trademark of Unix Systems La.boratories.

1

Efficiency
The mechanism must use data structures and algorithms whose tradeoffs of complexity
versus efficiency are appropriate for the size of the problem.

Number of Entries
The programmer should not be required to know, a priori, the maximum number of
entries that will be inserted. The cache must be designed in such a way that it can
accommodate arbitrarily many insertions. Insertion must always succeed, implying
that the last item inserted is always present in the cache.

Timeout
The cache must maintain a notion of a maximum lifetime for each cached entry. Asso
ciating a timeout with cached information allows an application to cache information
that becomes invalid with time.

Robustness
We envision the cache as operating within an operating system kernel. The caching
system must, therefore, be robust over arbitrarily long periods of time and must
protect itself from concurrent access to its data structures.

3 GCache

This section describes our implementation of a generalized caching system, GCache. We
designed and implemented GCache according to the design goals discussed in section 2. In
a later section on design alternatives and tradeoffs, we cover many design issues in detail;
briefly, GCache has the following properties:

Interface
GCache considers a cached entry to be a pair of buffers, a key and a result. The caller
passes a buffer to the caching routines by specifying both a pointer to the buffer and a
length. GCache treats the buffers as opaque blocks of data, and only uses the contents
for byte-equality comparisons and hash function computations.

Storage Method
Both the key and the result are stored and passed by value using copy-in, copy-out
semantics. Passing arguments by value makes GCache more appropriate for small
items of information than for large blocks of data.

Timeouts
The lifetime of each cached entry within a single cache is passed by the caller as
an argument to the cache creation routine. Each item inserted into the cache will
be assigned this same lifetime. The lifetime argument "0" is reserved to mean that
cached entries should have an unbounded lifetime. Entry lifetimes are not explicitly
checked until lookup time.

Limiting Space Requirements
An application that creates a new cache must specify the maximum number of cached

2

entries that the cache can contain at any given time, aJ]owing GCache to bound its
memory utilization. GCache removes previously cached entries, guaranteeing that a
cache will always contain the last entry inserted.

Aging
GCache ages entries using an LRU, least recently used, strategy. Insertion of a new
entry into a full cache forces the deletion of the entry that was looked up the least
recently.

Data Structures
GCache implements each cache as a separate hash table of buckets. Buckets are im
plemented as doubly linked lists of cache entry headers for easy insertion and deletion.

In the next few subsections, we present a high-level description of GCache: its user
interface and data structures, its memory management scheme, and an example procedure
skeleton using GCache access routines.

3.1 User Interface

This section describes the GCache interface. Throughout this section and the rest of the
paper, we will refer to return value 01(, meaning that a routine completed successfully, and
ERROR, meaning that an error occurred. Additionally, the identiHer cid will be used to
refer to a cache id.

int cacreate(name,nentries,lifetime)
char *name; 1* textual name for the cache *1
int nentries; 1* maximum concurrent entries *1
int lifetime; 1* timeout for each entry. in seconds *1

The cacreateO routine creates a new cache. The caller specifies a textual name for the
cache, the maximum number of entries that the cache should contain, and the maximum
lifetime of each entry in seconds. If the lifetime argument is 0, cached items are never timed
out. CacreateO returns either a cache id or ERROR if the cache could not be created.

int cadestroy(cid)
int cidj 1* cache id

The cadestroyO routine deletes the specified cache and all associated resources. CadestrovO
returns OJ(if the cache is valid and ERROR otherwise.

int cainsert(cid.pkey.keylen,pres.reslen)
int
char
int
char
int

cid;
*pkey;
keylen;

*presj
reslen;

1* cache id *1
1* pointer to the key buffer *1
1* length of the key buffer (bytes) *1
1* pointer to the result buffer *1
1* length of the result buffer (bytes) *1

3

CainserlO inserts a new mapping, key ~ res, into the cache. It returns OK if the cache id
is valid and ERROR otherwise.

int calookup(cid.pkey.keylen,pres.preslen)
int cid; 1* cache id *1
char *pkey; 1* pointer to the key buffer *1
int keylen; 1* length of the key buffer (bytes) *1
char *pres; 1* pointer to the result buffer *1
int *preslen; 1* in: size of the result buffer *1

1* out: # bytes returned in 'pres' *1

CalookupO searches for a cached entry matching the key passed as an argument. It returns
OK if cid is valid and a matching item is found, and ERROR otherwise. On entry, the
pointer preslen specifies the maximum amount of data to return, which is the size of the
buffer pointed to by pres. CalookupO sets *preslen to be the size of the result copied into
pres. H a cached item is too large to be copied into the result buffer, CalookupO returns
ERROR.

int caremove(cid.pkey.keylen)
int cid; 1* cache id *1
char *pkey; 1* pointer to the key buffer *1
int keylen; 1* length of the key buffer (bytes) *1

CaremoveO removes the cached entry whose key is given, if one exists, and returns OK
CaremoveO only returns ERROR if the cache id is invalid.

int capurge (cid)
int cid; 1* cache id *1

CapurgeO removes all cached entries from the cache whose handle is cid and returns OJ(
for a valid cache id and ERROR otherwise.

3.2 Data Structures

This section describes the data structures that GCache uses. CacreateO returns a cache id,
cid, which is used internally as an index into an array of cache descriptors, each maintaining
a single cache. Each cached entry consists of a cached entry header containing, among other
fields, pointers to the key and the result buffers. GCache stores cached entry headers in
buckets attached to a hash table. We describe each of these data structures in detail in the
paragraphs that follow.

For greater type checking security, GCache defines the following data types:

typedef u_short
typedef u_short
typedef u_int
typedef u_int

teelen;
tceix;
thval;
ttstamp;

1* length of a cached entry
1* index of a cached entry
1* type of the hashed value
1* type of a timestamp

4

*1
*1

of a key *1
*1

A user module refers to a cache using a cache id, cid, returned by the cacreateO routine.
The GCache routines use the cid as an index into the cacheblk array. Each cache block
contains the name of a cache and all required bookkeeping fields. It also contains a pointer
to the hash table and a pointer to a free list of cache entry headers, neither of wh1ch is
allocated until cache creation time.

1* INUSE or FREE *1
1* name of the cache *1
1* mutual exclusion semaphore *1
1* maximum # of entries *1
1* number of entries *1
1* size of hash table *1
1* max life of an entry (sees) *1
1* free nodes for the cache *1
1* the hash table *1
1* list of free cacheentries *1
1* # lookups *1
1* # hits *1
1* # timed out entries *1
1* # removed. full table *1

cb_status;
cb_name [NMLEN] ;
cb_mutex;
cb_maxent;
cb_nument;
cb_hashsize;
cb_maxlife;

cacheentry *cb_cache;
hashentry *cb_hash;

cb_freelist;
cb_lookups;
cb_hits;
cb_tos;
cb_fulls;

enum cb_status { CB_lNUSE=l. CB_FREE=2};
cb_status;typedef enum cb_status

struct cacheblk {
cb_status
char
int
u_short
u_short
u_short
u_int
struct
struct
tceix
u_int
u_int
u_int
u_int

};

The cacheentry structure maintains a single cached entry. A cache entry contains point
ers and lengths for both the key and the result, and a pair of timestamps for insertion time
and last access time. GCache keeps an cacheentry structures for an active cache either on
the free list or, when they are in use, on a doubly linked list attached to a hash table slot.
GCache computes a hash value as a fundion of the sum of the bytes in the key buffer.
GCache then computes the hash table slot as the hash value modulo the size of the hash
table. Note that, for efficiency, the field ce-hash holds the original value of the hash function
for each cached entry. When comparing a new key against a cached entry, GCache uses the
lengths of the two keys and their hash values as a fast check for inequality, only performing
a full comparison of the keys when the lengths and hash values agree.

enum ce_status {CE_lNUSE=ll, CE_FREE=12};
typedef enum ce_status ce_status;
struct cacheentry {

ce_status ce_status; 1* lNUSE or FREE *1
char *ce_keyptr; 1* pointer to the key *1
tcelen ce_keylen; 1* length of the key *1
char *ce_resptr; 1* pointer to the result *1
tcelen ce_reslen; 1* length of the result *1
thval ce_hash; 1* value that was hashed in *1

5

ttstamp ce_tsinsert; /- timestamp - time inserted -/
ttstarnp ce_tsaccess; /- timestamp - last access -/
tceix ce_prev; /- next entry on list -/
tceix ce_next; /- prev entry on list -/

};

GCache implements the hash table as an array of structures representing buckets, each
containing the head of a (possibly empty) doubly linked cache entry chain. A hashentry is
implemented as a structure to simplify the addition of fields for debugging and performance
analysis. For testing the hashing function, for example, a counter could be added to monitor
the number of items hashed into each bucket. Because the caller supplies the maximum
number of cached entries as an argument to cacreateO, an appropriate size for the hash
table can be computed when the cache is created. GCache constructs a hash table whose
size is prime and at least as large as the maximum number of cached entries. Such a hash
table is sufficient to keep the expected length of a list, on average, to no more than 1,
assuming that the hashing function produces a uniform distribution of hash values across
the keys used.

struct hashentry {
tceix he_ix;

};

GCache allocates cache entries as an array and uses indices into this array as pointers
throughout the data structures. The array implementation facilitates searching for the
oldest cached entry because no list traversal is necessary. To simplify the algorithms and
improve performance, we reserve cache entry 0; it becomes the null pointer and we use it
as the implicit head and tail of every list.

To help clarify the data structures used, consider figure 1 representing a user application
using a cache whose cid is 2 (for simplicity, we omit the cache block array). The figure shows
a cache that can contain a maximum of 6 cached entries. The cache includes a hash table
of size 11 (0.10) and currently contains 3 cached mappings: k1 :::} Tl, k2 :::} T2, and k3 :::} T3.

The freelist contains 3 unused cache entry headers (1, 3, and 4).

3.3 Memory Management

GCache carefully manages memory space for the hash entries, cache entries, and the cached
keys and results. GCache allocates thls memory when a cache is created and deallocates
it when a cache is destroyed. The Xinu Operating System provides a simple memory
management mechanism similar to the Unix library routines mallocO and freeO, providing
memory from the kernel's heap space.

3.4 Example Routine

Figure 2 shows the skeleton of the Xinu ip2name() system call. Ip2name() maps IP addresses
to host names using the Tep/IP Domain Naming Service [Moc87a., Moc87bJ. The use of

6

Hash Table

User Application 0 cache entry cache entry
1 6 5

2 -
\ "-

3 \ 1- \
4 (kl ,I k2 Y ,2

Cache Bloc 5

~ cid ~ 2 6 cache entry

I 7 2

~
8

\ \
9 -i ~

10 k3 r3
Free list

cache entry cache entry cache entry
1 3 4

Figure 1: GCache Data Structures

dedicated GCache access routines allows the main procedure to ignore details of GCache
access such as the cache id. The lookup routine uses the memory marking feature of Xlnu
to avoid creating the cache until it is first used. Thls is an important transparency issue;
the alternative is to call a cache-specific initialization routine at system startup time.

4 Alternate Designs and 'Iradeoffs

The goals presented in section 2 lead to several design alternatives for various parts of a
cachlng system. Each of these designs has tradeoffs associated with it. In this section, we
discuss various design issues arising from each of our stated goals and identify the tradeoffs
involved.

Interface
The type of cache that we envision implements a simple function mapping a key to a
response, [(:::} R. An application adds the elements of the mapping to the cache as
it gathers the information. The lifetime of an individual mapping may be arbitrarily
short. Each next request providing query J(should either yield response R or the null
response.

A more general solution allows the mapping to be arbitrary, as in (k l , k2, ••• ,ki) :::}

(TI' T2, '""' Tj). Unfortunately, this generalization complicates the implementation whlie
only providing a small amount of programming convenience.

7

int ip2name(ip_addr, name)
{

/* check in the cache first */
if (ipcachelookup(ip_addr,name) == OK) return(OK);

/**/
/* Send Domain Name Server request to the network, */
/* wait for a reply. (code elided) */
/**/

/* insert the result into the cache */
ipcacheinsert(ip_addr.name);
return(OK) ;

}

static int ip_cid;
static int ipcachelookup(ip_addr, name)
{

static MARKER ipmark;
int len = MAX_DNS_NAME;

/* if this is the first call to this routine, we */
/* must create the cache. */
if (unmarked(ipmark)) {

ip_cid = cacreate("ip2name", /* cache name */
50, /* maximum entries */
60*60); /* timeout (1 hour) */

mark(ipmark);
}

return(calookup(ip_cid, /* cache In */
ip_addr,sizeof(ip_addr). /* pkey, keylen */
name,&len)); /* pres, presien */

}

static void ipcacheinsert(ip_addr, name)
{

cainsert(ip_cid,
ip_addr,sizeof(ip_addr).
name,strlen(name)+l);

}

/* cache 10 */
/* pkey. keylen */
/* pres. res len */

Figure 2: Example GCache Interface

8

Storage Method
The cache can store and retrieve the elements, J(and R, of a mapping either by
reference or by value. The choice of convention to use has a profound effect on the
design of the system.

As an example, consider an instance of a cache in which J(and R represent large
structures. IT the cache stores and retrieves J(and R by reference, then the cache only
needs to maintain pointers to them. This scheme makes the cache more efficient for
caching large blocks of data. Unfortunately, it also introduces an unwanted interaction
between the cache and the module it serves. In the absence of background garbage
collection, a module cannot reclaim the space used by J(and R without informing
the cache. Forcing the user application to inform the cache leads to an interaction
that conflicts with our requirement for transparency.

Alternately, the cache can pass and store J(and R by value. With this design, an
application can reclaim the space occupied by IC and R without effecting the cache.
This argument passing method, however, adds extra overhead in copying time and
storage space, possibly making it inappropriate for caching large objects such as files
and memory pages.

Because each of these two solutions is suitable for some class of cached information, a
third possible design allows the application to specify which storage method is more
appropriate for each individual cache.

GCache uses the second alternative, copying cached entries in and out, because trans
parency is more important than copying overhead for the types of caches for which
we designed GCache.

Timeouts
Many caching systems, particularly those used for information obtained over a net
work, include the notion of a timeout that explicitly bounds the lifetime of a unit of
expensive information. Information may have an implicit or explicit lifetime associ
ated with it.

Network routes, for example, often include an explicit lifetime of a few minutesj they
should not be used after that time. Network routes are exchanged periodically at a
rate several times the maximum lifetime of the information. A host detects loss of a
network gateway by timing out routes through that gateway.

Host name to address bindings also have a maximum lifetime associated with them,
but this lifetime is generally implicit. A host may obtain a new address through
network interface replacement or a move to a new network. Placing a maximum
lifetime on host name and address bindings allows these bindings to change without
requiring explicit interaction with the caches of other hosts.

A cached mapping whose lifetime has expired, therefore, should never be returned
as the result of a query. The module requesting the cache should be able to specify
the timeout, either for all cached entries at cache creation time, or for each entry at
insertion time.

9

One design that provides this functionality uses a background thread that traverses
the caches periodically and removes old information. A background thread solution,
however, introduces extra overhead into the surrounding system and is overly compli
cated.

In a simpler and cleaner design chosen for GCache, each cached entry contains a
timestamp encoding the insertion time. IT a lookup matches an entry with an expired
timestamp, that entry is removed rather than being returned.

Limiting Space Requirements
An application should be able to bound the total space requirements of an individual
cache, particularly if the cache is part of an operating system. Operating system
kernels generally execute in a fixed-size address space; modules that operate within a
kernel environment mnst have bounded memory requirements.

In one possible design, a module creating a cache may specify the maximum number
of cached entries it can contain. The cache insertion routine, when it discovers that
the cache is full, may remove older items. GCache uses this option.

Another alternative allows the size of a cache to vary with its usage. Interface rou
tines using this scheme can allow a heavily-used cache to expand and store more
information1lightly used caches are contracted. With this design, one needs to derive
appropriate policies for determlning rates and thresholds for cache growth and con
traction. The designer must also build a mechanism to trigger size changes; althongh
the system can trigger cache growth at insertion time, cache contraction can be called
for when the cache is never again accessed.

Aging
The above space management routines can determine that the cache is full, and must
then act appropriately. One of our goals states that a cache insertion must always
be successful. Therefore, when the cache is full, the caching routines must remove a
previous entry. This approach forces us to design a policy for determlning which old
entries to remove. Several well-known policies are:

LFU
Under least frequently used, the lookup routines increment a counter associated
with a cached entry each time that entry is accessed. The aging routines remove
those entries with the lowest counter values. This simple scheme can behave
badly when the items to be cached vary over time from one set of information
to another.

LRU
Under least recently used, each cached entry contains a timestamp recording when
it was last looked up. The aging routines remove those entries with the oldest
LRU timestamps.

LRI
Under least recently inserted, each cached entry contains an insertion timestamp.
The aging routines remove those entries with the oldest insertion time. Because

10

the timeout notion already requires an insertion timestamp, LRY aging requires
no added information.

The nature of different types of expensive information may justify the use of either
LRU or LRI aging. Because of this, a more general design allows a module creating a
cache to pick the aging strategy most appropriate for the data it wishes to cache.

As a final issue, we must design a mechanism to search for an entry to delete from a full
cache. Each of the policies above uses a timestamp within a cached entry to determine
the entry to delete. For small caches, an exhaustive search for the oldest timestamp
might be sufficient. For large caches, it might be more appropriate to thread a doubly
linked l1st through the cache entries and maintain them in sorted order of their aging
timestamps. This auxiliary data structure reduces the aging routine to a constant
time search, but maintenance of the list increases the overhead for either insertion or
lookup, depending on the aging policy.

Data Structures
The choice of an appropriate data structure depends on the expected use of the cache.
We could implement a cache using many different data structures: binary trees, b
trees, heaps, hash tables, linked lists, or static arrays. Each of these data structures
selects a different tradeoff between algorithm complexity, storage space, and lookup
and insertion efficiency[HS76] [Knu73b] [Knu73a]. A good rule of thumb states:

tailor the complexity of the data structure to the size oj the problem.

A cache that is only expected to hold a few entries could reasonably be designed using
simple arrays and linear searches. For extremely large caches, however, the extra
complexity of binary trees might be more appropriate. GCache uses a compromise
consisting of singly hashed hash tables and buckets. Each bucket is represented as a
linked list.

5 Experimental Results

Figure 3 shows statistics gathered from GCache shortly after the Xinu Operating System
started. The machine involved is running an XlI server, window manager, and several
local clients. The table shows statistics for 8 different caches of expensive information in
the system. These caches fall into 3 categories:

IP Addresses
The first 2 caches, ip2name and name2ip, contain mappings between domain names
and IP addresses. IP address mappings are small and have a long lifetime, which
makes them excellent choices for caching.

NFS File Handles
The caches whose prefix is "nfs..fh" represent NFS file handle caches for a remotely
mounted file system[Sun89]. When NFS parses path names, it performs an nJslookupO
call on each component of the path, starting at the root. Unless the system caches

11

cid cache name maxent nument htsz life exp full finds hits hitY.
--- ================== ====== ====== ==== ==== ==== ---- ----- ---- ====

0 ip2name 50 17 53 3600 2 0 80 44 55%
1 name2ip 50 12 53 3600 1 0 171 145 84Y.
2 nfs_fh_bonsai/usr 50 17 53 300 9 0 252 218 B6Y.
3 rpcport 40 7 53 3600 2 0 147 130 88%
4 rpc_rto 50 5 53 3600 1 0 274 262 95Y.
5 nfs_fh_nyneve/xinu 50 39 53 300 6 0 317 258 81%
6 nfs3h_bonsai/ 50 4 53 300 0 0 16 10 62Y.
7 nfs_fh_ector/u12 50 2 53 300 0 0 3 0 OY.

field description field description
cid cache id exp Number of expired entries looked up
name cache name, from cacreateO full # entries removed, cache was full
maxent Maximum # entries finds # calls to calookupO (and cainsertO)
nument Current # entries hits # successful lookups
htsz hash table size hit% percentage of successful lookups
life entry lifetime (seconds)

Figure 3: Sample GCache Statistics

the results of these lookups, NFS generates a considerable amount of network traffic.
Note that caching NFS file handles has security and consistency implications that are
beyond the scope of this paper.

RP C Information
The ''Pcport cache stores mappings from RPC program numbers to foreign ports,
originally obtained through RPC requests to remote portmappers[Sun88]. The rpc_rto
cache contains round trip time estimations for- RPC calls to remote hosts. These
cached values are used to set timeouts for later datagram.based RPC calls.

The table in figure 3, generated 10 minutes after the Xinu kernel began running, shows
1260 lookup operations and 1067 valid mappings returned for a hit ratio of 85%. These
figures represent a savings of over 2000 network packets, each with its corresponding cost
for the client and one or more servers.

To further test the benefits of network information caching, we conducted experiments
measuring the time required to invoke a name2ipO system call. The tests were conducted
by an application program runnlng outside the kernel. The machine used for the tests is
a DECstation 3100 workstation running the Xinu Operating System. The nameserver is
running on a Sun 3-160 on the same local ethernet. The results are as shown in figure 4. The
first test, Null System Call, is for reference and shows the time required for a simple system
call on this architecture. The remaining 3 tests were conducted by repeatedly requesting
the IP address of a random host taken from a small set of local machine names. The cache
used for name to IF address bindings holds a maximum of 50 entries. ill the first such test,

12

experiment name time name set size cache hit%
Null System Call 0.027 ms
uncached name2ip 7.669 IDS 10 0
cached name2ip (1) 0.087 illS 10 100
cached name2ip (2) 3.688 ms 100 50

Figure 4: Name2ipO System Call Test Results

file name
Itmp/file
Itmp/a/file
Itmp/a/a/file
Itmp/a/a/a/file

cached openO time
7.9 ms
8.4 ms
8.9 illS

9.4 ms

uncached openO time
25.9 ms
31.7 illS

36.4 ms
45.0 ms

Figure 5: Nfsopen System Call Test Results

uncached name2ip, the cache was disabled and the results show the time required to call
the Domain Name Server over the network. The next test, cached name2ip {1}, shows the
result of asking for the IF address of one of 10 local hosts. This test had a 100% cache hit
rate and shows the overhead of using the cache. The final test, cached name2ip (2), shows
the effect of overflowing the cache by cycling through 100 hosts at random. Because the
cache only holds 50 entries, cached mappings for the 100 hosts are repeatedly inserted into
the cache and then deleted by the aging routines, resulting in a cache hit rate of 50%.

A final experiment measures caching's effect on simple NFS file operations. The test
consists of a procedure that opens an NFS mounted file, /tmp/[a/J*/file, for reading and
then immediately closes it; the file system is already mounted. In the uncached case, this
access results in at least 4 network calls:

1. Nameserver call to find the IF address of the NFS host

2. RPC portmapper request to bind the port used to access the NFS server

3. nfslookupO for the directory "tmp"

4. nfslookupO for the file "file"

Intervening directories, named a, between tmp and file result in one nfslookupO call
each. In the cached case, only the nfslookupO call for file is required; Xinu always verifies
the cached attributes of a file when opening it, but trusts cached intermediate file handles
when available. We show the results of opening 4 different files in the cached and uncached
cases in figure 5.

As expected, these examples show the benefits of caching. We see in the first example
that operating systems make numerous network calls during operation. The next two

13

tests show the time that can be saved on different types of requests for expensive network
information. Together, these tests support the idea that operating systems can benefit from
caching. The use of a generalized caching system, therefore, is beneficial and its well-defined
interface and semantics ease the task of adding caching to modules within the operating
system.

6 Conclusions

Our implementation of GCache has shown that it is possible to design a general-purpose
caching system. We have shown that the addition of such a cache can increase the efficiency
of an operating system, particularly for expensive information obtained from anetwork. The
example in figure 2 of a skeleton ip2nameO system call demonstrated that caching routines
can be added to existing systems with little programmlng effort. In production use, we have
found GCache to be robust and of great utility, particularly in Xinu's networking subsys
tems. In addltion to its usefulness in an operating system kernel, our caching approach is
also suitable for use in large user applications in which caching can improve performance.

References

[Com84] Douglas Comer. Operating System Design, the Xinu Approach. Prentice Hall,
1984.

[Com87] Douglas Comer. Operating System Design} Internetworking with Xinu. Prentice
Hall, 1987.

[Com88] Douglas Corner. Internetworking with TCP/IP. Prentice Hall, 1988.

[HS76] Ellis Horowitz and Sartaj Sahni. Fundamentals of Data Structures. Computer
Science Press, Inc, Potomac, Maryland, 1976.

[Knu73a] D. Knuth. The Art of Computer Programming: Fundamental Alg01-ithms.
Addison-Wesley, Reading, Massachusetts, 1973.

[Knu73b] D. Knuth. The Art of Computer Programming: S01·ting and Searching. Addison
Wesley, Reading, Massachusetts, 1973.

[Moc87a] P. V. Mockapetris. Domain Names - Concepts and Facilities, November 1987.
RFC 1034.

[Moc87b] P. V. Mockapetris. Domain Names - Implementation and Specification, November
1987. RFC 1035.

[Sun88] Sun. RPC: Remote Procedure Call Protocol Specification Version 2, June 1988.
RFC 1057.

[Sun89] Sun. NFS: Network File System Protocol Specification, March 1989. RFC 1094.

14

	GCache: A Generalized Caching Mechanism
	Report Number:
	

	tmp.1307986960.pdf.F8enD

