
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1989

Efficient Implementation of Modularity in RAID Efficient Implementation of Modularity in RAID

Charles Koelbel

Fady Lamaa

Bharat Bhargava
Purdue University, bb@cs.purdue.edu

Report Number:
89-893

Koelbel, Charles; Lamaa, Fady; and Bhargava, Bharat, "Efficient Implementation of Modularity in RAID"
(1989). Department of Computer Science Technical Reports. Paper 760.
https://docs.lib.purdue.edu/cstech/760

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

EFFICIENT IMPLEMENTATION
OF MODULARITY IN RAID

Charles Koelbel
Fady Lamaa

Bhamt Bhargava

CSD-lR-893
July 1989

Efficient Implementation of Modularity III RAID*

Charles Koelbel
Fady Lamaa

Bharat Bhargava

Department of Computer Sciences
Purdue University

West Lafayette, IN 47907

Abstract

Raid is a distributed database system that is very modular. This paper describes
our design, implementation, measurements, and experiences in modifying the system
to achleve an efficient implementation without sacrificing the original goals of modu
larity in the Raid system. This paper describes the rationale behind the modifications
that lead to a facility by which several servers can be merged to run in a single oper
ating system process. It includes an account of the changes that were needed in the
different layers of the system. We feel that merging servers is a technique that can
he applied to improve performance on any server-based system. However the modi·
fications and alternatives for implementation are not easy to evaluate. This research
study contributes in this direction. We have presented the data that was collected for
database transaction processing using the old version (one server per process) vs. new
version (multiple servers per process) in the Raid system.

1 Introduction

RAID is a robust and adaptable distributed database system for transaction processing
[3]. Raid is a message passing system with server processes on each site. Raid divides the
functions of transaction processing into software modules called servers. An operating sys
tem process can implement the capability of a single server or a collection of servers. The
server design has facilitated the implementation effort by providing for flexibility, and by
explicitly defining the interfaces between servers. This architecture provides for modularity
and extensibility which in tum gives the capability to build an adaptable and dynamically
reconfigurable system. A high level , layered communication package provides a clean,

-This research is supported by NASA and AIRMICS under grant number NAG·1-676, by UNISYS and
AT&T Corporations.

1

location independent interface between servers. The Raid system is based on a server
processing model similar to the CAMELOT [10], SDD-l [91. and R* [6] systems. Naive
implementations of server based designs, however, often have high overheads for communi
cations between servers. In RAID, for example, a single message rOWld-trip typically takes
10 milliseconds; for comparison, a server's computation for a transaction may only take 40
milliseconds. System throughput could be improved if the interprocess communications
time were reduced to a few milliseconds or hundreds of microseconds. This paper describes
an approach to reducing this overhead which can be applied to any server-based system.

The current design provides for two versions of the Raid system. The first version runs
with each server in an asynchronous process. The second version combines the servers
that do not need to be asynchronous into a single process. Since om objective has been
to conduct scientific experiments and measurements on various protocols for transaction
processing and system configurations the first version has been very convenient. However,
its perfOlmance was not satisfactory, particularly in terms of the contribution of communi
cations overhead. We decided to tune this system and build the second configuration with
merged servers to see how much improvements can be achieved. We wanted to experiment
with various alternatives for the implementation of the merged server version and to gain
experience that can be useful in the work of other research projects.

The original implementation of RAID had an attractive server model, but an inefficient
implementation of that model. Our goals for the modification for the new version were to

• Decrease transaction latency in RAID by decreasing server overheads.

• Retain the same basic design.

• Retain as much modularity as possible.

We achieved these goals by merging conceptually separate servers into a single physical
entity.

The original implementation of servers in RAID used one process for each server and a
general-purpose communications protocol for interprocess communication. In addition to
the communications overheads, this lead to excessive context switching, particularly since
there are many servers in the system. There are several ways of reducing these overheads
in RAID:

• Use a. special-purpose communications protocol between servers. The protocol can
be tailored to the needs of the current system, and need not pay a price for unused
functionality. This reduces communications overhead, but does little for context
switching. [1] discusses work on this idea done in RAID.

• Write the system in an object-oriented language, using the basic server design. This
approach shifts the burden of message passing onto the language run-time environ
ment, which is presLUnably more efficient than general-pmpose operating systems.
This is particularly attractive if the implementation language uses the same syntax
for both local and remote object references, as Objective-C does [5]. Depending on
the language, this may reduce communications overhead, context-switching overhead,
or both. Emerald [4] is an example of a system that uses this method.

2

• Implement 3eT11ers as lightweight processe3 (threads), rather than full UNIX processes.
The threads' shared memory space can then be used for message passing, rather than
costly operating system primitives. This saves both communications and context
switching overhead. The Argus project [7] took this approach by building their own
threads package. Many modern operating systems such as Mach [8] also have thread
primitives.

• Merge several 3ervers into the same proceS3 rather than using a separate process
for each server. This approach attempts to convert inter-process communication
into simple data movement within the same process. Communications overhead is
reduced by this conversion, while context switching is reduced because there are
fewer processes. The rest of this paper will focus on this possibility.

All of these methods are generally applicable to server-based systems. The methods are
not mutually exclusivej for example, it is reasonable to merge some servers and use a
special~purpose protocol for communications between the other servers.

Performance gains for each of the above methods can be estimated. Using a special
purpose commWlications protocol may save 50% or more of the time spent on all commu
nications. If 25% of the system execution time is spent in communications, this increases
performance by 12.5%. Objeet~oriented languages have similar savings on communica
tions, but tend to have higher overheads on other computations, so overall performance
gains will tend to be lower. Good implementations of threads can reduce the time for a
single context switch from hundreds of microseconds to tens of microseconds, and the time
for a single communications call can fall from milliseconds to microseconds. If these two
overheads together account for 50% of the system running time, performance gains can
exceed 40%. The improvement for communications time using merged servers is similar
to using threads for servers mapped into the same process; context switching between the
merged servers is eliminated entirely. The total time for these overheads will be less than
the 50% we quoted for using threads, since not all communications or context switches are
affected (unless all servers are merged). Assuming 40% of the total time is used by over
heads between the merged servers, the performance gains would be about 30%. Similar
analyses could be done for other server-based systems. In general, the higher the system
overheads are, the more these techniques can gain in performance.

Note that merging servers does not change the basic server modelj only the implemen
tation of that model changes. (This is also true of the other changes noted above.) This is
similar to the difference between the definition of the ISO network layers and non-layered
implementations of the ISO standard [11]. Retaining the same server model is important,
since experience with the original system can then be transferred directly to the new one.
Also, it enables clear comparisons between the two systems. Merging servers will also
create a system with good modularity if the merging is done intelligently; the concep
tual servers become the modules of the implementation. This was very important in our
work, since experimental systems like RAID must be adapted and extended frequently.
Monolithic systems are notoriously difficult to modify. A final advantage of the merged
server approach is that it requires little or no modification to the server codes themselves.

3

Legend
RAID Transactions

RAID Servers

81 RAID Communications I

I UDP/IP I
Unix Operating System

Figure I: The RAID hierarchy.

AC =: Atomicity Controller

AD = Action Driver

AM = Access Manager

CC = Concurrency Controller

RC = Replication Controller

UI = User Interface

Merging servers does not change the servers' internal processing, only their packaging with
respect to each other. Our implementation of RAID made no change to the server codes
at alIi only a high-level controller was added.

The next two sections describe the original and new RAID organizations in more detail.
Section 4 then describes our implementation of the new organization. Section 5 compares
the performance of the old and new systems. Finally, Section 6 gives some conclusions.

2 The Original RAID Implementation

The RAID system is organized in the hierarchy shown in Figure 1. In this paper we will
focus on the server and communications layers. Each of the servers shown in the figure
responds to service requests from the other servers in a clearly defined manner. The RAID
conunWlications package uses UDP to implement cornmWlications between servers. It
provides a number of extensions to UDP, including

• A high~level naming scheme

• Location independence of servers

• Arbitrary sized messages

• Multicast support

The first two extensions are major advantages of the RAID communications package, and
are closely related. Each server has a RAID address consisting of its type, site number,
RAID number (several independent instances of RAID can be running simultaneously),
and sequence number (several servers of the same type may be running on one site).

4

remote AMs

RC

AC

remote ADs

AM

AD
user 1

ur

local"---1/
databast.__J._----1

~I--~-:;-A-;:D~
user 2

remote ACs
CC

remote AMs

Figure 2: The conceptual organization of a RAID site.

This provides a natural way to send a message to another server and creates location
transparency in the server codes. A server need not know the physical locations of other
servers, only their RAID addresses. This had important implications when merging the
server codes. An oracle server registers RAID servers and their UDP addresses as they
begin execution and distributes this infonnation to other servers. The information is stored
by the communications routines and used to translate between RAID addresses to UDP
addresses when messages are sent and received.

Figure 2 shows the pattern of server communications in RAID. Each box in the figure
represents a RAID server. Arrows represent service requests from one server to another
(some arrows represent more than one service request). Unboxed server names represent
servers on other si tes. The roles of the servers in the RAID system are

• User Interface (UI): a front end invoked by the user to process relational calculus
quenes.

• Action Driver (AD): accept a parsed query from the ur, format the query as a
transaction (read and write actions), and execute the transaction.

• Access Manager (AM): provide write access to the local database, ensuring that
updates are posted atomically to stable storage.

• Atomicity Controller (AC): manage the two commit phases of transaction pro
cessing to ensure that a transaction commits or aborts globally.

• Replication Controller (RC): maintain consistency of replicated copies of the
database in the event of multiple site failures.

5

User process
(UI,AD)

Local
Databas

Remote RAID

TM process

(AM,CC,AC,RC)

Figure 3: The physical organization of a RAID site.

• Concurrency Controller (CC): ched.: whether a transaction history is locally
serializable at a given site.

One of the main goals of the RAID system was to provide modularity and reconfig
urability to allow experimental studies into new methods of distributed processing. This
was accomplished by making each server on a site reside in a different UNIX process. The
servers communicate with each other using the RAID communications routines. Because
of the location transparency provided by those routines, the site and its servers are not
tied to any paJ.oticular host on the network. The design is very attractive because of its
adaptability, but the perfonnance of the system suffers because of high communication
costs and excessive context switching between the multiple processes competing for CPU
time. The study in [2] shows that only a small fraction of the wall-clock time used on a
given transaction is directly attributable to server processing; the rest must be attributed
to system overhead. We therefore investigated alternatives for reducing this overhead.

3 The New RAID Structure

Our decision to reduce system overheads in RAID by merging conceptually separate servers
into one process forced other choiceso Merging servers did not cllange the conceptual
organization of RAID from the hierarchy of Figure 1 and the communications of Figure 2.
Only the packaging of servers into processes changed. We decided to merge the AC, AM,
CC, and RC into one process, the Transaction Manager (hereafter referred to as the TM).
The DI and AD were merged into the User process. TIllS new organization of a site is
shown in Figure 3. The only part of this design that was peculiar to RAID was the choice
of servers to merge. The general strategy of merging servers can be applied to any server-

6

based design. It is profitable whenever the system and communications overheads are
high.

The division of servers between the TM and User processes was chosen for pragmatic
reasons. The AC, AM, CC, and RC servers at a RAID site execute as long as the site is up,
while the UI and AD appear and disappear as users come and go. It does not make sense
to package permanent servers like the AC with temporary servers like the UI because the
server lives are so different. The UI and AD are very closely associated with each other,
so packaging them together was a natural decision. It is less clear that having all four
servers packaged in one TM process is an advantage, since several transactions might be
processed concurrently if the servers were in different processes. This would be possible
if there were long latencies in the servers (as there are in the AM) or if the processes
could run in parallel (for example, if RAID were ported to a multi-processor). For future
investigation of these possibilities, we designed the TM to be configurable at nm time with
any combination of the four servers. For example, the AC, CC, and RC could be grouped
together, with the AM being run in a separate process. This allows us to test and compare
various configurations of servers in processes directly.

Several options were open to us for how the servers would be merged.

• Implement .'lerver.'l a..'l .'lubroutine librarie.'l in the sa.me process. The major advantage
of this approach is that it is very fast, since it can completely avoid copying data.
Thus, the only cost of communicating with a server is a subroutine call, which is on
the order of microseconds. The disadvantage is that not all servers act as subroutines.
The AC, for example, often can run asynchronously with its caller, so it would be a
poor candidate for a subroutine library. If the AM used asynchronous disk writes,
it would also be a poor choice as a subroutine. We also felt that modularity and
extensibility might suffer, under this design. Because these features are important
to the RAID project, we did not use this approach for the TM. In the User process,
the disadvantages are much less severe than for the TM. The AD does operate as a
set of subroutines, and we did not foresee problems with modularity or extensibility.
The User process is currently being written implementing the AD as a subroutine
library.

• Call server routines directly from the communica.tions routines on internal me.'l.'lages,
and use the same interface for messages to internal and external servers. A server
wishing to communicate with another server would call the appropriate communica
tions routine. If the message destination were in the same process, the server routine
would be called; otherwise, the message would be sent via UDP. This approach has
the advantage that server codes need not be rewritten, and it is almost as fast as
the first alternative. It has the same disadvantages as the previous approach, how
ever, and it severely violates the layering hierarchy of RAID (Figure 1). Routines at
one level of the RAID hierarchy should only call routines at a lower level; thus, the
communications routines should not call server codes. Such calls would compromise
modularity by making the RAID communications routines less general. Since we
give modularity a high priority, we rejected this option.

7

• Copy internal me/J/Jage/J to a queue, and use the same interface for messages to internal
and external servers. The use of the communications routines is similar to the last
alternative. Like that alternative, it requires no changes to the server codes. The
problem of servers not behaving as subroutines does not apply here, however, nor
is the layering scheme violated. The major disadvantage of this method is that it
is not as fast as simple subroutine calls, since it requires copying data. (Enqueuing
the data without copying is not feasible, since the data can then be overwritten or
even deallocated before the message is received.) This is the method that we used
to write the TM.

4 Implementation

This section describes the changes made to the diffel'ent parts of the RAID code to im
plement the design in Section 3. The next two sections will describe separately the imple
mentation details of the TM and User processes.

4.1 Implementation of the Transaction Manager (TM)

Most of the work involved is related to this part of the RAID software. Changes had to
be made to the communication package, the RAID server code, and the system interface.
The next three sections describe all these changes in detail.

4.1.1 Changes to the oracle and communications library

Two basic considerations drove most of our changes to the communications library:

• Multiple processes can now be present in the same process. This was not true under
the original implementationj in fact, parts of the commWlication library depended
on having a one-to-one correspondence between processes and servers.

• Internal cOIlUllWlication (i.e. messages between servers in the same process) must be
efficient. Using UDP to send a message from a process to itself is wasteful.

The first consideration forced us to use a more general addressing translation than the
old version of RAID used, while the second forced us to add more code checking for the
internal commtulication case. We will describe the latter change first.

Shared queues are now used for communication among servers residing in the same
process. The sending routine, SendPacket, now enqueues the messages if the destination
is internal to the process and use UDP otherwise. This requires just one test of the
destination address and a short section of code putting the message on the queue. The
receiving routine, RecvMsg, now checks for both internal and external messages when
called. Priority is given to internal messages by first checking whether the queue is empty.
If an internal message is found, it is returned immediately. Otherwise, RecvMsg listens at
the UDP socket for an external message. We chose this priority because internal messages

8

are more likely to be related to the currently active transaction; also, testing the queue is
faster than listening at a UDP socket.

It is important to note that these changes were only made to the internals of the
SendPacket and RecvMsg routines, not to their interface with the rest of the program.
Because tIlls is true, the packaging of servers into processes is transparent to the servers
themselves. A server can use the same procedure to deliver a message to either an internal
server or an external server. Similar techniques could be used in any server-based system
that used virtual server addresses. In general, this allows the servers to be merged making
few, if any, changes to the servers themselves.

Having merged servers causes an interesting problem when receiving messages. When
a single server resides within each process, there is no need to check which server should
receive the message since there is only one possibility. With merged servers, the target
server for a given message is not always known. Some way must be available to determine
the correct server. Our solution was to include the recipient's RAID address in the message
header and have the receiving routine read it. We added a new routine, RecvMsgAddr,
that reads the destination field and returns it via pointer parameters. The sender's RAID
address was already included in messages in this way to facilitate return messages. For
backwards compatibility, we kept the old routine, RecvMsg, that ignores the destination.

One minor change was made to the oracle. As part of its initiation, each RAID server
registers with the oracle and requests addresses of other servers from the oracle for use
in future COlIllntUlications. Under the old RAID implementation, there was a one~to"one

correspondence between servers and UDP sockets. Clearly, this is inefficient if several
servers are in the same process and can share a socket. The new system allows more than
one server to register using the same socket. All RAID communications are sent to that
socket; the destination address field is used to dispatch the message to the correct server.
The new initialization also excludes internal servers from the list of oracle requests, since
their location is already known.

4.1.2 Changes to the server codes

The main structure of each individual server was a main loop that continuously received
messages and called the appropriate routines to handle the requests. Figure 4 shows the
pseudo-code for the AC as an example. With all the servers merged together, there is only
one main loop for all servers, shown in pseudo-code in Figure 5. Messages to the process
are demultiplexed to the appropriate server using the destination address field. The server
processing routines are unchanged. This new design implies that the servers will execute
synchronously. We discuss the loss of concun-ency fmm this decision in Section 6.

4.1.3 Changes to the systelll interface

We decided to design the TM so that it could be configured with various combinations of
merged servers, rather than always containing the AC, AM, CO, and RC. The intent was
to allow experimentation with different combinations of merged servers, either to optimize
the grouping or simply to observe performance effects. To allow such reconfiguration, we

9

main()
{

InitializeAC();
while (TRUE) {

MsgType = RecvMsg(MsgBody, &RAIDAddr);
ProcessACMsg(MsgType, MsgBody, RAIDAddr);

}
}

ProcessACMsg(MsgType, MsgBody, RAIDAddr);
{

switch (MsgType) {
case AD~QUEST:

ProcessADRequest(MsgBody, RAIDAddr)j
break;

default:
ReportError(lIUnknown messge type") j

break;
}

}

Figure 4: Pseudo-code for AC server.

10

maine)
{

InitializeAll()j
while (TRUE) {

MsgType = RecvMsgAddr(MsgBody, &SendAddr. &RecvAddr);
switch (RecvAddr.ServerType) {

case AC_TYPE:
ProcessACMsg(MsgType. MsgBody, SendAddr);
breakj

case AM_TYPE:
ProcessAMMsg(MsgType. MsgBody. SendAddr)j
break ;

case CC_TYPE:
ProcessCCMsg(MsgType, MsgBody. SendAddr);
break j

case RC_TYPE;
ProcessRCMsg(MsgType. MsgBody, SendAddr)j
break;

default :
ReportError("Unknown server type");
break;

}
}

Figure 5: Pseudo-code for Transaction Manager.

11

decided to load all the compiled servers into one program and use command line options
to instantiate the appropriate servers within the TM. In addition to the new program, we
wrote a new version of the RAID "start~site" shellscript. This shellscript starts the servers
for an entire site. Formerly, it invoked separate programs for each of the servers; now it
only invokes the TM. Some new options were also added to the shellscript to control the
grouping of servers into processes. The default configuration is to have all servers running
m one process.

4.2 Implementation of the User Process

The UI and AD in the original RAID implementation were written very early in the
research project, before the RAID communications library was designed. Because Ou!"

priorities were in the distributed processing aspects of RAID, the UI and AD were never
thoroughly integrated with the rest of the system. In particular, they do not exploit the
location independence offered by the RAID communications routines. This made merging
the servers into the User process more complex than the TM process. We report here on
a first attempt at that merging.

In the original version, the UI forked an AD process and commtulicated with it using
UNIX pipes. The UI then forked another program to parse the user transaction, read that
program's .output from another pipe and copied it to the AD's "read" pipe. The UI read
the final result from the AD's "write" pipe and copied it to standard output. The AD
continuously read from one pipe, processed the transaction sent, and wrote the result to
the other pipe. We merged the UI and AD servers into one process to avoid the UI-AD
pipe. The AD is now a subroutine that takes its input directly from the parser output and
writes its result directly to standard output. This is a slight improvement on the original
design, but is still inelegant. A new version of the User process is currently being written
which merges the servers by implementing the AD as a subroutine library. We hope this
will make the new program both more efficient and more maintainable.

5 Measurements of Original and New RAID Systems

We made several measurements on the new RAID system to compare it with the old ver
sion. The first set of measurements compares the costs of the new internal communication
routines. Since the implementation of the new system involved creating two independent
merged servers (the TM and the User process), two additional sets of measurements for
transaction processing time were collected. One was gathered with only the TM being
active, i.e. the UI and AD were still separate processes. The other set was collected with
both merged servers being active. The transaction benchmarks and measurements are as
described in [3,2J.

12

IBytes' ~ 2048 I 8192 I
External (using UDP) 11.9 20.1 46.7 153.3
Internal (using queues) 1.1 2.7 8.3 30.7

Table 1: Round trip external and internal communication times by packet length (in
milliseconds)

ITransaction 11 site I 2 sites I3 sites I4 sites I
select one tuple 0.3 0.3 0.4 0.4
select eleven tuples 0.4 0.4 0.4 0.4
insert twenty tuples 0.6 0.6 0.8 0.8
update one tuple 0.4 0.4 0.4 0.4

Table 2: Transaction execution time for original RAID system (in seconds).

5.1 Measurements of Communication Times

In order to explain the performance times obtained from the new design, some measure
ments were collected on the new communications used. Table 1 compares the time to send
messages of different sizes using the old RAID communication routines (built on top of
UDP) with the time for the new internal message queues. Communication between servers
in different processes still uses UDPj the times for those messages is essentially unchanged.
Our new routines, however, require 80 to 90 percent less time for internal messages.

5.2 Measurements of Transaction Execution Times

Table 2 (taken from [3]) shows the times taken for transaction processing for several
database queries using the original RAID system. The times include only the cost of
committing the transaction; cost of parsing the query is ignored. Table 3 shows the times
for the same queries using the TM process, but with the old ur and AD. The configuration
for the TM packaged the AC, AM, CC, and RC together. For one site, the new system
is 33 to 55 percent faster than the old. For four sites, the figures show a speedup of 7.5
to 20 percent. The lower speedup for multiple sites is to be expected, since they require
external communications for site-to-site messages.

These improvements approximate our expectations based on the improvement in message
passing times and the numbers of messages converted from external to internal. The
amount of time saved for each transaction with the new design is proportional to the re
duction in the number of UDP messages. The first two rows of the table only involve
reading items from the database, which saves 4 UDP messages out of 6 total messages (in
the single-site case). Thus, if the average packet length were 512 bytes, Table 1 shows that
the time savings from communications alone would be 4 x (20.1- 2.7) = 69.6 milliseconds.

13

11 site I 2 sites I 3 sites I4 sites I
select one tuple 0.18 0.19 0.19 0.32
select eleven tuples 0.18 0.19 0.22 0.34
jnsert twenty tuples 0.40 0.40 0.45 0.64
update one tuple 0.22 0.22 0.22 0.37

ITransaction

Table 3: Transaction execution time for RAID system with new TM and old UI and AD
(in seconds).

11 site I 2 sites I 3 sites I4 sites I
select one tuple 0.12 0.13 0.13 0.25
select eleven tuples 0.13 0.16 0.17 0.31
insert twenty tuples 0.35 0.37 0.37 0.57
update one tuple 0.16 0.17 0.18 0.32

ITransaction

Table 4: Transaction execution time for RAID system with new TM and User Processes
(in seconds).

This js just over half the actual speedup of 120 milliseconds for selecting one tuple on one
processor I which is reasonable for such a simple estimate. The last two rows involve writing
to the database, saving 3 more UDP messages of an additional 5 messages (again, in the
single-site case). Here, the expected communications speedup is 7 x (20.1 - 2.7) = 121.8
milliseconds, again in reasonable agreement with the experimental data. In both cases,
more messages are needed in the multiple-site case to coordinate with remote sites; these
must be sent via UDP, so no further speedups can be expected.

Table 4 shows similar transaction execution times in RAID systems containing both a
TM and a User process. The speedups range from 42 to 68 percent for one site and 20 to
38 percent for 4 sites.

Almost all of the improvement between Tables 3 and 4 is due to fixing a performance
bug in the original AD (file descriptors were being closed without first being opened).
We cannot credit this improvement to om merged server design; it was simply a case of
stumbling over an old bug and fixing it. If the time for parsing the transaction were also
included in the above numbers, there would be a further time savings for the User process.
This is because one level of indirection (the UIwAD pipe) has been eliminated.

6 Analysis and Conclusion

We have accomplished our goals in this project: to improve the performance of the RAID
system while maintaining its modularity. We achieved this by creating a difference between
the virtual system architectme (the counllllllications links in Figure 2) and the actual

14

implementation (the process packaging in Figure 3). In addition, we think that future
changes to the RAID system can be made within our "virtual server" implementation.
This idea is currently being tested, as some changes to the virtual system architecture are
being implemented at the server level without modifying the communications routines or
the TM main loop. Similar merging of conceptual servers can be done on any server-based
system. IT implemented carefully, it can eliminate overhead without sacrificing modularity
or redesigning the conceptual system. In fact, it is possible to do the merge without
changes to the server routines themselves.

While merging all four servers certainly minimizes communications cost, it also forces
the servers to run synchronously. This may be a disadvantage if many transactions are
run concurrently or if RAID is ported to a multi-processor machine. Since the RC and CC
only communicate with their local AC, the best configuration on a single processor should
include all three servers in one process. Concurrency is not an issue in this case, since the
RC and CC cannot run in parallel (for the same transaction) and only one process can
be executing. The AM also communicates with the AC so we do save one UDP message
by including the AM in the same process. However, the AM's main job is to write data
to disk. Since we only use synchronous I/O, it may be an advantage to run the AM in a
separate process even on a uniprocessor to avoid blocking the entire TM. If the machine
running RAID is a multi-processor, we may have to redesign the system to exploit its
concurrency. As a simple example, it would be useful to have each server working on a
different transaction in parallel on such a system. We are currently experimenting with
different configmations of the TM to determine how much effect this loss of concurrency
has.

We close with some lessons we've learned that we think are applicable to other dis
tributed systems:

• Modularity is important to accommodate new algorithms and techniques in research
systems.

• It is possible to have both modularity and reasonable performance.

• The modularity of the implementation (process packaging) need not reflect the mod
ularity of the design (servers).

• Overhead in a distributed system can be reduced by collecting conceptual servers
into a single physical entity.

Acknowledgements

We would like to thank Dr. Jim Gray of Tandem Corporation for suggestions that led
to the merged server design. John Riedl was helpful in the initial stages of om design.
We thank all all the students at Purdue University and the University of Pittsburg who
have contributed to RAID over the years. Our work would not have been possible wjtbout
theirs.

15

Bibliography

References

[1] Bharat Bhargava, Enrique Mafia, John Riedl, and Bradley Sauder. Implementation
and measurements of an efficient communication facility for distributed database sys
tems. In Proceedings of the 5th IEEE Data Engineering Conference, Los Angeles, CA,
February 1989.

[2J Bharat Bhargava and John Riedl. Implementation of RAID. In Proc. of the 7th IEEE
Symposium on Reliability in Distributed Sy8tem8, Columbus, Ohio, October 1988.

[3] Bharat Bhargava and John Riedl. The RAID distributed datab..,e system. IEEE
Transactions on Software Engineering, 15(6), June 1989.

[4] Andrew Black, Nonnan Hutchinson, Eric Jul, Henry Levy, and Larry Carter. Distri
bution and abstract types in Emerald. IEEE Transactions on Software Engineering,
SE-12(12), December 1986.

[5] Brad J. Cox. Object Oriented Programming: An Evolutionary Approach. Addisonw

Wesley, 1986.

(6] Bruce G. Lindsay, Laura M. Haas, C. Mohan, Paul F. Wilms, and Robert A. Yost.
Computation and communication in R*: A distributed database manager. ACM
Transactions on Computer Systems, 2(1), February 1984.

[7J Barbara Liskov and R. Scheifler. Guardians and actions: Lingustic support for dis
tributed programs. A OM Transactions on Programming Languages and Systems,
5(3):381-404, July 1983.

[8] Rirhard F. Rashid. Threads of a new system. Unix Review, 4(8):37-49, August 1986.

[9] J.B. Rothnie et aJ. Introduction to a system for distributed datab..,es (SDD-1). ACM
Transactions on Database SystemlJ, 5:1-17, March 1980.

[10] Guide to the CAMELOT DilJtributed Tran.sac#on Facility. Carnegie Mellon Computer
Science Department, 0.98(51) edition, May 1988.

[11] Richard W. Watson and Sandy A. Mamrak. Gaining efficiency in transport services
by appropriate design and implementation choices. A CM TranlJaetions on Computer
Syste71l.8, 5(2):97-120, May 1987.

16

	Efficient Implementation of Modularity in RAID
	Report Number:
	

	tmp.1307986960.pdf.e8RYm

