
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1987

A Robust Distributed Termination Detection Algorithm A Robust Distributed Termination Detection Algorithm

Niraj K. Sharma

Bharat Bhargava
Purdue University, bb@cs.purdue.edu

Report Number:
87-726

Sharma, Niraj K. and Bhargava, Bharat, "A Robust Distributed Termination Detection Algorithm" (1987).
Department of Computer Science Technical Reports. Paper 627.
https://docs.lib.purdue.edu/cstech/627

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4971458?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

A ROBUST DISTRIBUTED
TERMINATION DETECTION ALGORITHM

Niraj K. Shanna
Bharat Bhargava

CSD-TR-726
December 1987

A ROBUST DISTRIBUTED TERMINATION DETECTION AWORITHM

Niraj K. Sharma

and

Bharat Bhargava

Department of Computer Sciences
Purdue University, West Lafayette

IN 47907

-2-

ABSTRACf

When all the processes in a distributed program are idle, either a global termina­

tion condition exists or all the processes are deadlocked. A distributed algorithm to detect

the global tennination condition is presented. The algorithm is general and can be incor­

porated as an underlying mechanism with any distributed programming system. The pro­

posed methodology is immune to process failures, interprocess communication link

failures, and network partitioning. The technique used is based on a spanning tree forma­

tion and it uses only those interprocess communication links which are present in the ap­

plication program. To support resiliency, the algorithm does not depend on some fixed

topology and the spanning tree is formed dynamically to take care of topology changes

occurring as a result of failures in the system.

-3-

1. INTRODUCTION

In a distributed system, termination is a property of the global state of a distribut­

ed program and the processes are aware only of their local states. To terminate a distri­

buted program, all the processes should be idle. A process is said to be idle if it is not do­

ing any computation and also it is not blocked for some event to occur. The problem is to

design an algorithm that will be executed by all the processes to determine the termina­

tion condition without any centralized control.

The problem of detecting the distributed termination condition and distributed

deadlock are different in the sense that the termination condition exists when all the

processes are idle and the deadlock situation exists if all or only a subset of the processes

are blocked such that there is a circular wait. There are many algorithms designed to

detect the distributed deadlock condition [2, 3, 10]. The basic scheme to detect distribut­

ed deadlock is that if a process does not do any computation for some time then the pro­

cess starts the execution of a deadlock detection algorithm looking for circular wait con­

dition. Basically, these algorithms utilize the information about one process being depen­

dent on some other process. Another difference between these two problems is in con­

text of robustness. Consider a distributed application program which is designed in a way

such that it is immune to process failures. If the application program is robust then the al­

gorithms to detect termination and deadlock should also be robust The event of process

failure will effect these two algorithms differently. In deadlock detection algorithms, all

the blocked processes waiting for a response from a failed process will abort any

deadlock detection algorithm under execution. Where as in a termination detection algo­

rithm, a failed process should be simply ignored and any termination detection algorithm

under execution is not aborted.

There are many solutions suggested to solve the problem of distributed termina­

tion detection. The schemes suggested in [5, 9] are in context of esp, a language nota-

-4·

tion proposed by Hoare [7]. One desirable property of these two schemes is that no new

interprocess communication links (to be called links) are introduced. The links required

to execute the application are used to detect the termination condition also. The solutions

described in [1, 4] are more general. The algorithm given in [1] is applicable to any pre­

cess model in which a process is able to know locally whether it is doing any computa­

tion or not, which means idle processes and blocked processes are treated alike. If this al­

gorithm is applied to the process model suggested in CSP where it is impossible to dif­

ferentiate between an idle state and a blocked state of a process locally. then it will be

able to detect that none of the processes is doing computation. But it will not be able to

detect whether the program has terminated or it is deadlocked. In case of the process

model suggested by Hansen [6] called DP (Distributed Processes), it is possible for a pre­

cess to determine locally whether it is idle or blocked. When a process is not doing any

computation and if it is inside either the initial statement or anyone of the global pro­

cedures then the process is blocked otherwise it is idle. With this process model, the al­

gorithm suggested in [1] will be able to differentiate between the termination and the

deadlock condition of a program by simply checking whether anyone of the processes is

blocked or not. The major drawback of this algorithm is that it creates new communica­

tion links in addition to the links utilized by the application. Some times the algorithms

to assign processes on processors utilize the infonnation about the link: structure in the

application program in order to minimize the message traffic among processors. For ex­

ample, if two processes communicate quite frequently then they will be assigned to the

same processor. Therefore, creation of additional links to detect termination condition

will further complicate the task of assignment.

None of the schemes mentioned above will work with process failures, link

failures or network partitioning. In this paper, we propose a scheme to detect distributed

termination that has no centralized control, creates no additional communication links.

and is immune to process failures. link failures and network partitioning. It detects the

·5·

condition when none of the processes is doing any computation. The proposed methodol­

ogy is based on the formation of a spanning tree. In case of a general network structure, it

is quite common to use a spanning tree as an underlying structure on whose edges all

communication activities take place [8]. We will also show how the proposed scheme

can be modified to differentiate between the termination and the deadlock conditions

when it is applied to the DP process model. With the CSP process model, it will not be

able to differentiate between the two.

2. DISTRffiUTED COMPUTATION MODEL

A distributed program consists of a collection of processes. Processes communi­

cate only through messages. When a distributed program is started all the processes start

doing computation concurrently. At the physical level. two processes might be assigned

to two different processors such that !.here is no direct connection between the processors,

however they can communicate through other processors. Therefore a link at the process

level might consist of several interprocessor connections at the physical level. If the link

AB between two processes A and B fails, that means the physical network is partitioned

into two such that process A belongs to one partition and B to the other one. If the net­

work is not partitioned then there will exist a direct or indirect path between any two pro­

cessors.

We assume that a process can determine locally whether it is doing any computa­

tion or not. To fulfill this assumption, each process will be required to maintain a variable

that is set before starting computation and reset before becoming idle or blocked.

A process in idle state can again stan computation as a result of some communi­

cation initiated by some other process. If a process is executing the tennination detection

algorithm then it does not mean that the process can not be in idlelblocked state, because

these states are detennined with respect to the state of the process in the application pro-

-6-

gram. A process is said to be in stable state if it initiates no communication but is ready

to communicate with other processes that would initiate such a communication or it is

blocked. A process which is not in stable state, is said to be in unstable state. All the

processes reach their stable states by means of some finite sequence of communication

called application communication and no process knows that the other processes are in

stable states. The termination detection algorithm will terminate the globally stable pro­

gram by means of some additional communication called extra communication.

We make the following assumptions about messages.

• In the absence offailures, messages do not get lost: It can be implemented by explicit

acknowledgements and retransmission of messages.

• In case a/process or link/ai/lUes, messages might get lost

• Messages sent by a process to any other process are received in the sequence they

were sent: This requirement can be met by using sequence numbers. In the algorithm

presented, this requirement makes sure that whenever a process expects two messages in

response to a message they arrive in order. It is simple to remove this restriction and

modify the algorithm to take care of the sequence numbers.

3. ROBUST ALGORITHM TO DETECT TERMINATION CONDITION

The need of a robust distributed termination detection algorithm arises only when

the application program itself is immune to process failures, link failures, and network

partioning. For example, consider an application program that consists of a process U and

two printer processes Pi and P2. Process U is designed in such a way that if one of the

printer processes fails or gets isolated because of link failures then the whole printing

- 7 -

operation is done through the other printer process. This application is immune to one

printer process failure or its isolation.

A termination detection algorithm should be general in the sense that it should not

depend upon the number of processes in the application program. structure of links

among processes, and the knowledge of robusmess of the application program with

respect to certain process failures. The tennination condition should be detected on the

basis of the processes that have not failed and if the application program gets divided into

isolated groups of processes because of network partitioning then each group should ter­

minate separately.

The termination condition is detected by the following scheme. Each process at­

tempts to form a spanning tree with itself as its root. Finally, only the process having the

highest ill is able to make a spanning tree successfully such that rest of the processes are

intermediate nodes or leaves and the edges are derived from the links existing in the ap­

plication program. No new links are created. While forming trees, a process communi­

cates with its children to find whether all the processes in their subtree are idlelblocked or

not. Children in turn ask their children, and so on. When this message reaches at the

leaves, a phase of messages starts towards the root. If the root finds all the answers to be

affirmative, it starts a second round of messages that tells every process to tenninate.

Otherwise the root tries to make another tree. At a particular moment several trees might

be under formation. The most recent tree with the highest ID process as its root has the

highest priority. Tennination occurs when all processes belong to the same tree and all of

them are stable. A termination detection scheme which is immune to process and/or link

failures is described in section 3.1. The correctness of the scheme is discussed in section

3.2. and a fonnal specification is given in the appendix.

3.1. Termination detection in the presence of failures

Each process executes the identical code to detect tennination. For expressing

- 8-

the algorithms we assume that the ID of the process executing the algorithm is A and B is

the ill of some other process which is one of the neighbors of A with respect to the appli­

cation communication channels.

The description of the messages to be used is as follows. The MAKE_TREE

message is used to form a tree and it starts from the root travelling towards the leaves.

This message has two integers that determine the priority of the tree. The first integer

represents the ill of the root process and the second one represents the number of at­

tempts made by the root process to make a tree. The most recent tree with the higher or

equal root ill has more priority. Consider the case, when process B receives a

MAKE_TREE message from process A. If B is already a node of the tree which A is try_

ing to fann then it informs A by sending a NOT_YOUR_CIDLD message that it can not

become its child. If B is a node of some other tree with higher II) root or same root ill

but higher sequence number then B sends a ABORT message to A to tell that abort the

attempt to make a tree because the formation of a higher priority tree is under progress. IT

none of these conditions are met then B agrees to become a child of A by sending a

YOUR_Cfill..D message and tries to make the tree further. While forming a tree, if a pro­

cess detects that the termination condition does not exist it sends a CANCEL message to

its parent and cancels the fonnation of this tree. Mter this the root attempts to form

another tree. Otherwise if a process based on its infonnation determines that the termina­

tion condition exists, it sends a YES message to its parent

The scheme presented here treats the events of link failure and process failure

alike. When a link fails. we assume that the local operating systems infonn the separated

processes that they are unable to communicate. When a process fails, all its neighbors re~

ceive information from their respective local operating systems that they are unable to

communicate with the failed process. In both the cases, the message received by

processes is same. With this information, the termination detection algorithm running at

a process will take care of both types of failures. To handle network partitioning, we use

- 9-

a pessimistic approach. In this scheme, the termination condition for a disjoint group of

processes exists if all of them are part of the same tree and they are stable. In case of net­

work partitioning, different groups will make different trees and they will terminate

separately.

In response to different events Process A executes different algorithms. When an

event occurs process A might be stable or unstable. The different conceivable cases are

considered below. A detailed description of these algorithms is given in the Appendix.

Algorithm 1. When process A is unstable and initiates application communication with

process B:

Process A records the fact that it did application communication with B.

Algorithm 2. When process A is in unstable stare and receives MAKE_TREE message

fromB:

The anival of a MAKE_TREE message means a new tree is under formation. Depending

on the priority of the new tree there are following three cases.

• If the new tree has lower priority than the tree of which process A is already a node,

then send ABORT message to B to abon the fonnation of the new tree.

• If the new tree has higher priority, process A sends YOUR_CHILD message to inform

process B that it is now a node of the new tree. Right now process A is unstable therefore

termination condition can not exist. So. process A sets a boolean variable FORM_TREE

and it does not forward the request to fonn the tree to other neighbors. When process A

changes its state to the stable one, it will propagate the request further by executing the

algorithm 12.

• If the priority of the new tree and the previous tree of which A is a node is same that

means process A has already received this MAKE_TREE message via some other path,

therefore A is already a node of the tree being formed. To inform B about it. A sends

NOT_YOUR_CHlLD message to B.

- 10-

Algorithm 3. When process A is stable and receives a MAKE_TREE message from B:

Same as Algorithm 2 except that if new tree is to be formed then forward the MAKE­

TREE message further to its neighbors to fonn the rest of the tree instead of postponing

it. When responses from all the neighbors are received, A sends its response back to B. If

process A is a leave of the tree then it will send a response back to process B by calling

the procedure respond_toJlarent and A will not forward the MAKE_TREE message.

Algorithm 4. When process A is unstable and receives a NOT_YOUR_CHILD message

fromS:

This message must have been sent in response to a MAKE_TREE message from A to B.

rr it is in context of the latest tree, then simply record that the response from process B

has been received and set a variable PENDING_MESSAGES and postpone further pro­

cessing of this message till A becomes stable. If the message is not in context of the latest

tree of which A is a node then discard the message.

Algorithm 5. When process A is stable and receives a NOT_YOUR_CHILD message

fromS:

Same as in Algorithm 4. except that instead of postponing its processing, A calls the pro­

cedure respond_toyarent which will send a response to A's parent in case this was the

last message from the neighbors A was waiting for.

Algorithm 6. When process A is unstable or stable and receives a YOUR_CHIW mes­

sagefromS:

If this message is in context of the latest tree of which A is a node then record the fact

that B is a child node else discard the message.

Algorithm 7. When process A is in unstable condition and receives a YES message from

- 11 -

B:

This message has been sent by B in response to a MAKE_TREE message from A to in­

fonn that as far as B and all its children are concerned the termination condition exists.

If this message is in context of the latest tree of which A is a node then it records the fact

that YES message came from B and set the variable PENDING_MESSAGES to enable

its processing later on because right now A is unstable else A discards the message.

Algorithm 8. When process A is in stable condition and receives a YES message/romB:

Same as Algorithm 7. except that instead of postponing its processing, A calls the pro­

cedure respond_toJlarent.

Algorithm 9. When process A is unstable or stable and receives an ABORT message

from process B:

This message has been sent by B to abort the formation of a tree in response to a

MAKE_TREE message from A. IT A is still a node of this tree then pass this message to

its parent and disconnect itself from the tree. If A is the root of this tree then simply

disconnect itself.

Algorithm 10. When process A is unstable and receives a CANCEL message from pro­

cess B:

This message has been sent by B in response to a MAKE_TREE message from A to can­

cel the fonnation of the tree because B has detected that the termination condition does

not exist and the tree is to be fanned again. If process A is still a node of this tree then

record the fact that CANCEL message was received from B and to process this message

further when A becomes stable, set PENDING_MESSAGES to true.

Algorithm 11. When process A is stable and receives a CANCEL message from process

- 12-

B:

Same as Algorithm 10. except that instead of postponing its processing, A calls the pro­

cedure respond_toyarent.

Algorithm 12. When process A changes its state from unstable to stable:

When a process is unstable, one of the following two operations might get sllspended.

The first one is the operation of making a tree and the second one is acting upon the mes­

sages coming from children in response to a MAKE_TREE message sent before becom­

ing unstable. IT FORM_TREE is true then it means the first operation is suspended. To

start it, process A sends MAKE_lREE messages to all the neighbors except its parent. If

there is no neighbor except the parent then process A calls the procedure

respond_toyarent to send a reply to its parent. If PENDING_MESSAGES is true then

it means the second operation is suspended and a few messages are to be processed and

an appropriate response is to be sent to the parent. To do both these tasks, process A calls

the procedure respond_toJlarent.

Algorithm 13. When process A is unstable or stable and gets a message from the local

operating system that A can not communicate with process B:

If A is not able to communicate with B then it means that either process B has failed or

the link AB has failed. It leads 10 the following three cases.

• B is the parent of A: It is possible that the network is partitioned into two sets such that

B and the foot of the tree are in one partition and A in the other one. If root is in the first

partition then there is no process in the second partition to initiate the tree fonnation to

detect the termination condition separately. In the second partition, at least A knows

about this possibility. Therefore, A starts the fonnation of a tree with itself as its root. If

A is unstable then it postpones it by making the variable FORM_TREE true. Similarly,

there might be other neighbors of B that also stan making trees of their own. In the end,

·13·

only the process having the highest ill among these processes will succeed. IT the net­

work has not got partitioned then the attempt of forming a new tree by aU these processes

will compete with the attempt by the original root that existed before the fault occurred.

Again the process with the highest ill will win.

• B is a child of A: If the network is partitioned then A is in the partition in which the

root exists. Therefore, A simply cancels the fonnation of this tree and the root (lhe root

may be A itself) will try to make another attempt A fresh attempt is required to take care

of the disturbances created by the failure.

• A and B are not related: Under this case there may be two possibilities. The first one is

that A is not a node of any tree. In this case, A starts forming a tree with itself as its root.

Again, if A is unstable it will postpone it. The second case is when A is a node of some

tree which does not have the edge AB. In this case, A takes no action because if A and B

are not able to communicate, it will not effect the tree as it does not have the edge AB.

Procedure respond_to_parent;

begin

if process A has received responses of the MAKE_TREE messages

from all the neighbors or process A does not have any

neighbor except its parent

{response can be the message NOT_YOUR_CHILD or ABORT or a

pair of YOUR_CHILD and YES messages or a pair of YOUR_CHILD

and CANCEL. If the response is the ABORT message, control

will never reach here, see algorithm 9.}

then

if A did not perform any application communication during

the formation of the current tree and (responses from

all children is YES message or A has no child)

- 14-

then

All the processes in the subtree below process A are

stable. If A is the root then the termination condition

exists otherwise A sends YES message to its parent

else {termination condition does not exist}

if A is the root, start the fonnation of a new tree otherwise

A is an intermediate node in the tree and it sends CANCEL

message to its parent to abon the formation of the current tree

end.

3.2. Correctness proofs

Lemma 1. At any instance. consider a set S of the processes that have sent YES message

towards the root while forming a tree T (a tree is identified by its root and the sequence

number). If anyone a/the processes belonging to 5, namely X. is made unstable by a pro­

cess Y which does not belong to S then process Y is a node ofT or of some other higher

priority tree.

Proof. If Y has made X unstable then Y is a neighbor of X. Since X has sent the YES

message to form T and Y has not that means at the time when X sent the YES message X

was neither parent nor child of Y. According to Algorithm 2., it is possible only when Y

is already a node of T. After some time, when Y makes X unstable, either Y is still a

node of T or it might be a node of a tree having higher priority than T because only a

higher priority tree can detach Y from T. 0

Theorem 1. When a process X has sent YES message to form a tree T and it is made un­

stable larer, then the termination ofthe program can not occur.

- 15-

Proof. Let S be the set of the processes that have sent YES message while fonning T.

Since X has sent YES message therefore X is a member of S. Let the ill of the process

that has made X unstable be Y. Y can either be a member of S or not. If Y is not in S then

Y is a node of T or some other higher priority tree T' according to Lemma 1. Now if Y

is not in S and is a node of T that means Y has not sent YES message as yet and in future

it will send CANCEL message instead of YES message because it has talked to X. It

means the program can not be terminated. Now consider the case when Y in not in S and

is a node of T'. In this case, it is evident that X is not a node of T' therefore the program

can not be tenninated without consulting X. The only case left is if Y is in S. If Y is in S

then it must have been made unstable by some other process which again might be a

member of S and so on. Ultimately, there has to be a process outside S that started this

wave and this case has already been covered above. D

Theorem 2. Till a process is unstable, the program will not get terminated.

Proof. A program can get terminated only when all the processes have sent YES mes­

sage. While a process is unstable it can never send a YES message. But if it sent YES

message before becoming unstable then according to Theorem 1. the program can never

get terminated. It means that while a process is unstable the program can never get ter­

minated.D

Theorem 3. After the event of any number of process failures, the rest of the processes

will be able to terminate themselves.

Proof. Whenever a process X fails, different events take place depending upon what rela­

tionship X has with its neighbors. Let process Y be one of the neighbors of X. If y is the

parent of X then Y sends CANCEL message towards root that means the tree will be

- 16-

formed again. If Y is a child of X then Y starts making its own tree to take care of the

possibility of network partitioning. Note that X might be the root. Consider the possibili­

ty when Y is neither a child nor a parent of X. It means that Y is not a node of any tree or

the edge XY does not exist in any of the trees being formed now. In the former case, Y

starts the formation of a new tree and in the latter one Y does nothing because the failure

of X does not effect the formation of a tree as far as Y is concerned, however some other

process which is either a child or a parent of X will take some action. In every possible

situation, all the processes that have not failed will participate in the formation of some

tree which means that they will get terminated when the tennination condition occurs. 0

Theorem 4. After any number of link failures, all the processes will he able to achieve

termination.

Proof. If a link XY connecting process X and Y fails then it means the network has be­

come partitioned into two disjoint portions. As far as processes X and Y are concerned,

they both think that the other process has failed and the case of process failures is

covered by Theorem 3. 0

4. PERFORMANCE CONSIDERATIONS

In the termination detection schemes described above, all processes tty to make

separate trees in the beginning. In fact there is no need of doing so. When the processes

are started anyone of the processes can be given the responsibility of making a tree. Its

advantage is that there will be less message traffic. It will not effect the robustness of the

scheme, because at any time if the process responsible to make a tree fails its neighbors

will start executing Algorithm 13. One of them will ultimately be successful in making a

tree. We allowed all the processes to start making trees in the beginning just to treat all

• 17 -

of them alike.

If a process is unstable, it postpones the processing of the messages related to the

fonnation of a tree till it becomes stable. This causes delay in fonning a tree when any

one of the process is unstable, which in tum reduces the message traffic.

Let N be the number of processes in an application program and L be the number

of leaves in a tree T formed to detect the termination condition. In the absence of any

failure, there will be N nodes and (N-I) edges in T if it gets fonned completely. In an at­

tempt to fonn a tree, the minimum number of messages exchanged will be equal to 2

when the first child of the root sends CANCEL message back to the root and the max­

imum number of messages exchanged will be 3(N-I) because to fonn one edge 3 mes­

sages are exchanged. In an attempt to fonn a tree when all the processes are stable, total

number of messages exchanged to detect the termination condition will be 3(N-I). The

time complexity is O(log~,where k is the average number of children of any node in T

except the leaves and it is equal to (N-I)j(N-L). Exact amount of extra communication

or its upper bound is difficult to estimate as it depends upon the relative speed of dif­

ferent processes, how many times various trees are formed, and how failures occur. In the

scheme presented in [1] which is not robust and introduces new communication links. the

total number of messages required to detect the termination condition when all the

processes are stable will be (N-I) and the time complexity will be O(N). In the algo­

rithms presented in [5] and [9], a spanning tree is made; therefore, their time complexity

will also be O(logkN) when all the process are stable.

5. DISCUSSION

The robust scheme presented in this paper is general and it can be applied to any

process model to detect whether all the nonfaulty processes are doing any computation or

not. If it is applied to DP, then by maintaining one more variable at each process to store

- 18-

whether the process is blocked or not and then conveying this information to the root

along with YES message will enable the root to differentiate between termination and

deadlock conditions. It is possible because in DP a process can find out locally whether it

is blocked or not. With esp, it is not possible. The solutions for the process model of

CSP are suggested in [5] and [9].

Our scheme can be modified to take care of the processes or links that become

alive after being dead for some time. First we need to modify the NEIGHBOR variable in

all the effected. processes and then if these processes are nodes of some tree then abort

that tree and start the next attempt. If a process is not part of any tree then do nothing.

Meanwhile, if the termination wave has already been started then coming up of a process

or link will not have any effect as the program termination is in progress.

- 19-

REFERENCES
[1] R.IC. Arora and N.K. Sharma," A methodology to solve distributed termination problem," Informa­

tion Systems, vol. 8, no. I, pp. 37-39. 1983.

[2] K.M Chandy and J. Mishra," Dismbuted deadlock detection," ACM Trans. on Computer Syst.. vol.
I, no. 2, pp. 144-156, May, 1983.

[3] I. Cidon, 1M. Jaffe. and M. Sidi,"LocaI distributed deadlock deteclion by cycle detection and clus­
tering," IEEE Trans. on Soft Eng., vol. SE-13, no. I, pp. 3-14, Jan. 1987.

[4] E.W. Dij"kstra, and C.S. Scholten,"Tennination detection for diffusing computations," Inf. Process.
Lett, vol. 11, no. 1, pp. 1-4, Aug. 1980.

[5] N. Francez,"Distributed termination," ACM Trans. on Program. Lang. and SySl, vol 2, no. I, pp.
42-55, Jan. 1980.

[6] P.B. Hansen,"Distribllted processes: a concurrent programming concept," Carom. ACM, vol. 21, RO.
II, pp. 934-941, Nov. 1978.

[7] C.A.R. Hoare,"Communicating Sequential Processes," Camm. ACM, vol. 21, no. 8. pp. 666-677,
Aug. 1978.

[8) E. Korach, S. Moran and S. zaks, "The optimality of distributed constructions of minimum weight
and degree restricted spanning trees in a complete network of processors" Proceedings of lhe Fourth
Annual ACM Symposium on Principles of Distributed Computing. pp. 277-286, August, 1985.

[9) J. Misra and K.M Chandy,"Termination detection of diffusing computations in communicating
sequential processes," ACMTrans. all Program. Lang. and Syst., vol. 4, no. I, pp. 37-43, Jan. 1982.

[l0) R. Obennarck,"Distributed deadlock detection algorithm," ACM Trans. on Database Systems, vol. 7,
no. 2, pp. 187-208. June 1982.

APPENDIX

A detailed description of the algorithms is as follows. For expressing the algorithm we assume that
the ID of the process executing the algorithm is A and B is the 10 of some other process which is one of
the neighbors of A with rcspectto the application communication channels. Different variables maintained
by process A are:

FORM_TREE - It is of type boolean. When process A is in unstable stale, it knows that the global tenni­
nation condition can not exist At this moment, if it receives a message from one of its neighbors to partici­
pate in the activity ofa spanning tree fonnaLion it simply sets the FORM_TREE variable and does not pro­
pagate the wave of the tree fonnation fuMer. This action will reduce the amount of extra communication.
After some time, when A changes its stale from stable to unstable. it checks the value of FORM_TREE. If
it is true. then it becomes an imennediate node of the tree and propagates the request La make tree to its
potential children. FORM_lREE is initialized to true [0 enable each process to start making a tree with
itself as a rool In the end, the tree staned by the process having the highest ID succeeds and the rest are
aborted. If a root process fails at any time. some other process starts fonning another tree.

CIHLDREN - It is a set of process lO's that are process A's children. It is initialized to nil, because ini­
tially in the absence of a tree there is no child-parent relationship among adjacent processes.
PARENT - It is used to store the ID of the parent of process A and it is initialized to nil.
NEIGHBOR - It is a set of process ID's. It is initialized with the ID's of all the neighbors of process A
with respect to the application program.

TREE_ROOT - Ilis used [0 slore the ID of the root of the tree that process A is trying to fonn currently. It
is initialized to the ID of process A, because in the beginning A will try to fonn a tree with ilsclfas its root
If this atlempt fails. lREE_ROOT will get modified.
SEQUENCE - An attempt to make a tree with the highest ID process as its root might not succeed if the

- 20-

global t.erminalion condition does not exist. In this case another attempt is made to form a 1ree.1l is possi­
ble to get the messages related to different auemplS int.erminglcd. SEQUENCE is an inleger lhat is used to
keep a count of the number of attempls made to form the tree identified by TREE_ROOT. It helps in dis­
carding the messages related to some previous attempt It is iniLializcd to one.
ID - It contains the ID ofprocess A.
DIDNOT_TALK - shows whether this process has initiated application communication with some olher
process or not. It is inilialized to true.
PENDING_MESSAGES - It is of type boolean iniLialized to false. It shows whelher there are any mes­
sages (related to extra communication) pending with process A Ihat are yet to be processed. The reason for
having pending messages is that when a process is unstable and receives messages to form a tree it does not
act upon them until it becomes stable. 1his delay will reduce the frequency of tree fonnalion when a pro­
cess is unstable and hence the message traffic will be less.

To reduce message uaffic, initially only one process can be given the responsibility to slart the for­
mation of a tree by inilializing its variables as mentioned above and the variables of the rest of the
processes will be initialized as follows:

CHILDREN := null;
TREE_ROOT := oU;
SEQUENCE := 0;
PARENT:= nil;
FORM_TREE := false;
PENDING_MESSAGES := false;

Process A communicates with its neighbors using the following messages.

a) [MAKE_TREE, SEQNO, ROOT, FROM] - This message is sent from process A to its potential chil­
dren and in return A expects message b) or message f) or a pair of messages out of c), d), and e) described
below. MAKE_1REE is the name of the message. Here ROOT is equal to TREE_ROOT and SECLNO is
equal to SEQUENCE. FROM is process A's ID. Basically this message is sent by process A to propagale
the formation of a tree further, where ROOT identifies the root process and SECLNO represents the
attempt number.

b) [NOT_YOUR_CHILD, SECLNO, ROOT, FROM] - Process A sends this message in response to mes­
sage a) if A has already become a node of the same nee as identified by the SE/LNO and ROOT fields of
the message a). FROM is process A's ID.

c) [YOUR_CHll...n, SECLNO. ROOT, FROJv1] - Process A sends this message in response to message a) if
A is a node of some other lowerprioriLy tree. FROM is process A's ID.

d) [CANCEL, SECLNO, ROOT, FROM] - Process A sends this message to its parent if A detects that glo­
baltennination condition is not bUe and this tree should be formed again from Ihe beginning. A comes to

know that global termination condition does not exist if it receives a CANCEL message from one of its
children.

e) [YES, SECLNO, ROOT, FROM] - Process A sends this message to its parent if A receives YES mes­
sage from all its children in response LO the MAKE_TREE message it sent to them.

f) [ABORT, SE<LNO. ROOT, FROM] - Process A sends this message in response to message a) if A is
already a node ofsome higher priority tree.

In response to different events Process A executes different algorithms as described below.

- 21 -

Algorithm 1. When process A is unstable and iniliates application communication with process B:
DIDNOT_TALK :=false

Algorithm 2. When process A is in unstable state and receives [MAKE_TREE, SECLNO, ROOT, 'B']
message from B:

{First check if a new tree is to be formed or not by comparing Ihe root ID and sequence number with that
of previous tree being formed at process A}

irROOT> TREE_ROOT or (ROOT = lREE_ROOT and SEQNO> SEQUENCE)
then

begin {a new tree to be formed and the previous one to be ignored}
PARENT:= FROM;
TREE_ROOT := ROOT;
SEQUENCE := SEQ...NO;
CHILDREN := null;

{Right now process A is unstable Iherefore termination condition can
not exist So, process A sets FORM_TREE and does not forward
the .requesllO form the tree 10 other neighbors. When process A
changes its S!.ate to lhe stable one, it will propagate the request
further by executing the algorithm 12.}
FORM_TREE:= true;
PENDING_MESSAGES := false;

{Process A tells process B that it is now one of the nodes of the tree
by sending the YOUR_CHll.D message}

send [YOUR_CHILD, SEQ...NO, ROOT, 'N] 10 B;
end
else {new tree not be formed}

.RooT = TREE_ROOT and SEQ...NO = SEQUENCE then
{process A has already received this MAKE_lREE message via some olher
path, lherefore A is already a node of lhe tree being fonned}
send [NOT_YOUR_CHILD, SEQ...NO, ROOT, 'A']10 B

else if ROOT < lREE_RooT then

{abort lhe formation ofa new lrce, because root of the
previous tree has got higher ID}

send (ABORT, SEQNO, ROOT, 'A'] to B;

Algorithm 3. When process A is stable and receives (MAKE_TREE, SEQNO, ROOT, 'B '] message
from B:

{Same as Algorithm 2 except that if new tree is Lo be formed then forward lhe message further to form lhe
rest of lhe tree insLead of posrponing it. If the set (NEIGHBOR - PAREN1) is empty lhen process A is a
leave of the tree and it should send a response back to process B and A should not forward the
MAKE_lREE message}
Execule Algorithm 2;
if FORM_TREE then
begin

iflhe set (NEIGHBOR. PARENT) is not empLy then
send [MAKE_TREE, SEQUENCE, TREE_ROOT, 'A'j 10 all the processes
thal are members of the set (NEIGHBOR - PARENT)

else call respond_LO--Jl<lrent;
FORM_TREE:= false;

end.

·22-

Algorithm 4. When process A is unstable and receives [NOT_YOUR_CmLD, SEQ...NO. ROOT, 'B']
message from B:

{U the message is in context of the latest tree, then simply record that response from process B has been
received and set PENDll'IG_MESSAGES to true to postpOne further processing of this message till A
becomes stable}

if ROOT = TREE_ROOT and SEQ..NO = SEQUENCE then
record the fact that response from B in context of the tree identified
by TREE_ROOT and SEQUENCE has been received and set PENDING_MESSAGES
to true

else discard the message.

Algorithm 5. When process A is stable and receives [NOT_YOUR_CHll..D. SEQ...NO. ROOT, 'B'] mes­
sage from B:
if ROOT = 1REE_ROOT and SEQ...NO = SEQUENCE tben

record the fact that NOT_YOUR_CHll...D message was sent from B in context
of the tree identified by TREE_ROOT and SEQUENCE
and call rcspond_lo-parent

else discard the message.

Algorithm 6. When process A is unslable or stable and receives [YOUR_CHILD. SEQ...NO, ROOT,'B']
message from B:

if ROOT = lREE_ROOT and SEQ...NO = SEQUENCE then
CIDLDREN := CHIT..DREN + 'B'

else discard [he message.

Algorithm. 7. When process A is in unstable condition and receives [YES, SEQ...NO, ROOT, 'B 'J message
from B:

ilRooT = mEE_ROOT and SEQ...NO = SEQUENCE then
record [he fact [hat YES message came from B in context of [he tree

identified by TREE_ROOT and SEQUENCE and set PENDING_MESSAGES
LO enable its processing later on because right now A is unslable

else discard the message.

Algorithm 8. When process A is in stable condition and receives [YES, SEQ...NO, ROOT, 'B'] message
from B:

;r ROOT = 1REE_ROOT and SEQ.NO = SEQUENCE then

record [he fact that YES message came from B in context of [he lree

identified by TREE_ROOT and SEQUENCE and call respond_to-PaI"ent
else discard the message.

Algorithm 9. When process A is unstable or stable and receives [ABORT, SEQ...NO, ROOT, 'B'] message
from process B:

{This message has been sent by B to abort lhe fonnation of the tree identified by SEQ...NO and ROOT.
Process A acts upon this message if it is still a node of lhis lree}

if ROOT =TREE_ROOT and SEQ...NO =SEQUENCE then
begin {A is a node of the tree to be aborted}

FORM_TREE:= false;
PENDING_MESSAGES := false:
CIm.DREN := null;
TREE_ROOT := nil;

-23 -

SEQUENCE := 0;
ifROOT <> ID then

{A is an intermediate node not the root of the tree being
aboned, therefore send the ABORT message towards the root}
send [ABORT, SEQ...NO, ROOT, 'A']LO PARENT

end
else {A is not a node of the tree 10 be aborted}

discard the message.

Algorithm 10. When process A is unstable and receives [CANCEL. SEQ..NO. ROOT I 'B 'J message from
process B:

{This message has been sent by B to cancel the fonnation of the tree idenliJied by SEQ...NO and ROOT,
because B has deteeled that the termination condition does not exist and the tree is to be fanned again. Pro­
cess A acis upon this message if it is sLilI a node of this tree}
if ROOT =1REE_ROOT and SEQ..NO = SEQUENCE then

{A is a node of the tree to be canceled}
record the fact lhal CANCEL message was received from B in contexl of
the tree identified by mEE_RooT and SEQUENCE and to process !.his
message further when A becomes stable. set PENDING_MESSAGES to true

else discard lhe message.

Algorithm 11. When process A is stable and receives [CANCEL. SEQ....NO. ROOT, 'B'] message from
process B:

{This message has been sent by B to cancel the fonnation of the tree identified by SEQ...NO and ROOT,
because B has deLected that lhe lemtination condition does not exist and the tree is to be fonned again. Pro­
cess A m:rs upon this message if it is still a node of this tree}
if ROOT = TREE_ROOT and SEQ...NO = SEQUENCE then
begin {A is a node of the tree to be canceled}

record the fact lhat CANCEL message came from B;
call respond_to-parent;

end
else discard the message.

Algorithm 12. When process A changes irs state from WlStable to stable:
ifFORM_lREE then
begin {a new tree is to be formed}

if the set (NEIGHBOR - PARENT) is not empty then
send [MAKE_lREE, SEQUENCE, 1REE_ROOT, 'A'] to all the processes
that are members of the set (NEIGHBOR - PAREN!)

else call respond_to-Jl3rent;
FORM_TREE:= false;

end
else {no new tree to be formed}

ifPENDING_MESSAGES then
begin

{a few messages are yet to be processed and an appropriate
response is lo be sent to PARENT}

PENDING_MESSAGES := false;
call respond_to-parent

end

- 24-

Algorithm 13. When process A is unstable and gets a message from the local operating system that A can
not communicate with process B:

{If A is not able to communicate with B then it means that either process B has failed or the link: AB has
failed}
NEIGHBOR := NEIGHBOR - 'B ';
if PARENT is equal £0 'B' then
begin {B is the parent of A}

{It is possible lIlat the network: has partitioned into two such that
B and the root of the uee are in one partition and A in the other
one. Ifrool is in the first partition then there is no process in the
second partition to initiate the tree fannatian to detect the
terminaLion condition separately. In the second partition, at least A
knows about this possibility. Therefore, A prepares itself to start a
Iree with itselfasroot. Similarly, there might be eUler processes
that also start making different trees of their own. In lhe end. only
the process having the highest ill among these processes will succeed.

If the network has not got partitioned then the auempt of fanning a
new tree by alIlhese processes will compete wilh lhe attempt by the
original root that exisled before the fault occwred. Again lhe process
wilh the highest ID will win.}

FORM_TREE:= true
end
e~e

if 'B' is in the set CHILDREN then
begin {B is a child of A}

{IT the network: is partitioned then A is in the partition in
which the root exists. Therefore, A simply cancels lhe
formation of this tree and the root will try to make another
attempL A fresh allempt is required 10 take care of me
disturbances created by the failure.}

CmLDREN := null;
lREE_ROOT:= nil;
SEQUENCE := 0;
FORM_TREE:= false;
PENDING_MESSAGES := false;
DIDNOT_TALK := true;

send [CANCEL, SEQUENCE, lREE_ROOT.'A 'J '0 PARENT;
PARENT:= nil;

end
e~e

if TREE_ROOT is nil then

{TREE_ROOT is nil and A is not a node ofany Iree.
A starts making its own tree}

FORM_TREE := true
e~e

{A is a node of some tree which does nOl have edge AB.
Therefore, ifA and B are not able to communicate it
will not effect the formation of the tree}
discard the message;

ifFORM_1REE is true then

- 25 -

begin {A starts the formation of a new tree with itself as its root}
TREE_RooT:= 'A';

SEQUENCE := SEQUENCE + 1;

{We do not inilialize SEQUENCE to 1 because meanwhile if A deleClS
another failure then the next tree will have the same priority as lhis one}

CHll.DREN := null;
PARENT := nil;
PENDING_MESSAGES := false;

{IfA is sIBbIe now then we start making a new tree now else we do

nolhing and when A will change its stale it will execute algorithm 12.
to fonn a new tree}

ifprocess A is stable then
if the set NEIGHBOR is not empty then

begin

send [MAKE_TREE, SEQUENCE, TREE_ROOT, 'A'] 10 all
lhe processes lhat are members of the set NEIGHBOR;
FORM_TREE:= faIse;

end
else call respond_to-J)areDt {to terminate itself};

end;

Procedure respond_to...,parenr;
begin

if responses of MAKE_1R.EE message have been received from
all the processes in the set (NEIGHBOR. PARENT) or
set (NEIGHBOR - PAREN1) is emply

{response can be the message NOT_YOUR_CHILD or ABORT or a
pair of YOUR_CHILD and YES messages orapairofYOUR_CHll...D
and CANCEL. If the response is lhe ABORT message, control
will never reach here, see algorithm 9.}

then
if DIDNOT_TALK and (responses from all children
is YES message or CHIT..DREN set is null)
then

{AlI the processes in the subtree below process A are
slable. IfA is the root then the tennination condition
exists otherwise A sends YES message to its parent}
if ill = TREE_ROOT then Slart tenninaLion wave
else send [YES, SEQUENCE, TREE_ROOT, 'A'] Lo PARENT

else {lenninaLion condition does nol exist}
if ill = TREE_ROOT then
begin {A is the root, start the fonnalion ofa new tree}

SEQUENCE:= SEQUENCE + 1;

send [MAKE_TREE, SEQUENCE, TREE_ROOT, 'A'] to

all the processes that are members of the set (NEIGHBOR - PARENT);
DIDNOT_TALK := true

end
else {a is an intermediate node in the tree}
begin

send [CANCEL,SEQUENCE,TREE_ROOT:A'] to PARENT;

- 26-

DIDNOT_TALK := lrUe;

call reset;
end

end.

Procedure reset;

{This procedure enables the fonnation of a new tree in case of failures}
begin CHll...DREN:= nuU;

TREE_RooT:= nil;
SEQUENCE := 0;
PARENT:= nil;

end;

	A Robust Distributed Termination Detection Algorithm
	Report Number:
	

	tmp.1307986960.pdf.aEARu

