
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1990

Experiences with Parallelizing a Distributed Database System Experiences with Parallelizing a Distributed Database System

Bharat Bhargava
Purdue University, bb@cs.purdue.edu

Janche Sang

Yin-he Jiant

Report Number:
90-1047

Bhargava, Bharat; Sang, Janche; and Jiant, Yin-he, "Experiences with Parallelizing a Distributed Database
System" (1990). Department of Computer Science Technical Reports. Paper 48.
https://docs.lib.purdue.edu/cstech/48

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

EXPERIENCES wrrn PARALLELIZING A
DISTRIBUTED DATABASE SYSTEM

Bharat Bhargava
Janche Sang
Yin-he Jiang

CSD-TR-I047
November 1990

Experiences with Parallelizing a Distributed Database Systemt

Bharat BhargaV8. Janche Sang, Yin-he Jiang

Computer Science Department
Purdue University

West Lafayette, Indiana 47907

Abstract

Raid is a distributed database transaction processing system. This research is an
attempt at porting and running the various modular component of the Raid software on
parallel processors and conduct a series of measurements that measure the performance
of transaction processing. The parallel version of Raid called P-Raid is implemented on
Sequent/Symmetry which is a shared memory multiprocessor system. This architecture
allows us to increase efficiency by running several Raid servers (such as concurrency
controller, atomicity controller) concurrently, thus achieving parallelism at the server
function level. To implement parallel version of RAID, several changes in the different
layers of the system were required. They deal with communications library and system
interlace. We found that the multiprogramming level of five, resulted in a thirty per
cent improvement in the throughput.

1. Introduction
There are two orthogonal directions of research in transaction processing systems.

Distribution deals with availability and parallelism deals with performance. This study

has the focus on finding the inherent parallelism in distributed database systems and

t This research is supporled in part by 8 grant from AIRMICS, and National Science Foundation grant

IRI-8821398

- 2-

utilizing it to enhance performance.

Our approach is to parallelize an existing system called RAID[l]. RAID is a dis

tributed database transaction processing system and is designed to be robust and adapt

able. It is designed to run under the UNIX system on a network of SUN workstations.

In order to gain experience and understanding how a distributed database system can be

parallelized, we have migrated RAID system from SUNs to parallel machines. We call

the parallel version of the system P-RAID. In this paper, we present our experiences

with the changes in the RAID software and make measurements to compare the perfor

mance of the distributed and parallel version.

In RAID system, the functions of transaction processing are divided into software

modules called servers. The roles of the servers in the RAID system are the User

Interface(UI) - the front end invoked by the user to process queries" the Action

Driver(AD) - execute the transaction. the Atomicity Controller(AC) - manages two

commit phases of transaction processing to ensure global serializability, the Replica

tion Controller(RC) - maintains consistency of the replicated copies of the database, the

Concurrency Controller(CC) - ensures local serializability at a given site, and the

Access Manager(AM) - provides write access to the local database. These servers con

struct a RAID site which has a replicated database. Figure 1 shows the pattern of server

communications in RAID. Each box in the figure represents a RAID server. Arrows

---represents-service-requests-from-one-server-to-another(some-arrows-represent-more-t:hhll1anl>l------

one service request.) Unboxed server names represent servers on other sites.

The implementation of servers in RAID used one process for each server and a

general-purpose communications protocol for interprocess communication. RAID

servers need to communicate both with servers at the same site and with servers at

other sites. A high level, layered communication package provides a clean, location

transparent addressing between servers. RAID communication facilities are imple

mented on top of UDPIIP, the Internet Universal Datagram protocol. The communica

tion path of RAID is shown in Figure 2(a).

However, RAID's server design has performance problems which have been dis

cussed in [2]. There are two techniques of reducing this overhead in RAID:

• Merge several servers into the same process rather than use a separate process for

each server. Context switching can be reduced because there are fewer processes

and communication costs can be reduced because of using shared memory instead

of UDP. In [2], we merged the servers on one site into a single process and

improved the system performance by up to 20 percent on a 4-site system. The

-3-

remoteAMs

RC

AC

remote ADs

AM

ADuser 1

UI

locall'----'V
database L.---Joo------i

8----i"::lAD
user 2

remole AQ;
CC

remote AMs

Figure 1: The organization of a RAID site

physical organization of the second version RAID is shown in Figure 2(b). Unfor

tunately, merging all four servers also forces the servers to run synchronously. The

loss of concurrency is the major disadvantage in this scheme.

• Run the servers on different processors concurrently. It is obvious that context

switching time can be eliminated entirely. In addition, system throughput could be

improved due to parallel processing of transactions.

We use the second approach to build a parallel RAID system.

The parallel machine selection is an important issue. There were two different

kinds of MIMD machines available to us. One was Ncubel7 and the other was

Sequent/Symmetry. Ncubel7 has a host processor and 128 node processors. Each node

processor has its own memory and communicates with each other by using message

passing scheme. However, the operating system VERTEX running on the node proces

sor is a subset of UNIX. Porting RAID on the Ncuben suffered from the lack of com

patibility of system calls. The system calls which were used in Raid but not supported

by VERTEX have to be simulated, modified, or even eliminated. This requires a major

effort to build the system. For example, UDPIIP is not offered in VERTEX. Communi

cation packages in RAID was modified so that messages to or from remote servers were

through host processor. Similar problem occurs in I/O. So we have to simulate it by

passing messages to the host which has the ability to do the 110. Another problem

- 4-

encountered is the C Language on Ncube is not compatible with the one on SUN. such

as, Ncube/7 does not allow to return a struct data from a functioD. enumeration vari

ables have different allocation sizes, etc.. Besides, Ncube/7 was unstable and unreli

able, improper message passing and memory accessing could cause system hang easily.

Our progress on the Ncube machine was quite slow and was discouraging.

The Sequent/Symmetry incorporates from 2 to 30 identical processors and a com

mon memory. This architecture has the benefits of resource sharing and communication

among different processes. Most important of all, it runs DYNIX operating system

which is a 4.3BSD UNIX descendant. Since the Sequent/Symmetry is a shared

memory multiprocessor, we can also modify the communication library in RAID to use

shared memory to transmit internal messages instead of UDP. A message is called

internal if both the sender and receiver are at the same site and same machine. Thus,

our goals for the modification for the new version RAID were to:

(1) Allow multiple tasks to be run simullaneously.

(2) Servers use shared memory to transmit internal messages.

(3) Keep RAID's characteristics unchanged as much as possible while transferring

RAID 10 Ihe Sequent/Symmetry.

The next section presents the design of P-RAID. Section 3 describes Sequent and

DYNIX features and some implementations strategies in detail. In Section 4, we dev

ised an experiment to compare both RAID and P-RAID. Perfonnance measurements are

analyized in Section 5. Finally, Section 6 gives some conclusions and indicates the

future work.

2. P-RAID Design
P-RAlD reduces system overheads and communication costs by running servers

concurrently and by using shared memory to transmit internal messages. In P-RAlD,

the communication package and system interface were changed, while the conceptional

organization of RAID is unchanged.

2.1. Changes to the communications library

Figure 3 shows communication path of P-RAID. The servers AC, AM, Cc, and

RC share a common memory for internal communication. Each server maintains a list

of buffers for incoming internal messages, as shown in the Figure 4. Messages in the

list are read in First-In-First-Out order. The message list structure is almost the same as

we did in [2], in which only one message list is used. Both the buffers and pointers for

- 5 -

Internet

AD AM AC CC RC
VI Pipe

Corom. Pkg. Comm. Pkg. Corom. Pkg. Corom. Pkg. Corom. Pkg.

ISockeL I ISocket I ISockct I ISocket I I ISocket I

/
.... "To & From

Remote Servers

Figure 2(a): The RAID communication path

Internet

AD AM, AC, ce, and RC

VI Pipe

Comm. Pkg. Corom. Pkg.

I Socket I ISocket I

/
.... "To & From

Remote Server.;

Figure 2(b): The merged-server RAID structure

- 6-

Internet

AD AM AC CC RC

UI Pipe

Corom. Pkg. Comm. Pkg. Comm. Pkg. Corom. Pkg. Corom. Pkg.

ISockel I ! ISocket I ISocket I ISocket I ISocket I
'\ , !, , , ,, , , ,, , , ,, ,, , , ,, , , ,, , , ,

_LL.f, Shared ,, ,, ,,
Memory

,, ,
L ______ .J

/ "-

" "To & From
Remote Servers

Figure 3: The P-RAID communication path

r-I Head

I Tail

L.o Next Next

MsgBody MsgBody

Next

MsgBody

Noll

Figure 4: The message list structure

-7-

these buffers are stored in the shared data area because other servers may access them.

Each server can send an internal message to the other server by appending the message

to the receiving server's queue. Once the message has been processed by the receiving

server, the buffer is freed and returned back to shared data area for later use.

If the message destination were in the internal server, the message would be sent

through shared memory; otherwise, it would be delivered via UDP. Although there are

two kinds of message destination, the same calling interface was used for internal and

external messages. Therefore, the changes in communications library are transparent to

server and it requires no changes to the server codes.

Since each message Jist can be accessed by more than one server simultaneously, a

lock is used for each list to guarantee mutual exclusion. Each server must get a lock of

the list in order to send or receive a message. Further, each server only holds one

resource(i.e. a list) until it finishes the operation. The server does not acquire additional

resources while it is in the critical section. Thus, one of the deadlock necessary condi

tions "Hold and Wait" (see [5]) does not exist. Therefore, the deadlock problem will not

occur.

We did not adopt the communication kernel design in YACKOS[4]. The reasons

are as follows. First, servers in P-RAID need to use UDP to communicate with external

servers, while YACKOS is only built on shared memory. We still have to write UDP

codes if we call YACKOS communication routines. This will cause different calling

interfaces to servers. Second, since RAID has already provided a layered communica

tion with its own naming space, the modifications to the RAID code is only limited to

some layer which will be simpler than changing most parts if using YACKOS. Third,

YACKOS uses fixed buffer length. This is not suitable for RAID because message

length in RAID is variable.

2.2. Changes to the system interface

A process called starter is used to let servers AC, AM, CC and RC be able to

access a common memory. The starter is created at system initial stage. Then, it can be

forked to be four processes, each executing a RAID server code as it is created indivi

dually. Therefore, this change is transparent to the remote site of RAID. The starter is

designed to be configurable at run time with any combination of servers. In addition to

those advantages discussed in [2], this flexible design of starter let it be extendible to

allow more multiple ACs, CCS, RCs, or AMs could be in a RAID site in the future.

- 8 -

3. Implementation
This section briefly outlines the features of the Sequent/Symmetry machine that

are relevant to the implementation of P-RAID. We describe the modifications to the

different components of the RAID software.

3.1. Sequent DYNIX fentor..

The Sequent/Symmetry available to us has 6 16MHz Intel 386 series processors

[3]. All processors share a single pool of memory and operate on a peer basis, execut

ing a single copy of DYNIX operating system. A process in any state can be executed

on any processors. DYNIX has a parallel programming library which supports data and

function partitioning applications for parallel processing. The system calls provided by

the library can help users create sets of processes, schedule tasks among processes. and

synchronize processes via shared memory. The following system calls were used:

shmalloc:

Allocate shared memory for data structures whose size is determined at run time.

sheree:

Release data structures previously allocated back to shared memory.

s init lock:

Initialize a lock.

s_lock:

Lock a lock. It spins as long as is necessary to acquire the lock.

s_unlock:

Unlock a lock.

Users determine the data that is shared among processes. In DYNIX C program

ming language, shared variables is declared by adding keyword shared to the variable's

declaration statement. Accessing a shared memory among processes can be achieved by

using the forkO system call. Since the forkO system call creates a duplicate copy of

the current process, the child process inherit the parent's complete memory image,

including the right to access shared memory.

3.2. Overview of the implementation of P-RAID

Figure 5 shows the pseudo code of the process starter. Its main functions are to

declare shared variables and to create servers at the P-RAID system initialization stage.

The two pointers Head and Tail are declared to be shared array structures indexed by

server type numbers. Thus, a server can access the proper message in a list by the use

- 9-

of two pointern Head[wType] and Tail[wType], where wType is a server type number.

The Lock array is also declared to be shared so that it can be accessed among servers to

guarantee mutual exclusion.

Mer doing some initialization work, the starter process forks itself to four (or

lessj if specified) processes, each of them executing one of AC,CC,RC,and AM servers'

functions. From now on, each server is a process just as it is created separately in

RAID. The only difference is that once a message has been processed, it needs to

check where the message buffer should be released back. Figure 6 shows the additional

checking in the server code.

Since RAID is modular, the changes to the communication library were only made

to the internals of the SendPacket and RecvMsg routines. The advantage is that these

changes are transparent to the servers. Servers still call the same sending routine

SendPacket to deliver a message to internal or external servers. Figure 7 is the

modified pseudo code of these two routines. In the SendPacket routine, it enqueues

the message to a proper message list if the destination is internal and use UDP other

wise. The receiving routine, RecvMsg, checks in turns for both internal and external

message. Once a message (either internal or external) is found, it is returned immedi

ately. One more modification is made to change blocking receive mode to be non

blocking receive mode for receiving external UDP messages. This is because we do not

need to wait an external message instead use this time to check an internal message.

We use s_lock and s_unlock to guarantee only one process can enter the critical

section; that is, accessing the shared message lists. For reducing unnecessary over

heads. minimizing critical section length is one of our implementation considerations.

For example, it is not necessary to let the test statement (testing there is an internal

message or not)

"if (Head[mytypenoJI= Null) "

be in the critical section, because there is only one server can extract message from a

list. For same reason, we also avoid putting message coping operation in the critical

section.

-10-

#include <parallel/microtaskh>
#include <parallellparallel.h>

/* shared data ./
shared slock_t msglock[4];

shared struct in_msg ·Head[4J;
shared struct in_msg ·Tail[4];

main(aege, argv)
{

Get some options for servers;
Set siServers[server_type_no].active lO be true if the server with
server_type_DO needs shared memory La send/receive internal msgs.

Initialization step for some servers;

if (siServers[TYPE_RC].active) {
if (foIkO == 0) { mytypeno = TYPE_RC; /' TYPE_RC = 3 '/

RCmainO; /* split and create RC server ""I
exit(l);

}
}
if (siServers[TYPE_CC].active) {

if (foIkO == 0) {mytypeno = TYPE_CC; /' TYPE_CC = 2'/
CCmainO; /* splil and create CC server ttl
exit(l);

}
}
if (siServers[TYPE_AC].active) {

if (foIkO == 0) {mytypeno = TYPE_AC; /' TYPE_AC = 1 '/
ACmainO; ,. split and creale AC server ""I
exil(l);

}
}
if (siServers[TYPE_AMJ.active) {

mytypeno = TYPE_AM; /' TYPE_AM = 0 '/
AMmainO; /. split and create AM server "'"

}

}

Figure 5: Pseudo code for starter process

-11-

ACm.inO
{

lnitializeACO;

while (TRUE) {

MsgType =RecvMsg(MsgBody, &RAIDAddr);

ProcessACMsg(MsgType, MsgBody, RAIDAddr);

if (Inlern.IMsg(RAIDAddr»
shfree(MsgBody);

else free(MsgBody);
}

}

ProcessACMsg(MsgType, MsgBody, RAIDAddr)
{

swilch(MsgType) {

j. unchanged */

}

}

Figure 6: Pseudo code for AC server

- 12 -

SendPackel(Msg,Addr)
{

if (IntemaIMsg(Addr)) {
Buf = shmallocO;
copy Msg to Buf;

sJock(Lock[wType]); /' wType is a server type no. in Addr '/
j* critical section begin ./
Insert Buf to the message list by updating Head[wType],
Tail[wTypeJ, and Next link in the list;
/* critical section end */
s_un1ock(Lock[wType]);

}
else { /* external message */

/* unchanged */

}
}

RecvMsg(Msg) /* Msg is a an address of a pointer to Msgbody */
{
while (fRUE) {

if (Head[mytypeno] 1= Nnll) {/' an internal msg arrives '/

s_lock(Lock[mytypeno]);
/* critical section begin */
Msg = Head[mytypeno];
Update Head[wType] and Tail[wType];
/* critical section end */
s_un1ock(Lock[wType]);

return Msg;
}
else {

check if there is an external Msg or not; /'" non-blocking *'
if yes, get it and return;

}
}

Figure 7: Pseudo code for SendPacket and RecvMsg routines

-13 -

4. Experiments

4.1. Statement of the problem:

This experiment measures the difference in performance of transaction processing

in RAID and P-RAID.

4.2. Procedure

OUf experiments consist of running a transaction benchmark [6] on several version

of the Raid software. The times taken to execute the transactions, and the time spent in

the Raid servers AC and CC are measured.

We ran transactions on merged server version of RAID, the P-RAlD with UDP,

P-RAID system with shared memory. The three experiments are outlined as follows:

• EXPERIMENT 1:

Execute merged servers version RAID on Sequent. Since there is only one process

for the combined AC, AM, CC and RC servers, the process is obviously executed on a

single CPU. This experiment is named MGSV_RAID.

• EXPERIMENT 2:

Run AM, AC, ce, and RC as four different processes in parallel on Sequent.

However, they still use UDP to communicate with each other. This experiment is

named UDP PRAID.

• EXPERIMENT 3:

Execute P-RAJD on Sequent. AM, AC, CC and RC servers also run in parallel

except that internal messages are transmitted through shared memory. This experiment

is named SHMEM PRAID.

Each experiment is carried out in the following steps:

(1) We creates a process called driver which sets a parameter to define the multipro

gramming level.

(2) The driver initiates a number of AD servers based on the multiprogramming level.

In addition, a synchronization controller that triggers all AD's at the same time is

initiated.

-14 -

(3) Each AD server executes a transaction that inserts twenty tuples in a database rela

tion. Each AD server waits for a trigger message before it commits the transac

tion. We use a system call recvfrom() to accomplish that. The blocking-receive

mode is chosen so that all AD servers could be triggered simultaneously.

(4) The synchronization controller sends a control message to all AD servers via UDP.

Each AD server continues its execution to commit the transaction and records the

time when it begins and finishes.

(5) The driver terminates the measurement by killing all the processes.

We executed these experiments by varying the multiprogramming level of transac

tions from one to five. In each case. we repeated the procedure at least twenty five

times and took the best (shortest) time instead of the average time. This is because

Sequent/Symmetry is a public machines in our department and is shared by many users.

The long delays must be from the unwanted waiting for CPUs, overheads on unex

pected processes being swapped out. etc..

The times measured are only for the cost of committing a transaction. The timing

for parsing the database query in our benchmark and its conversion to a transaction and

the I/O times to retrieve data are ignored. Servers will become busy when several tran

sactions are in the system. We measured lithe elapsed time for committing transac

tions ll and the elapsed time for committing transactions is the period from issuing com

mit requests till getting all the replies of commit or uncommit. We measured the

elapsed time in order to know whether we gain pedormance improvement from parallel

processing or not.

4.3. Data

Table 1 contains the measurements of the experiments stated in the previous sub

section. It is clear that experiment SHMEM_PRAID produces the best data. In order to

explain the pedormance times obtained in the Table 1. measurements were done to

determine the time spent in each server for a transaction. The execution path for pro

cessing a commit request is

AC -> CC -> AC -> CC

in a pipelined manner. The time used for each stage is shown in the Table 2. Notice

that the RC server does not appear in the execution flow because the experiments were

conducted in one site only. The AM server is not included since I/O time is not

included in the measurement.

- 15 -

Multiprogramming level 1 2 3 4 5

E"Jlerimentl MGSV_RAID 0.09 0.18 0.28 0.43 0.59

Experiment2 UDP]RAlD 0.12 0.18 0.24 0.34 0.47

Experiment3 SHMEM PRAID 0.09 0.13 0.19 0.31 0.44

Table 1: Elapsed time of transactions execution (in seconds)

Stages lst:AC 2nd:CC 3rd:AC 4th:CC

Time 0.04 0.03 0.01 0.01

Table 2: The time used in each stage for processing a transaction (in seconds)

4.4. Discussion

For the case of only one transaction, experiment MGSV_RAID and experiment

UDP_PRAlD have the same elapsed time since both use shared memory to transmit

internal messages. Experiment SHMEM_PRAlD does not show any speedup due to

parallelization for the case of the sequential execution in one transaction. Experiment

UDP PRAID has the worst data in this case due to the use of UDP to communicate

with internal servers.

When two transaction run simultaneously, experiment SHMEM_PRAlD takes the

advantage due to the parallelism. >From Table 2, we note that most of the time spent

in processing a transaction request is in the first two stages. Therefore, if overlapping

execution is permitted between two successive transactions, the performance could be

improved. Figure 8(a) shows the absence of transaction overlap in experiment

MGSV_RAID. Note that an earlier transactions is finished before the new transaction is

initiated. The time to complete the second transaction is shown as follows.

-16 -

(0.04 + 0.03 + 0.01 + 0.01) + (0.04 + 0.03 + om + 0.01) =0.18 (second)

(waiting time) (processing time)

A different execution is shown in Figure 8(b). The initiation of the second transaction

occurs shortly after the first transaction completes the first stage of the pipeline. There

fore, the expected elapsed time for the second transaction is as follows.

0.04 + (0.04 + 0.03 + om + 0.01) = 0.13 (second)

(waiting time) (processing time)

These two numbers are exactly the same as appeared in the Table 1 and show a

speednp of 28% ([0.18-0.13]/0.18). Transactions in experiment UDP]RAlD took 0.18

second instead of 0.12 ... 2 = 0.24 second also due to the parallel execution of two tran

sactions.

However, the third stage in the first transaction processing may collide with the

first stage in the second transaction processing if they both require the AC server.

Similar situation occurs in the fourth stages of the first transaction and the second

stages of the second one since they compete for the CC server. These collisions are not

severe since in the two collision stages, the time spent in one is shorter than in the other

one. But, the additional delays appear due to the collisions when three or more transac

tions arrives. So the times in experiment SHMEM_PRAlD are

(0.04+0.04) + (0.01+0.01) + (0.04+0.03+0.01+0.01) = 0.19 (second)

(waiting) (collision delay) (processing time)

for the third transaction.

Currently, there are only six CPUs on our Sequent machine. Therefore, when

more transactions request commit, servers have to compete for CPUs. Thus, additional

overhead due to process switching may occur. This is why higher numbers for transac

tion times than expected are shown in the Table 1. For example, when multiprogram

ming level is five. the elapsed time for experiment 1 is 0.59 IDS which is greater than

0.9*5. However, in each case, the parallel execution such as in experiment

UDP]RAID and in experiment SHMEM]RAlD has a better performance than in

experiment MGSV_RAID.

- 17-

5. Conclusion and Future Work
Our study demonstrates how RAID developed for single processors in distributed

environment can be ported on a shared memory multiprocessors system. We have
shown the situations when the performance of the RAID system while maintaining
modularity can be improved. We suggest parallel processing of transactions and the
use of shared memory for communications. We also designed and conducted several

experiments to compare the performance of sequential version of RAID and P-RAlD.
The experiments were devised based on the assumption that the transactions arrival rate
is high enough so that several transactions wait for each server.

We experimented with the P-RAlD with only one site since we had only one

Sequent machine available to us. In the distributed version of P-RAlD, the RC server
(that manges replicated data) will be included in the execution flow for maintaining
consistency of the replicated copies of data. It will cause the increase of both internal

and external messages and the degree of overlapping executing transactions, therefore
the actual speedup gained by P-RAID may change. This can be analyzed and proved
by using the collision vector and reduced state-diagram in [7]. We believe that P~RAlD
implementation will perform better than the other two implementation because of its
message passing mechanism and parallel execution of the servers.

The experiences learned from implementing the PRAID:

• Before migrating large software like RAlD to a new system, one should consider
the issue of compatibility of system environment that includes compiler and

operating system. The target machine's environment should be a superset of the
source machine from which we migrate the software. Especially, the new
environment's compiler of the language in which the software is written in should

support all the features used in the software. The system calls used in the software
should not cost excessive effort to implement. calls.

• When trying to utilize the specific computer architecture to improve the efficiency
of the code, one tends to make the program machine dependent. This causes prob
lems when the migrating the software to a new environment. For example, Sun
workstation environment in which RAID was developed is quite different from the

Ncubel7 environment let alone compatible.

In future, we plan to study the feasibility and implementation of different methods
to exploit parallelism. They include:

(a) Use multiple copies of servers in each site of Raid. Currently each site has one of

these servers. This concept is similar to the design of squads [8]. Squads is a
homogeneous group of processes that cooperate to provide a given service. We

will study how an increase in the number of a server in a site would affect the per

formance.

-18 -

Trans. 2

0.01 0.01

Elapsed Time (in seconds)

Trans. 1

cc
0.03

II iiiAC
0.04

• "Ae' ~,,,,,,,
•,

.......................... wRii.hig··· :....-....::,~,,~<---.._.--07~:;;3;-_.~2".iA"'~H~i'<·~;o.,l :
,
•,,,,,,,,

If'

..

Figure 8(a): No overlap of transactions in experiment MGSV_RAID

..-_---'0",04;..:-_--0.,._.;;0;;;.0;;.3_.., 0.01 0.01... At II 11II CC .. : ~ ~ .

Trans. 1

I I I I
I r I I
I r I I
I l I I
I r I I
I I I I
I I I I

0.04 I I 0 03 10.01 1 0.01
....... -, ·waiting"······· ·"~o--""::'At7c~...L.--'~"'!II!<---L' cc"·1<--"~"'~'i:"C''''oj't;;;C''''''

Trans. 2

Elapsed Time (in seconds) 0.13 •

Figwe 8(b): Overlap permitted among transactions in experiment SHMEM_PRAID

-19 -

(b) Exploit parallelism in some or all of the servers by mapping them onto several
processors. This idea breaks the one-process-per-server thinking which Raid has
used in the past, but allows greater use of parallelism.

(c) Similar to (b). but we implement servers as lightweight processes (threads). rather
that full UNIX processes. This could save both communication and context
switching overhead because the threads' shared memory space can be used for
message passing, rather than costly operating system primitives. Many modem
operating systems such as Mach[9] and Amoeba[lO] support thread primitives.

In each one of above studies, we can measure speedups, and show scalability to
large number of processors.

Acknowledgements
We thank C. Koelbel for his help in the initial stages of our design. We thank A. Helal

and E. Mafia for their suggestions that led to the design of the experiments.

- 20-

References

[1] B. Bbargava and J. Riedl, liThe Raid Distributed Database System ll
• IEEE Transac

tion on Software Engineering, Vol. 15, No.6, June 1989.

[2] C. Koelbel, F. Lamaa, and B. Bhargava, "Efficient Implementation of Modularity

in RAJD II
, Proceedings of the USENIX Workshop on Distributed and Multiproces

sor System, Fort Lauderdale, FL., Oct. 1989.

[3] Osterhaug, Anita "Guide to Parallel Programming on Sequent Computer Systems",

Sequent Computer Systems, Inc., Beaverton, Oregon, 1987.

[4] R. Finkel and D. Hensgen, "YACKOS on a shared-memory multiprocessor",

Technical Report No. 125-88, Univ. of Kentucky Department of Computer Sci

ence, 1988.

[5] J. Peterson and A Silberschatz, nOperating System Concepts", 2nd edition,

Addison Wesley, 1985.

[6J D. Bitton. D. DeWitt. and C. Turbyfil, "Benchmarking database system:A sys

tematic approach.1I in Proc. VLDB Coni., Oct. 1983

[7] K. Hwang and F. Briggs, IlComputer Architecture and Parallel Processing",

McGRAW-HILL, 1984.

[8] D. Hensgen and R. Finkel, "Dynamic server squads in YACKOSII• Proceedings of

the USENIX Workshop on Distributed and Multiprocessor System, Fort Lauder

dale, FL., Oct. 1989.

[9] R. Rashid, IIThreads of a new system", Unix Review, 4(8), August, 1986.

[10] S. Mullender, G. Rossum, A Tanenbaum, and R. Renesse. "Amoeba: a distributed

operating system for the 1990s", IEEE Computer, May 1990.

	Experiences with Parallelizing a Distributed Database System
	Report Number:
	

	tmp.1307986960.pdf._z8jY

