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Abstract—This paper introduces a solution for representing
RDF-oriented compositions with OWL DL ontologies. Firstly,
we present an overview of RDF-oriented Composition Definition
Language (RDFCDL), which is defined for creating/composing
RDF manipulation operations. Secondly, we propose an approach
for representing RDFNet with OWL DL ontology. We focus on
translating some key components of the RDFCDL language into
classes, properties and axioms of OWL DL ontology.
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I. INTRODUCTION

In general, regulations in the industry play an important role

in ensuring the quality of a product [1]. They are defined by

regulatory bodies, informational or cultural standards. It would

be clearly useful to check whether all existing and/or potential

systems satisfy these recommended regulations.

We consider here the case of ontologies expressed in

RDF/S, OWL which represent a project and the regulations

formalized as SPARQL1 queries. Our work aims to support

both non-expert and expert end-users to manipulate RDF data

for checking the conformance of a project against a set of

regulations. We define RDF-oriented Composition Definition

Language (RDFCDL), which is an important part in our

overall approach, based on Coloured Petri Nets.

Ontologies with their components (e.g., classes, attributes,

relations, restrictions, axioms,...) provide machine-readable

definitions of concepts, and therefore can facilitate interoper-

ability by aligning different terms used in different workflow

models. They are a means of representing semantic knowledge.

Representing RDF-oriented Compositions using ontologies

can express semantic description of composition concepts and

their relationship. Consequently, this will contribute with a

common semantics to the improvement of communication

among communities. We propose a formal approach for rep-

resenting RDF-oriented Composition with OWL DL ontology

in order to share and reuse the processes of manipulating

RDF data. We focus on translating some key components of

the RDFCDL language into classes, properties and axioms of

OWL DL ontology.

The rest of this paper is structured as follows: In Section

2, related work is given. Section 3 describes an overview of

1http://www.w3.org/TR/rdf-sparql-query/

RDFCDL in order to manipulate RDF data. In Section 4, we

focus on the approach for representing RDFNet with ontology.

Finally, Section 5 shows conclusions and ongoing works.

II. RELATED WORK

Coloured Petri Nets (CPNs) [5] have been developed to

being a full-fledged language for design, specification, simula-

tion, validation and implementation of large software systems.

The CPN language is supported by CPN tools [10]. CPNs are

thus a well-proven language which is suitable for modelling

of workflows or work processes [6].

With regard to the conformity-checking problem, various

efforts have been made to check the conformance of a product

according to defined rules, e.g., [1], [2], [8]. However, to

the best of our knowledge, existing approaches/techniques do

not allow end-users to create/compose conformity checking

processes. In this paper, based on CPNs, we propose the

RDFCFL language to support end-users to manipulate RDF

data.

Up to now, the combination of Petri Nets/high-level Petri

Nets and ontologies has been studied in some research works

[3], [4], [7], [9] to support (semi-)automatic system col-

laboration, provide machine-readable definitions of concepts

and interpretable format. In [7], we presented an ontology

approach for representing CPNs restricted to the workflow

domain. Since the RDFCDL language is based on CPNs, we

here rely on our work in [7] to propose an approach for

representing RDFNet with OWL DL ontology.

III. RDF-ORIENTED COMPOSITION DEFINITION

LANGUAGE

RDF-oriented Composition Definition Language (RD-

FCDL) allows end-users to create/compose RDF-oriented

manipulation operations using node functions (NFs), which

are system-defined functions. There are three main parts in

RDFCDL as follows:

• The Inputs are ontologies expressed in RDF/S or OWL.

They are a representation of a project, for example a

construction project.

• The NFs and the compositions which compose the RD-

FCDL core. They are defined as CPNs.



• The Outputs are stored as RDF annotations. They are

RDF annotations of manipulating processes. They de-

scribe semantically the result of manipulating processes.

The syntax and semantics of the RDFCDL core are based on

the grammar RDFNet (RDF-oriented Composition Grammar

Net) defined using CPNs. Since RDFNet is based on CPNs,

it inherits the features and operational semantics from CPNs,

e.g., the firing rule.

Definition 1 (RDFNet (RDF-oriented Composition Gram-

mar Net)). RDFNet represents the grammar of the RD-

FCDL in compliance with CPNs. It is defined as a 9-tuple:

RDFNet = (
∑

, P, T,A, F, C,G,E, I) where:

•
∑

is a finite set of non-empty types available in the

RDFCDL, called colour sets:
∑

= {Char, String, Integer,Double, Boolean,Date,

RDFNode}
where Char, String, Integer, Double, Boolean, Date

are standard types and RDFNode is a super-type (see

Definition 2).

• P = Pin ∪ Pout is a finite set of places. Pin and Pout

denote the input and output states of the functions used

in RDFCDL respectively.

The number of tokens in place p: ∀p ∈ P, [w(p) = 1].
• T is a finite set of transitions. The behavior of the

functions and operators in RDFCDL are represented by

transitions.

• A ⊆ (P×T )∪(T×P ) is a set of directed arcs connecting

input places to transitions or transitions to output places.

∀a ∈ A : a.p and a.t stand for the place and transition

linked by a, respectively.

• F 2 is a set of operators/functions available in the libraries.

• C : P →
∑

is a colour function.

Each place has only one type from
∑

:

∀p ∈ P : [|C(p) = 1|]

• G : T → F is a guard function associating an operation

to a transition.

• E : A → Expr is an arc expression function. It is defined

from A into Expr such that:

∀a ∈ A : [Type(E(a)) = C(a.p) ∧ Type(V ar(E(a)))]

• I : P → Init is an initialization function associating

initial values to places. It is defined from P into Init

such that: ∀p ∈ P : [Type(I(p)) = C(p)].

We introduce the following definition of RDFNode that

designates an RDF3 (Resource Description Framework) com-

ponent.

Definition 2 (RDFNode). RDFNode contains three sub-

types that are RDFNode : URI , RDFNode : Literal and

RDFNode : Blank, where:

2Since F is added to the initial CPN definition and has no effect on the
CPN’s functionality, in the rest of the definitions based on CPNs it is bypassed.

3http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/

Fig. 1. Some sample functions defined in RDFCDL

• RDFNode : URI defines the RDF URI reference type.

• RDFNode : Literal defines the RDF literal type.

• RDFNode : Blank defines the RDF blank node type.

The NFs and the compositions are defined based on CPNs.

Consequently, the inputs and outputs of NFs are defined as

places and drawn as ellipses. Note that in this study, a function

can have multiple inputs but only one output. Each place has a

single colour defining its type. A transition, which is drawn as

a rectangle, represents the operation of the function. It operates

on the inputs and sends the result to the output. The input and

output places are linked to transitions via directed arcs drawn

as arrows. A directed arc connects a place with a transition or

vice versa. Several sample functions are shown in Figure 1.

Definition 3 (NF (Node Function)). NF is a system-defined

function based on CPNs. It describes an operation and is

defined as:

NF = (
∑

, P, T,A,C,G,E, I) where:

•
∑

is a finite set of non-empty types available in the NF,

where:
∑

⊆ RDFNet.
∑

• P = Pin∪Pout is a finite set of places defining the input

and output states of the NF.

Pin and Pout are the set of input and output places

respectively where: P = Pin ∪ Pout; Pin ∩ Pout = ∅;

Pin = {pin1, pin2, . . . , pinN}; Pout = {pout}.

• T = {t} is a finite set of transitions denoting the behavior

of the NF. Transition t contains the operation to be

performed.

• A ⊆ (P × {t}) ∪ ({t} × P ) is a set of directed arcs

connecting input places to transition t or transition t to

output places.

• C : P →
∑

is a colour function associating a type to

each place. It is defined from P into
∑

.

• G : {t} → F is a guard function associating an operation

to transition t. It is defined from T = {t} into F where:

Type(G(t)) = Type(V ar(G(t))) ∧ C(pout) ⊆
∑

• E : A → Expr is an arc expression function where Expr

is a set of expressions. It is defined from A into Expr

where:

∀a ∈ A : E(a) =

{

M(a.p) if a.p ∈ Pin

G(a.t) otherwise

M(p) is the value of the token in p.

• I : Pin → Init is an initialization function associating

initial values to input places.



A composition is defined by a mapping between the outputs

and the inputs of NFs. It is expressed by a combination of

graphical functions via operators. We use a suitable operator

having dashed arcs for one link between two functions (Figure

2).

Fig. 2. Graphical composition in RDFCDL

For the purpose of manipulating RDF data, a composition

might be sequential, parallel or conditional. We use the oper-

ators including Sequence, And-split, And-join, Xor-split and

Xor-join (Figure 3) to create the compositions. These operators

are defined based on CPNs, which are compliant to RDFNet.

Fig. 3. Operators are defined in RDFCDL

IV. REPRESENTATION OF RDFNET WITH OWL DL

ONTOLOGY

In this Section, we propose an approach for representing

RDFNet with OWL DL ontology. We translate some key

features of RDFNet into classes, properties and axioms of

OWL DL ontology.

OWL DL, which stands for OWL Description Logic, is

equivalent to Description Logic SHOIN (D). OWL DL sup-

ports all OWL language constructs with restrictions (e.g., type

separation), provides maximum expressiveness while always

keeping computational completeness and decidability. There-

fore, we choose OWL DL language to represent RDFNet. For

more details on OWL DL, please refer to [11].

A formal definition of OWL DL ontologies is given in

Definition 4.

Definition 4 (OWL DL ontology). An OWL DL ontology is

a couple O = (ID0, Axiom0), where:

1) ID0 = CLID0 ∪ INID0 ∪DRID0 ∪ PODID0 is an

OWL DL identifier set including five subsets:

• CLID0 is a subset of class identifiers.

• INID0 is a subset of individual identifiers.

• DRID0 is a subset of data range identifiers which

are predefined XML datatypes.

• PODID0 is a subset of property identifiers con-

taining object property identifiers (OPIDs) and

datatype property identifiers (DPIDs).

2) Axiom0 = CLPA0 ∪ INA0 is a finite set of OWL DL

axioms including two subsets:

• CLPA0 is a subset of class/property axioms which

is used to represent the ontology structure.

• INA0 is a subset of individual axioms which is

used to represent the ontology instances.

Table I shows the mapping between RDFNet and ontology.

We then present the definition of representation of RDFNet

with OWL DL ontology in Definition 5.

TABLE I
MAPPING BETWEEN RDFNET AND ONTOLOGY

RDFNet Ontology

Colour Sets Classes
Places Classes
Instance Tokens Individuals
Transitions Classes
Arcs Properties
Guard funtions Individuals
Arc expression functions Individuals

Definition 5 (Representation of RDFNet). Let an RDFNet =
(
∑

, P, T,A, F, C,G,E, I) be a CPN. Using a transforma-

tion function ϕ to define the OWL DL ontology O =
ϕ(RDFNet) = (ID0, Axiom0) as follows:

1) The identifier set ID0 of ϕ(RDFNet) consists of

following elements:

• For each colour set, ς ∈
∑

, map ς into a class

identifier ϕ(ς) ∈ CLID0;

• For each place, pi ∈ P , map pi into a class identifier

ϕ(pi) ∈ CLID0;

• For each transition, ti ∈ T , map ti into a class

identifier ϕ(ti) ∈ CLID0;

• For each arc from a place to a transition, ain ∈
A, map ain into a property identifier ϕ(ain) ∈
PODID0;

• For each arc from a transition to a place, aout ∈
A, map aout into a property identifier ϕ(aout) ∈
PODID0;

• For each token in a place, tki ∈ M0
4, map tki into

an individual identifier ϕ(tki) ∈ INID0;

• For each guard, g ∈ F , map g into an individual

identifier ϕ(g) ∈ INID0

• For each arc expression, e ∈ Expr, map e into an

individual identifier ϕ(e) ∈ INID0;

• A class identifier ϕ(CCSet) ∈ CLID0 refers to all

the colour sets in RDFNet;

4M0 denotes the set of initial markings of P and I(p) is the initial marking
of p where M0(p) = I(p)



• A class identifier ϕ(CPlace) ∈ CLID0 refers to

all the places in RDFNet;

• A class identifier ϕ(CTran) ∈ CLID0 refers to all

the transitions in RDFNet;

• A property identifier ϕ(arcIn) ∈ PODID0 refers

to all the arcs from places to transitions;

• A property identifier ϕ(arcOut) ∈ PODID0 refers

to all the arcs from transitions to places;

• Two OWL class identifiers, owl : Thing ∈ CLID0

and owl : Nothing ∈ CLID0 are predefined. The

class extension of owl : Thing is employed to

denote the set of all individuals. The class extension

of owl : Nothing is the empty set.

2) The OWL DL axiom set Axiom0 of ϕ(RDFNet)
contains the following subsets:

• a set CLPA0 of class/property axioms;

• a subset INA0 of property identifiers.

We now indicate some elements of the set Axiom0.

• For each guard G(t) in transition t having the output

place pout, we create the following axiom that corre-

sponds to the form

ϕ(G(t)) ∈ ϕ(V ar(G(t))) ∧ ϕ(pout) as follows:

Individual(ϕ(G(t)) type(ϕ(V ar(G(t)))) type(ϕ(pout)));
• Each place p ∈ P in RDFNet can contain one token tk.

We create the following axiom that corresponds to the

form ϕ(tk) ∈ ϕ(p) as follows:

Individual(ϕ(tk) type(ϕ(p)));
• For each arc expression E(a), we create the following

axiom that corresponds to the form

ϕ(E(a)) ∈ ϕ(a.p) ∧ ϕ(V ar(E(a)))
as follows:

Individual(ϕ(E(a)) type(ϕ(a.p)) type(ϕ(V ar(E(a)))));
• Consider a substitution for a transition t, such as:

For the sake of simplicity, we assume that the arc expres-

sions on arcs associated with the places and the transition

are omitted. We thus create the following axioms that

correspond to the forms

ϕ(pin) ⊑ ∀ϕ(ain).ϕ(t)⊓ = nϕ(ain)
ϕ(t) ⊑ ∀ϕ(aout).ϕ(pout)⊓ = nϕ(ftTop2)
1 1 ϕ(ain) ⊑ ϕ(pin)
⊤ ⊑ ∀ϕ(ain).ϕ(t)
1 1 ϕ(aout) ⊑ ϕ(t)
⊤ ⊑ ∀ϕ(aout).ϕ(pout)
as follows:

Class(ϕ(pin) partial restriction(ϕ(ain)
allV aluesFrom(ϕ(t) cardinality(n)));

Class(ϕ(t) partial restriction(aout)
allV aluesFrom(ϕ(pout) cardinality(n)));

ObjectProperty(ϕ(ain)
domain(ϕ(pin)) range(ϕ(t)));

ObjectProperty(ϕ(aout)

domain(ϕ(t) range(ϕ(pout)));
where ϕ(pin), ϕ(pout), ϕ(t), ϕ(ain) and ϕ(aout) are

created in step (1) above, n = w(p) = 1 is the number

of tokens in place p (Definition 1).

We have created some axioms in the set Axiom0. Other

axioms can be created in a same way, e.g., the axioms for

a conflict-free substitution for a transition t that is similar to

Filter function (Figure 1) or And-join operator (Figure 3).

V. CONCLUSIONS

In this paper, we have introduced an overview of the

RDFCDL language to allow end-users to create/compose

RDF manipulation operations. We based on CPNs to define

RDFNet, which represents the grammar of the RDFCDL.

On this basic definition, we presented some other related

definitions constituting the RDFCDL core.

We have proposed an approach for representing RDFNet

with OWL DL ontology, which aims at sharing and reusing the

processes of manipulating RDF data not only in the Semantic

Web, but also in workflow systems. Some key components of

the RDFCDL language were translated into classes, properties

and axioms of OWL DL ontology.

For validating the components of the RDFCDL language,

our ongoing works focus on defining an internal data model.

To execute these components, we then define a run-time

environment, which relies on the CORESE5 semantic engine

that answers SPAQRL queries asked against an RDF/OWL

knowledge base.
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