Purdue University
Purdue e-Pubs

Department of Computer Science Technical

Reports Department of Computer Science

1992

Integrating Distributed Data Sources Using Federated Objects

Henry R. Tirri
Jagannathan Srinivasan

Bharat Bhargava
Purdue University, bb@cs.purdue.edu

Report Number:
92-023

Tirri, Henry R.; Srinivasan, Jagannathan; and Bhargava, Bharat, "Integrating Distributed Data Sources Using
Federated Objects" (1992). Department of Computer Science Technical Reports. Paper 946.
https://docs.lib.purdue.edu/cstech/946

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

INTEGRATING DISTRIBUTED DATA SOURCES
USING FEDERATED OBJECTS

Henry R. Tirri
Jagaonathan Srinivasan
Bharal Bhargava

CSD-TR-92-023
April 1992

Integrating Distributed Data Sources Using
Federated Objects*

Henry R. Tirril
Jagannathan Srinivasan
Bharat Bhargava
Department of Computer Sciences
Purdue University

West Lafayette, IN 47907

We address the problem of integrating heterogeneous data sources for collaborative en-
vironments such as Groupware systems. Pre-existing related distributed data is modeled by
a composite object, where each data source is treated as a fragment of the composite object.
We define a collection of methods which allow manipulation of the related distributed data
in a controlled and consistent manner. The composite object created in this manner is re-
ferred to as federated object, and it provides a pragmatic approach to data integration. Qur
approach is different from the approach of integrating heterogeneous database systems, as
we do not require each data source to have full database system capabilities. Instead, for the
collaborative application environments the data sources can be simple files, application gen-
erated binary files, or commercial data servers. The federated objects are especially suitable
for computer-supported-cooperative work (CSCW), where coordination and communication
among a group of people is required, and the type of collaboration is dynamic in nature. In
this paper, we discuss the general properties of federated objects, present implementation
principles for the required mappings, and show how federated objects can be used to imple-
ment a simple report writer application that needs to access several distributed data sources.
A [ully developed federated object mechanism relies on a “toolkit” approach, where federated
objects are constructed from existing data sources using a C++ class library, which provides
the mechanisms needed for access and manipulation of a wide variety of data sources.

=This research is supported in part by a grant from AIRMICS and UNISYS.
tOn leave from Department of Computer Science, University of Helsinki, Finland.

1 Introduction

QOver the past five years, atiention to collaborative computing has increased dramatically.
Collaborative computing uses networking, communications, concurrent processing, and win-
dowing environments. Colab project [F'T88] introduced the notion of seamlessness between
individual and group work, that is, the merging of group tools with individual tools. However,
developing a self-contained and wholly integrated environment over a variety of computer
systems that support both individual and cooperative work, has proven to be a difficult task.
An important issue to be addressed is how existing (individually owned) data sources can
be integrated without violating their normal use, i.e., individually owned data can be shared
among several cooperating users in a flexible manner.

Several approaches have been used for integrating existing data to allow access and up-
dates in a controlled and consistent manner. The research efforts in building federated
database systems [SL90, ASD*91, Gup89] focus on integrating heterogeneous database sys-
Lems by providing a software layer on top of the database systems. However, these attempts
assume existence of a full capability database system at each of the sites. In the collaborative
environment there are many cases where data is managed in an ad-hoc manner and only
minimal services are provided to the user. For example, data may exist simply in files and a
collection of programs may be used to manipulate the data, in which case the set of possible
operations are “hardwired” into the individual programs.

To deal with data having a wide variety of access capabilities, ranging from a minimal
access (say through a collection of programs) to access via a full database system with sup-
port for transactions, we propose an object-oriented approach for loose integration through
spectal “data integration” objects. Qur approach is similar to the approach adopted by
Distributed Object Management Systems such as DOM [BOH*91]. However, our main goal
is data inlegration, not the general integration of applications and our target environment
is characterized with frequently changing collaborative needs that prohibit development of
complex mechanisms. Also in our case, providing a high degree of autonomy in manipulation
of individual data sources is more a rule than an exception; the owners of individual data
sources are willing to share their data as long as it does not interfere with their primary
activities.

We propose integrating related distributed heterogeneous data by a composite object [KBG89],

where the data residing on each site is viewed as a fragment of the composite object. A set of
methods is defined to manipulate these fragments collectively as a single entity in a consistent
and controlled manner. Such a fragmented composite object, referred to as federated object,
allows loose integration of data residing on multiple sites. The federated object is created
in a bottom-up fashion as opposed to fop-down creation of composite objects in distributed
homogeneous database systems [BBS92].

Data integration through federated objects is aimed for collaborative applications, i.e.,
Groupware, which require dynemic grouping of data according to individual user’s (or group’s)

needs. On the other hand, owing to the nature of collaboration, the original data sources
can still be accessed and manipulated by the imdividual users, and an essential requirement
of such an integration environment is that the individual user should not be disturbed by the
sharing mechanism as too much interference would reduce the willingness of the individual
to participate in the collaborative activity.

An example of such a collaborative activity is preparing a project report that involves
access to several independently manipulated data sources such as text files, files containing
figures in various formats, speadsheet generated files containing budget information, etc. In
each of these cases, the individual users should be able to access the data sources they own
directly even alter the integration, without being affected by the collaboration level activities.
For example, accounting users should not be hindered in entering new cost information to
the speadsheet files just because the editor of the project document has already placed an
earlier version of the data in the document. Our federated object approach allows application
programmers to use various data sources without requiring the original individual users to
conform to the use of the new group application, or its interface, a fact that reduces the
resistance to share data in a collaborative environment.

In [TSBY1] we used the notion of fragmented composite object to model distributed data
in a database environment. We proposed that for distributed applications such as airline
reservation systems the resources (airline tickets) should be distributed to multiple sites
allowing independent processing at each of the sites. We developed an efficient transaction
mechanism for such applications. However, in such an environment the composite objects
are created in a lop-down manner and the process resembles fragmentation schemes used
in relational database systems. We are also investigating the replication of fragments of
composite objects in a distributed homogeneous database system [BBS92]. A distributed
object-oriented database system called O-Raid [DVB89, BDMS90, MSDB90] is being used
to experimentally evaluate the benefit of selectively replicating fragments. In this approach
we assume that the fragment dependencies are captured implicitly via methods.

Here we adopt a pragmatic approach for integrating data sources. This is based on the
observation that the existing heterogeneity is not only due to the various representation
formats, but is also due to the different operational capabilities supported by the sources.
We adopt a2 “bottom-up” strategy, that is, we assume the existence of data sources with
cerlain representation formats (e.g., ascii text, postscript, or binary files) as well as stan-
dard capabilities (e.g., an SQL interface) which cannot be changed. Qur federated object
mechanism encapsulates such dimensions of heterogeneity to allow flexible application pro-
gramming. We are especially interested in environments, where the integration needs are
dynamic: the set of data sources involved in a collaboration changes frequently. An example
of such a collaborative activity is a short-term project documentation, at the end of which
the integration of the various “source parts” of the report becomes obsolete. This is in
contrast to the traditional database integration (homogeneous or heterogeneous), where the
configuration of the set of participating databases is usually stable.

In Section 2 we outline the federated object architecture. Section 3 presents how federated
objects can be manipulated as well as the discusses interesting properties of such objects.
Section 4 describes the implementation of a simple report writer application using the notion
of [ederated object. Finally, we give conclusions and outline the future work planned.

2 Federated Object System Architecture

Layered system architectures result in clean and open systems. Unfortunately having many
layers imposes a heavy penalty on the system performance. TFor practical purposes, the
federated object system architecture has only two layers: the Data Source layer and the
Federated layer. As the primary goal is to provide a tool for short-term data integration
(e.g., for a temporary cooperative work in preparing a report), the complex support beyond
these two levels is usually not required. Thus, the system does not support hierarchical
federated objects. The federated objecl system architecture is illustrated in Figure 1. We
identify the following components:

e one or more data sources that allow external data access (Data Source Layer),

e one or more Federated Objects (FO') that can share data sources via fragments
(Federated Layer), and '

o mappings between the FO fragments and the data sources.

In general, the data sources (files, databases, etc.) can be accessed independently by other
users without requiring all the accesses to be performed through the FO-interface. This is
typical of applications where the owners of the data source are willing to allow access to their
data as long as it does not affect their primary activities. Later we discuss the enhancements
to this scheme, where users by accepting the use of a given filter (tightly-coupled cooperation)
can improve the performance characteristics of the federated access.

2.1 Data Sources and Access Capabilities

Federated object allows integration of data sources with a wide range of access capabilities.
In principle, these data sources can be classified into two categories:

1. Passive date sources. Ordinary files with read/write (blind write) capabilities fall into
this category. A limited set of operations are supported, and the data sources lack
communication support. Examples of such passive data sources are ascii text files,
program generated binary files, etc. For such data sources only read and/or write

IThe abbreviation FO is also used in [MNS92] to denote [ragmented (active) object. However, these
fragmented objects model distributed applications.

CHRPREOD MY

PHPO

moRqonm

N R

Integrated
Data Access

Data Access

WHEEH

Federated Composite

Data Access

Integrated ~— Mapping
Data Access

—— Conirol

Federated Composite

Object

External
Data Access

External
Data Access

Figure 1: Federated Object Architecture

operations are allowed, and all the processing support is handled at the federated
level. These operations can involve the entire file or a selected part of the file.

2. Data servers. This category contains data sources with a range of access capabilities as
provided by the corresponding data server. On one end, the data server can provide a
query language interface to access and manipulate data stored in a database. Note that
the data source need not encompass the entire database. For example, in relational
database systems, a data source can be one or several relations. Also on the other end,
the data server may provide only read access to the data it manages.

For a meaningful integration, at least access capability must be allowed on the data
sources, whereas the update capability is optional. Sometimes, only the update capabilities
are meaningful, but for simplicity we assume that for those data sources we also have access

capabilities.

2.2 Federated Object Structure

A federated objecl is composed from the following type of data members (see Figure 2):

o Fragmeni. One fragment per data source is created. The fragment can be either
embedded in the federated object or can reside elsewhere.

fp—

Subobjects

Simple data values

Member Objects

- Embedded -t Data Source

Fragments

Non-Embeddad |= Data Source

Figure 2: Components of a Federated Object

— Embedded {ragments improve performance as the translated data is maintained
as part of the federated object. However, mutual consistency between embedded
fragment and corresponding data source has to be maintained. The decision to
use embedded fragments depends on the expected access frequency for the data
source as well as the consistency requirements. For example, if a data source
is frequently accessed and rarely updated, having an embedded fragment will
reduce the communication and translation overhead. Similarly, if the application
can work with older versions of the data even when there are external (individual
user) updates, the embedded fragments will be useful. For example, older versions
of a customer data can be used in the design phase without sacrificing a meaningful
end result.

Non-embedded fragments are useful for the data sources that are infrequently
accessed. Also, the non-embedded fragments allow interfacing with database sys-
tems. Often, an interface is needed for the entire database and the data to be
accessed is not known in advance.

Note that the retrieved data can be cached even for non-embedded objects (similar to
caching of results of procedure attributes in POSTGRES [RS87]). However, for clarity
of the presentation we do not consider supporting caching of non-embedded fragments.

o Subobject and simple date value. These data member contains data commen to one or
more data sources. For example, the subobject may contain aggregaie values generated

from one or more fragment values.

The [ederated object constructed from different data sources are accessed and manipu-
lated by a collection of methods. The methods can access more than one fragment of the
federated object and hence can be used to capture implicit dependencies between different

data sources.

2.3 Mappings

For each data source two translation routines need to be defined between the data source
and the corresponding federated object fragment:

1. fragment_to_data routine maps federated object fragment to the data source.
2. data_to_fragment routine maps a data source to corresponding fragment.

These translation routines are defined as methods for the federated objects. Unlike other
methods, these methods can update at most one fragment. This keeps the mechanisms simple
and avoids the complex issues raised by the distributed updates. However, the method can
access and update any number of subobjects and data values. Naturally the reverse mapping
data_to_fragment need not to be defined if the corresponding data source is only accessed
and never updated.

3 Manipulating Federated Objects

The creation of a federated object itself is done through the execution of constructor methods.
Additional methods can be defined for accessing and manipulating the federated object. In
the following we illustrate the capabilities of such methods and how they should be designed.

3.1 Restricting mappings for creating Federated Objects

As discussed earlier, for each data source a data_to.fragment translation method has to be
defined. In our case such a translation method can update exactly one fragment object,
although there is no restriction on the subobjects and data values it updates. In addition
we restrict the translation method not to be able to access (read) any part of the federated
object. The mapping from data to the fragment performs a blind write on the federated
object in question. This restriction on mappings simplifies the creation of federated object as
different fragments can be generated from the data sources in an arbitrary order. Specifically,
let m; and m; be two translate methods that generate fragments from data source 7 and j
respectively. The federated object FO will reach the same state for the two execution
sequences, namely, m; followed by m; and m; followed by m;. In other words, the execution
ol translation methods is commutative.

3.2 Accessing Federated Objects via methods

The methods defined for federated object can be classified as follows:

¢ Methods that read parts of the federated object.

e Methods that update parts of the federated object.
s Methods that read as well as update parts of the federated object.

The advantage of using the first two types of methods is that the required system overhead
is much less than for the last type. Thus the last type of methods should not be used unless
they are really needed.

Methods accessing parts of federated objects For pure read methods there are two
Cases:

¢ The methods access fragments only, not subobjects or common data values. It is
sufficient to ensure that the accessed fragments are up to date. This check can be done
by maintaining a bit vector, with one bit per data source. The bit is set whenever
a data source has been updated, but the corresponding update is not propagated
to the federated object at this time. The propagation is delayed until the fragment
1s really accessed. At the access time, simple and operation on bit vector can be
employed to determine if the fragment being accessed is out of date with respect to the
corresponding data source. If so, the corresponding constructor method is executed
to regenerate the fragment and update the common subobjects and data values. The
advantage of this approach is that if a data source is updated several times between
accesses, only one propagation effort is needed. This reduces both communication cost
and blocking delays.

o The method access the common subobjects and/or data values., In the general case,
we do not know the data sources on which the subobject being accessed depends. In
such a case the bit vector containing data source up to date information is examined.
If it is non-zero, that is at least one data source has more recent data, the constructor
methods are executed for corresponding data sources to bring the federated object to
an up to date state.

The above strict scheme will result in bringing the entire federated object up to date
before accessing the common subobjects and data values. Often, it may be enough to allow
a demand driven update mechanism where a method accessing common subobjects and data
values can avoid bringing the federated object up to date, especially if the subobject and
data values accessed do not depend on the underlying data source that has changed. To
support such a scheme the user is required to define the dependency of the method on the
corresponding data sources.

For example, if a method m depends only on data sources ds; and ds3, that is,

m : dsy,dss

then prior to execution of the method m, only the updates corresponding to data sources
ds; and dsz need to propagated. Such explicit dependency specifications give additional
flexibility to our system, if such dependencies are not known or they are too difficult to be
analyzed, the above strict scheme can be followed.

Method updating fragments Due to the natural semantics of federated objects the
memnbers of such an object are related. There usually are dependencies between a subobject
and a fragment. Updating a fragment may involve updating one or more subobjects. Such
dependencies can be ¢mplicitly captured in method definitions. Since a fragment is always
updated by a method, the method can be defined to update other related subobjects to bring
the entire federated object into a consistent state. Note that in general there could also be
dependencies between two fragments. Such dependencies are harder to capture; especially
creating fragment from the data source can no longer be done independently in arbitrary
order.

Method updating fragments can cause inconsistency as the equivalent updates have to
be propagated to corresponding data sources. Since the data sources are autonomous and
can be independently updated, in general the update propagation may not always succeed.
The problem of providing multi-fragment update methods is in general as difficult as the
update problem in heterogeneous multidatabases [SL90]. Thus we only support methods
that update at most one fragment.

3.3 Properties of Federated Objects

Embedded Fragment Mutual Consistency If a fragment is embedded in a federated
object, then mutual consistency between the fragment and corresponding data source needs
to be maintained. The mechanism has to address two types of updates:

o Updates on Embedded fragment: The update has to be propagated to corresponding
data source. For simple data source such as a file the data source is overwritten (blind-
write) after generating the equivalent file using the fragment_to_data method. If the
underlying data source is controlled by a data server, then an appropriate update
request is sent e.g., in SQL.

o Updates on Data Source: Similarly updates have to be propagated to the corresponding
fragment. Two schemes are possible:

1. Imstanteneous Update: The user performing the update invokes an additional
method (defined for federated object), which regenerates the fragment and any
other associated subobjects and data values.

2. Demand Driven Update: The update on the data source only causes updating
the timestamp associated with the data source. Almost all types of data source

9

RPN,

have such timestamp information indicating when they were last updated (e.g, file
header information, database version information). Now when the corresponding
fragment is accessed first time after the data source update, the timestamp of
fragment is compared with that of the data source. If there is a mismaich, a
method is invoked to regenerate the fragment and related subobjects and data
values.

Non-embedded fragments The non-embedded fragments can be implemented through
methods that retrieve data from the corresponding data source. For example, a method could
simply be a query in a relational database system. Here there are no consistency problems
as a fragment is derived on demand and is automatically up to date. This corresponds fo
the view mechanism in databases [EN89]. Updates on non-embedded fragments are done by
submitting an appropriate update request to the corresponding data server. For improving
performance, the data retrieved through the method can be cached. In that case, one has
to deal with the problem of cache getting out of date due to updates on the underlying data
source. Such cache consistency issues are clearly related to the notion of quasi-copies and
many of the mechanisms discussed in [ABGM90] can be applied.

Atomic Execution of Methods When a method updates a fragment the update needs
to be propagated to the corresponding data source. If a method manipulates more that one
fragment, the atomic execution of method is more complex. Specifically there are two cases:

o All the manipulated fragments are embedded. In this case the updates can be per-
formed. However, the equivalent updates on the corresponding data sources need to
be propagated.

e One or more fragments are pointers, i.e., data sources are either servers or nonresident
files. In this case the updates on the corresponding data sources can fail. For such a
case a set of methods that implement transaction support (e.g., commitment, isolation)
is needed. For an example of such a mechanism see [TSB91].

4 Building Applications using Federated Objects

Applications can be built using the notion of federated objects. To reduce the effort involved
in building applications, a collection of C++ [MS90] classes (system classes) is provided.
These classes support the basic mechanisms required for the access and manipulation of
various (standard) types of data sources. In this section, we describe these systems classes,
outline the steps involved in building an application, and present the process layout of the
application built in this manner.

10

Fo_Data Source

Fo_File_Emb Fo_Fila_Nemb

Figure 3: Federated Object System Class Hierarchy

4.1 Federated Object System Classes

For each type of data source a separate class is defined. All federated object system classes
are prefixed with Fo to distinguish them from the user-defined classes. Figure 3 shows the
system class inherjtance hierarchy. All classes inherit {rom the system class Fo_Data_Source.
This class contains attributes and methods common to all data sources as shown below. For
example, the method get_timestamp obtains the timestamp of the last update performed
on the data source. The timestamp information is used to determine if a fragment data is
out of date.

class Fo_Data_Source{

char *name; //uniquely identifies the source
char *site; // host site name

long timestamp; // when the data was last modified
virtual long get_timestamp(); //obtains timestamp of last update
s

The method code for the system classes is divided into two files: J

1. Client code: The client code contains the method stubs which are linked with the g
application program.

2. Server code: The server code contains the detailed implementation of the methods.
These methods are invoked via Sun? Remote Procedure Call (RPC) [Sun88] mechanism

from the application.

2Sun is a registered trademark of Sun Microsystems, Incorporated. J

11

4.2 Writing an Application

The applications are written in C++4 programming language. The application writer com-
poses a federated object from the desired data sources. The steps involved are as follows:

1. Identify the set of data sources that need to be integrated.
2. Define the federated object structure:

(a} Define subobjects and data values

(b) For each data source define the fragment structure. If the data source is of
type Fo_File then this involves deciding if the fragment will be embedded or
non-embedded and respective structure definition. If the data source is of type
Fo_Server then by default the fragment is of non-embedded type.

3. Define two translation methods per data source. H no translation is required then the
tdentily function is used as the translation method.

4. Define a set of methods to manipulate the federated object. These methods can po-
tentially invoke any of the methods defined in the classes of the included data sources.

Example: A simple Report-Writer application To illustrate the design, let us con-
sider a Report- Writer application. The application uses multiple data sources (files) to form
a report. We built the application using X [SG83| windows. Figure 4 shows the Report-
Writer with access to two data sources. The data source is specified by giving a pair: (site,
pathname). Each of the included data sources is displayed in a separate window. User
can perform read and write operations by clicking the Read and Write buttons. The read
and write operations (methods) apply on individual data sources. In addition, there are
two methods Word-Count and Spell-Check, which apply collectively to all the data sources.
Clicking on the Word-Count displays a count of lines, words and characters (similar to wc
command in UNIX?) of the entire report. Clicking on the Spell-Check displays spelling errors
in the entire report (similar to spell command in UNIX}. All messages are displayed in the
bottom Ezecution Trace window.

The application uses Fo_File system class, and is compiled and linked with the client
module for the Fo_File system class.

4.3 Process Layout

Invoking the application results in creation of one application process and several server
processes (one per data source). For example, the execution of Report-Writer results in three

3UNIX is a trademark of AT&T Bell Laboratories.

12

|rs] FO

[perd-Cornt] [Spa1l-Oweck]

Roport-Hriter

[En:

[ralds, ca, mardun, edus r/u/ura)d5/e Ja/To/i/bin/dota| |

[ORYAREOLRIEER] [raldll ,cx , purdoo, oduz :fu!u?!rdd!pm!ohjeemrw&:;acl.mlll

[FealEzeal

==

2
fu/ursidi’ejo/fo//bin/data raids, ce, purdue, edu
fu/ul/rajd/papors/objects/foo/abatract, tex raidil,ca, purdus,sdu

[Ha address the problen of integrating

haterogensoir data sourees Far collabwnl.ivu

emvlraments tuch ar

Pre—exlating relatad dlatrll:m.ed

data iz modsled by a {uem compoaita) chject, whers each data source 1s trestad

21 & fragmant of the oospoaite chjsct, We define a eo)lection of methody

which allow manipulation of the related distribetisd dats In a

controlled and comiatont marner, The compoaits objsct orested in

thin mamer 18 referred to &n Ciem foderated obfect), and It provides

a prnwtlc spproach to data Integration. Our q:pmach 1n differant from
the approach of integrating hotorogoneos datahass sus

g3 we o not require sach data eourcs to hews full dﬂ&m

naten capab] | 1tina,

Inatead, for the ozllsbarative application erwircrmenta

the data soroes con bo wisplo Filos, application

|e=roratad blrary Flley, o commerclol dota sorvers,

The (ederated chiects arg especially miltsble For

crmputer-supparted-cooperat lve work (CSCH), whore ocoordlnatlen and

cemm[eALLon among 9 group of peoplo Le required, end tha tups

of cellesberation Lo dynamlc In noture.

Lin thia gaper, s distirces th seoeral oroeerbles_of Federatad

EXECUTION TRACE:

Figure 4: The Report-Writer application with two data sources

File_Server 1

Report-Writer

File_Server 2

—p- Remobte Procedure
call

wrannen: Dipk AcCcess

=

IMigure 5: Process Layout for the Report-Writer application

13

processes as shown in Figure 5. The application accesses and updates the underlying data
sources through the associated server process. As mentioned before Sun RPC mechanism is
used for executing the methods of the server process.

The server processes for the data sources are created on demand. That is, when an
application needs to access or update a data source, the corresponding server process is
created. However, the process does not terminate on the completion of the method execution.
Instead, once created the server process remains active as long as the application process
is active. When the application process exits, the server processes associated with its data
sources are terminated.

For data sources shared by multiple applications, one server per application is created.
Thus each application has its own set of servers. The system classes do not provide any
mechanism for controlling updates on a data source by multiple servers. However, when a
fragment is accessed, the timestamp information is used to determine if the fragment contains
most up to date data. If there are updates more recent than the timestamp, the fragment is
re-read through the associated server process and the timestamp information is updated.

4.4 Discussion

The above Report-Writer application using the federated object approach. Currently, the
application is written in C as the related X-window code and library uses C. The application
uses C++ system classes for manipulation of data sources and runs on a network of Sun
workstations under UNIX operating system.

The building of an application, even such a simple one, demonstrates the feasibility and
useflulness of this approach. In future we will be rewriting the application in C++. We also
plan to complete the implementation of ['o_Server system class and use that to build an
application which requires sharing of both passive data (such as files) as well as data servers
(database relations).

5 Conclusions and Future Work

We have presented a pragmatic approach for building applications that require access to
multiple heterogeneous and distributed data sources. The two characteristic features of this
approach are: i) data sources are not required to have full database system capabilities, and
ii) the object-oriented approach is used for access and manipulation of the data sources.
In this approach, building an application involves constructing a composite object (called
federated object) from the desired set of data sources. Each data source is viewed as a
fragment of the composite object. Methods can be defined to operate on both individual
fragments as well as the entire composite object.

For each different type of possible data sources, a separate C++ class is defined, which

14

specifies the structure as well as the operations. A weaker mechanism for consistency between
fragment and corresponding data sources is provided through the methods defined in the
class corresponding to the data source. This weaker notion of consistency is desirable for
applications such as those used for CSCW. Since the mechanism is built into the classes
defined for data sources, they can always be replaced by adding code for stronger notion of
consistency, if so desired.

Our initial experience of building a simple report writer application has demonstrated
the feasibility of this approach. In future, we plan to extend the report writer application
to involve access to both passive data (such as files) as well as access to data through a data
server (e.g a database management system). An advantage of this approach is that it is
evolutionary. After building a standard core library, enhancements to the mechanisms can
be done quickly.

References

[ABGM90] R. Alonso, D. Barabara, and H. Garcia-Molina. Data Caching Issues in an Infor-
mation Retrieval System. ACM Transactions on Deatabase Systems, 15(3):359-
384, September 1990.

[ASDT91] R. Ahmed, P. D. Smedt, W. Du, W. Kent, M. A. Ketabchi, W. A. Litwin,
A. Rafii, and M. Shan. The Pegasus Heterogeneous Multidatabase System.
IEEE Computer, 24(12):19-27, December 1991.

[BBS92] B. Bhargava, S. Browne, and J. Srinvasan. Composite Object Replication in
Distributed Database Systems. Proc. International Conference on Information
Systems and Management of Data, July 1992. To appear.

[(BDMS90] B. Bhargava, P. Dewan, J. G. Mullen, and J. Srinivasan. Implementing Object
Support in the RAID Distributed Database System. In Proceedings Of The First
International Conference on Sysiems Integration, pages 368-377, April 1990.

[BOH*91] A. Buchmann, M. T. Ozsu, M. Hornick, D. Georgakopoulos, and F. A. Manola.
A Transaction Model for Active Distributed Object Systems. In G, Goos and
J. Hartmanis, editors, Lectures Notes in Computer Science:85. Springer-Verlag,
Berlin, 1991.

[DVB89] P.Dewan, A. Vikram, and B. Bhargava. Engineering the Object-Relation Model
in O-Raid. In Proceedings Of the International Conference on Foundations of
Date Organization and Algorithms, pages 389-403, June 1989. :

[EN8Y] R. Elmasri and S. B. Navathe. Fundamentals of Database Systems. Benjamin-
Cummings, Menlo Park, Cali., 1989.

15

[FT88]

[Gup89]

[KBG89)

[MNS92]

[MS90]

[MSDB90]

[RS87)

[5G83]

[SL90]

[Sun88]
[TSB9]]

G. Foster and D. Tatar. Experiments in Computer Support for Teamwork —
Colab (Video), 1988. Xerox PARC.

A. Gupta, editor. Infegration of Information Systems:Bridging Helerogeneous
Daiabases. IEEE Press, 1989.

W. Kim, E. Bertino, and J. F. Garza. Composite Objects Revisited. In Pro-
ceedings of ACM/SIGMOD Internalional Conference on Management of Data,
pages 423-432, june 1989.

M. Makpangou, Y. Gourhant J. Le Narzul, and M. Shapiro. Fragmented Objects
for Distributed Abstractions. IEEE Transactions on Softwere Engineering, 1992.
To appear.

A. Margaret and B. Stroustrup. The Annotated C++ Reference Manual.
Addison-Wesley, Reading, Mass., 1990.

J. G. Mullen, J. Srinivasan, P. Dewan, and B. Bhargava. Supporting Queries in
the O-Raid Object-Oriented Database System. In Proceedings of the Interna-
tional Computer Software and Applications Conference, 1990. to appear.

L. A. Rowe and M. Stonebraker. The POSTGRES Data Model. In Proc. 13th
VLDB Conference, 1987.

R. W. Scheifler and J. Gettys. The X Window System. ACM Trarsactions on
Graphics, 16(8):57-69, 1983.

A. Sheth and J. L. Larson. Federated Databases: Architectures and Integration.
Computing surveys, 22(3), September 1990.

Sun Microsystems. Neiwork Programming, May 1988.

H. Tirri, J. Srinivasan, and B. Bhargava. Transactions for Fragmented Compos-
ite Objects. Technical Report CSD-TR-91-083, Purdue University, November
1991.

16

	Integrating Distributed Data Sources Using Federated Objects
	Report Number:
	

	tmp.1307986960.pdf.NEcak

