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Multiversion concurrency control schemes are often limited in their practicability due to
their storage requirements for multiple versions of the data. However, a class of multiver
sion schemes utilize only the versions, maintained for the purpose of recovery, to improve
the concurrency by allowing the concurrent execution of "non conflicting" read-write lock
requests on different versions of data in an arbitrary fashion. A transaction that accesses a
data item version which is later diagnosed to lead to a incorrect execution, is aborted. This
act is reminiscent of the validation phase in the optimistic concurrency schemes. Various
performance studies suggest that these schemes perform poorly in high data contention
environments where the excessive transaction aborts result, due to the failed validation.
We propose an adaptable constrained two version two phase locking ( C2 V2PL) scheme in
which these "non conflicting" requests are allowed only in a constrained manner. C2V2PL
scheme assumes that a lock request failing to satisfy the specific constraints will lead to
an incorrect execution and hence, must be either rejected or blocked. This eliminates the
need for a separate validation phase. When the contention for data among the concurrent
transactions is high, the C2V2PL scheduler in aggressive state rejects such lock requests.
The deadlock free nature of C2V2PL scheduler in this state further reduces the duration for
which locks are held by a transaction. The C2V2PL scheduler adapts to the low data con
tention environments by accepting the lock requests that have failed the specific constraints
but contrary to the assumption will not lead to an incorrect execution. Thus improving the
performance due to reduced transaction aborts in this conservative state.
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1 Introduction

Many multiversion concurrency control schemes using a bounded number of versions for the

data items have been proposed for improving the performance of transaction processing.

These schemes have been broadly categorized under mixed and pure multiversion schemes

in [BHG87]. The mixed multiversion schemes [CFL+82, Wei87, AS89, BC91] have two

types of transactions, i.e. the read-only transactions and the update transactions. The

read-only transactions read the old but consistent versions while the update transactions

manipulate only the "current" version via two phase locking (2PL) protocol. Even if we

assume that the transaction type can be determined for every transaction when it starts

executing, which is not the case for at least the on-line transactions, the increase in the

size and frequency of the update transactions because of increased acceptance of the trans

action as an organizational concept for a wider variety of applications (e.g. the database

servers [VaI93] on the information superhighways), limits the performance of the system if

only the "current" version is available for their synchronization. In high data contention ap

plications like stock exchange databases [PR88], the mixed schemes will pose the problems

for the update transactions same as in ordinary two phase locking schemes [TGS85].

Pure multiversion schemes using two phase locking [BHR80, SR81, BHG87, KSI91]

utilize the versions, maintained by the system for the reasons of recovery, for allowing the

concurrent execution of the conflicting transactions. The two phase locking for write-write

synchronization puts an upper bound on the number of versions for every data item. Since

the concurrent access to the conflicting read-write actions is allowed on different versions of

a data item in an unrestricted fashion, the execution of each transaction must be validated

before its effects can be committed. This validation is usually performed at the end of

the transaction execution, either because it is computationally expensive to validate each
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action executed on behalf of the transaction [BHR80, SR81] or because the scheme does

not allow any other validation point [BHG87]. In any case, the effort in executing the

transaction that fails the validation is wasted. These pure multiversion schemes will be

recognized as optimistic concurrency schemes in the taxonomy of schedulers by [BHG87].

In the optimistic schemes, the transaction aborts due to the failed validation grows rapidly

with the increase in contention for data [ACL87]. The effect of these aborts on the system

performance becomes more prominent as the size of the transaction grows.

In this paper, we present an adaptable Constrained Two Version Two Phase Locking

(C2V2PL) scheme for synchronising the read and write lock requests on the different versions

of a data item in only a constrained manner. The constraints are specified in terms of

timestamps on the lock requested and on the locks held for the data item. The correctness

of the transaction execution is guaranteed if the transaction can announce its completion, by

submitting its commit action, to the scheduler. No separate validation phase for validating

the transaction execution is required. A maximum of two committed versions of a data item

are available at any given time. A read request is completed by using the Read rule similar

to the multiversion timestamp ordering (MVTO) read rule in [BG83]. The action taken

by the scheduler on the lock request that fails to satisfy the constraints is dependent on

the scheduler state. When the conflicts for data is high, such lock requests are rejected

and the scheduler is said to be in aggressive state. When the data contention is low,

these lock requests are blocked and the scheduler is said to be in conservative state. In

the aggressive state, since no lock request gets blocked for indefinite periods of time, the

conflicting transactions never deadlock on a lock request. In the conservative state, the

blocking of these lock requests may lead to deadlock, but may also improve the transaction

throughput by avoiding the unnecessary abort of the transactions.
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The rest of the paper is organized as follows. In section 2, we present the transaction

model and the database model used in C2V2PL. We present the adaptable C2V2PL scheme

in conservative and aggressive states in section 3. The comparative behavior of C2V2PL

in these states is illustrated via sample execution. The correctness of C2V2PL scheme is

proved in section 4. We conclude the paper in section 5.

2 Transaction Model

A transaction is a partial order on a set of read and write actions. The last action of the

transaction, commit or abort, indicates whether its execution has completed successfully or

not. Each transaction Ti is assigned a unique timestamp tS(Ti). For simplicity, we assume

that tS(Ti) = i. Each action maintains the timestamp of its transaction.

We assume that the C2V2PL scheduler starts in an initial correct and consistent database

state Do, with a single version xg for each data item x in the database. The notation xj is

used as follows: k is the timestamp of the transaction Tk that wrote the version xj of the

data item x; j = ts( xJ) is the current timestamp of the version xj used in version selection

to process a read action on data item x. As shown in the figure 1, a version for a data

item x is created as x~ by the transaction Tk, becomes accessible to other transactions as

xZ after Tk commits, and can be accessed as x~ after Tk terminates. Thus, the version

x~ of data item x is always due to a terminated transaction Tk' and the version x~ is always

due to either active or committed but not yet terminated transaction Tj. We will explain

the termination and commitment of a transaction later in this section.

2.1 Concurrency Control

A write action on data item x in transaction Ti' Wi(X), uses the following locking protocol.
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rl wI vI

rl J J J

wI J x x

vI J x x

Table 1: The higher level lock conflict matrix

1. Ti requests a write lock on the data item x.

2. scheduler grants the wli(x) write lock on data item x if there are no conflicts and the

lock request satisfies the specified constraints.

3. Ti creates a new version x~ for the data item x.

As shown in Table 1, since the write locks conflict, there can be utmost one uncommitted

version x~ written by some transaction Ti, where Ti holds the wli(x) lock. As we will see

later, the conflict of write lock with verified (vl) lock limits the number of committed versions

of any data item x, available at a given time, to a maximum of two versions: xb and X~j

where the version xi is due to the most recently terminated transaction Tj that wrote x or

xb is in initial consistent database state Do, and the version x~ is written by the currently

committed but not yet terminated transaction Ti. The constraints that the lock request

must satisfy to be granted are described in the section 3.

A read action is completed in accordance with the Read rule similar to the multi version

timestamp ordering (MVTO) Read rule in [BG83].

Read Rule: The committed version of the data item with the largest timestamp less than

or equal to the timestamp of the transaction making the read request is selected.
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The scheduler maintains two versions of the read lock for each data item x, Le. rlO(x)

lock and rli:O( x) lock. Since utmost two committed versions of a data item are available for

the scheduler to choose from, there is a one to one correspondence between the read lock

version granted and the data item version selected.

A read action on a data item x in transaction Ti, Ri[X], is completed as follows.

1. Ti requests a read lock on the data item x.

2. scheduler grants the 1'l?(x) or rlto(x) read lock corresponding to whether the version

x~ or version xZ (if it exists and is committed) is selected in accordance with the Read

rule; and this read lock version satisfies the specified constraints.

3. Ti reads the selected version of x after obtaining the corresponding read lock version.

The scheduler processes the read action Ri[X] by selecting the committed version xZ if

ts(Ti) ~ ts(x~)j and the version x~ otherwise; after granting the read lock version rzto(x)

or rl?(x) to Ti, respectively. However, to avoid the incorrect execution as explained in

Section 3, the read lock request for Ri[X] is blocked if the version x~, with tS(Ti) > ts(xZ),

exists but is not committed. This lock request is said to have failed a constraint and must

not be allowed to proceed. As we see in the next section, a version xb (for some j ~ 0)

always exists for each data item x, which implies by the Read rule that every read action

Ri[X] can be processed.

2.2 Version Control

We now describe the versioning control mechanism in C2V2PL scheme. A transaction can

be in one of the three modes: active mode, passive mode or done mode. A transaction

Ti is in active mode when it is executing its read/write actions or is blocked waiting for its
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uncommitted X ~
I

Commit
~
-~

committed x; terminated x~

Figure 1: Life cycle of a transaction Ti

lock requests to be granted by the scheduler. A transaction Ti is in passive mode when the

execution of all its read and write actions has been completed successfully. A transaction

Ti is in done mode after the locks held by it can be released by the scheduler without

compromising the future consistency of the database.

Commit or Abort of a Transaction The transition from the active mode to the passive

mode for a transaction Ti is triggered by the execution of its commit action, Ci. The

scheduler processes the Ci by converting each of the Wli( x) lock held by Ti into a third

kind of lock called the verified lock, Vli( x). This conversion makes the version x~ written

by Ti accessible to the other active transactions. Thus, the commitment of a transaction

represents the growing phase of the number of the committed versions of the data item

written by it. None of the read locks held by Ti are released during this transition. As

shown in Table 1, since the vllocks and the wllocks conflict, no other transaction is allowed

to write x while Ti is in passive mode, i.e. while Ti is committed but has not yet terminated.

The abort action ai for transaction Ti is processed by purging the new versions written

by Ti and releasing all the locks held by it. Since only the committed versions of any data

item can be accessed by the other transactions, the cascading abort of the transactions is

avoided.
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Termination of a transaction The transition from the passive mode to the done mode

for a transaction Ti occurs when the scheduler invokes and executes the terminate action

ti· The invocation of ti determines when, for each data item x for which transaction Ti has

written a committed version xL can the existing 1 version xb be deleted so that the version

x~ can be converted into xh and the v1i( x) lock held by Ti can be released. A transaction

blocked on a write lock request on data item x can proceed only after Ti has released the

v1i( x) lock. Thus, the termination of a transaction represents the shrinking phase of the

number of committed versions of the data items written by it. The terminate action ti is

executed as an atomic operation and is processed as follows.

1. the read locks held by the transaction Ti are released.

2. for each v1i(x) lock held by Ti, convert all the r[i:O(x) locks, held by the other trans

actions in active mode, into rlO( x) locks.

3. for each v1i(x) lock held by Ti, purge the previously existing version xb; convert the

committed version x~ into a version xb by resetting the timestamp to zero; release the

v1i( x) lock.

Thus, for each data item x, there exists either a terminated (and hence committed)

version xb written by most recently terminated transaction Tj that wrote xor xg E Do; and

at most one uncommitted or committed version xL written by a transaction Ti that holds

the exclusive w1i(x) or v1i(x) lock on x respectively.

It must be noted that the terminate action for transaction Ti may not be invoked

immediately after Ti commits. This is because the simple assignment of the new version for

every data item request in the future does not work for the reasons of consistency. Consider

1written by most recently terminated transaction Tj that wrote xor x8 E Do.
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the two transactions T1 = R1[x]R1[y] and T2 = W2[X]W2[y] and the following history:

Do II rl~(x)Rl[xg] Wl2(X)W2[X~] Wl2(y)W2[yi] C2

The scheduler starts in an initial consistent database state Do. It selects the version xg for

processing R1 [x] and grants rl~(x) lock to the transaction T1 . The transaction T2 writes

the versions x§ and yi after it is granted the Wl2( x) and Wl2(Y) write locks. The scheduler

processes the commit action C2 for T2 by converting the Wl2( x) and Wl2(Y) locks into Vl2( x)

and Vl2(Y) locks. The versions x§ and yi become accessible to other active transactions.

Suppose that the scheduler were allowed to terminate the transaction T2 • The previously

existing versions xg and yg would be deleted, and the versions x§ and yi would be converted

into the versions x5 and Y5 respectively. If the scheduler now processed R1 [y] by selecting

the only available version of data item y, Le. the version Y5 in accordance with the Read

rule (since ts(T1) > tS(Y5)), there would be no serial execution of the transactions T1 and

T2 • This is because in reading the version x8, T1 saw the database in a state before the

execution of T2 , and in reading the version Y5, T1 saw the database in a state after the

execution of T2 .

To determine when the terminate action for a committed transaction can be invoked by

the scheduler, we define the following irreflexive, transitive relation.

Ti precedes Tj : ¢}

(::Jx) [(rl?(x) and wlj(x)) or (rl?(x) and vlj(x)) or (rljo(x) and Vli(X))]

I.e. the transaction Ti precedes the transaction Tj if either Ti has read a previously existing

version of a data item for which Tj has created a new version, or Tj has read the committed

version of the data item written by Ti.

Tj term inates: ¢} (l-l Ti) (Ti precedes Tj)

which says that the transaction Tj can not terminate, until each transaction Ti that has
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either read the version x~ (for some k) or written the committed version x~ that has been

read by Tj has terminated.

By the unary relation terminates, in the example above, since T1 has read the previously

existing version xg of data item x and T2 has created the new committed version x~, the

termination of T2 must be delayed until after T1 has terminated. This allows the scheduler

to make the correct version selection for Rdy] from the two available committed versions

yg and Yi, i.e. the version yg with ts(yg) < ts(Td < ts(yi). The latter requirement in

terminates is not as obvious and its need is illustrated with the help of another example.

Consider the following transactions T3 = R3 [x]R3 [y], T4 = W4 [x], Ts = Rs[x]Ws[Y] and

their execution history:

As explained above, transaction T4 can not terminate until transaction T3 terminates. How

ever, suppose that transaction Ts were terminated and the previously existing version yg

replaced by version Y8 obtained from the committed version yg. If the scheduler now pro

cessed R3 [y] by selecting the only available version of data item y, i.e. the version Y8 in

agreement with the Read rule (since ts(T3 ) > ts(y8)), there would be no serial execution

of T3 , T4 and Ts. T3 sees the database state before T4 in executing R3 [xg], Ts sees the

database state after T4 in executing Rslx1J, and T3 sees the database state after Ts in

executing R3 [y8].

It must be noted that the processing of the commit action for a transaction does not

require a validation phase to check for the correctness of its execution. The execution

of a transaction is guaranteed to be correct if its commit action can be submitted to the

scheduler. This is because the read and write lock requests on the different versions of

a data item are allowed in such a constrained manner that every read action Rk[X~] can
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be processed in conformity with the Read rule and without leading to a non-serializable

execution. The lock requests failing the constraints are handled in a manner concomitant

with the scheduler state. Since the inconsistencies due to incorrect version access of a data

item always manifest as a lock request failing the constraints, the effort in executing the

transaction completely, only to find during the validation phase (in comparable schemes)

that it has been executed incorrectly, can be saved by not granting such lock requests.

3 Adaptable Constrained Two Version 2PL

The C2V2PL scheme utilizes the unique timestamp associated with a transaction for or

dering the "non conflicting" read and write lock requests on the different versions of a data

item. It rejects or blocks the lock requests that fail to observe this ordering which is imposed

by a set of constraints stated below. The anticipated invalidating lock requests coincide with

these lock requests failing the constraints. It must be noted that not every such lock re

quest will actually lead to the invalid execution of the transaction. The scheduler executes

in one of the two states - conservative or aggressive depending on the contention for data

among the transactions in the system. If the data contention is high, to avoid deadlocks and

to minimize the duration for which the locks will be held by a transaction, these requests

failing the constraints are rejected. However, if the data contention is low, to avoid the

unnecessary abort of the transactions, these requests are blocked.

As described in the previous section, for each data item x, there is always a version x~

with timestamp equal to zero, and utmost one committed version x~ with timestamp equal

to j. Thus, an appropriate version of data item x can always be selected for processing

Ri[X] and the corresponding read lock version can always be granted. However, a read lock

request on a data item x by the transaction Ti must satisfy the following constraint:
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Constraint!: If a transaction Tj holds wlj(x) lock, then ts(Tj) ~ tS(Ti)'

Since the transaction Tj holds the wl j (x) lock, there is only one available committed 2

version of data item x ,i.e. the version x~ for processing Ri[X]. Suppose this version were

selected by the scheduler. If the Tj commits and makes the version xz accessible to Ti, then

Ri[X] has not read the committed version with the largest timestamp less than tS(Ti), i.e.

the version x~; hence breaking the Read rule. Thus, the lock request for Ri[X] must remain

blocked until it satisfies the Constraintl, i.e. until wlj(x) is converted into vlj(x) lock, or

in other words until Tj commits.

A write lock request wl(x) for transaction Ti must satisfy the following constraint:

Constraint2 : There does not exist a transaction that holds wl( x) or vl( x) lock and for

all transactions Tj that hold rlJ( x), ts(T;) ~ ts(Tj)

Note that no transaction could not be holding a rl,cO(x) lock since no other transaction

is holding a vl(x) lock. This stems from the fact that terminate action always converts

each of the rl,cO( x) locks into a rlO( x) lock before it releases its vl( x) lock. The failure of

Constraint2 by a write lock request may lead to the following scenario. Consider the two

transactions T6 = R6[x]W6[y] and T7 = R7 [y]W7 [x] and the following history of execution:

Do II Tl£(x) R6[xg] rl~(y) R7 [yg] wh(y) W7 [x;] C7

W6[y] arrives and suppose Wl6(Y) lock were granted. T6 now submits its commit action. The

scheduler would process the request by converting the Wl6( y) lock into Vl6( x) lock. There

is no serial execution of T6 and T7 • But this contradicts our claim that a transaction that

can submit its commit action is guaranteed to have executed correctly. The write action

W6[x] is a missed write in the terminology of the MVTO scheme [BG83] and is rejected.

However, in the adaptable C2V2PL scheme, such a write request may be rejected or blocked

2The other version x~ written by the transaction Tj is still uncommitted.
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Figure 2: Constrained Conflict Graph for Aggressive State for C2V2PL

depending upon the stale of the scheduler.

3.1 Alggressive State

The C2V2PL scheduler in the aggressive state uses the following rule for avoidance of

deadlocks due to conflicting wl and vllocks:

Conflict Resolution Rule: If a lransaction Ti holds a Wli(X) or vlj(x) lock, then the write

wlj( x) lock request wlj(x) by the transaction Tj is rejected if ts(Tj) > ts(T;); and is

blocked otherwise.

The conflict resolution rule along with the rejection of the write lock requests that fail the

Constrainl2 makes the C2V2PL scheduler in aggressive state, deadlock free. Figure 2 shows

how the timcstamped lock requests are handled by the C2V2PL scheduler in the aggressive

state. "Xa" and "Xb
1
' refer to the constrained conflicting request which is rejected and

blocked respectively. For example, if the transaction Tj requests a wlj(x) lock when Ti

holds Tl?(x), with ts(T;) > ts(Tj), the action taken by the scheduler is "Xa", since wlj(x)

lock request has failed to satisfy the Constrainl2' Furthermore, every read action can be

completed by granting either riO or rl-:FO read lock. The action of the scheduler for the
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Figure 3: Constrained Conflict Graph for Conservative State for C2V2PL

read lock request that fails the Constraintl is "Xb". Notice, that since the lock requests

are blocked only in an asymmetric fashion, i.e. only a transaction with higher timestamp

may be blocked by a lock held by a transaction with a lower timestamp, there can be no

deadlocks in aggressive state of C2V2PL scheduler.

3.2 Conservative State

Based on the assumption, that in low data contention environments, there will be little

inconsistent access to data, the C2V2PL scheduler in conservative state does not reject but

blocks the lock request it anticipates will lead to an incorrect transaction execution. This

lock request will result in a deadlock if its execution can indeed lead to an invalid execution;

and will be rejected when the scheduler times out to resolve this deadlock. As shown in the

Fig. 3, the action of the scheduler for a write lock request that fails Constraintz is "Xb".

A transaction with a write lock request is unconditionally blocked if another transaction

already holds a write or a verified lock on that data item. The C2V2PL scheduler in

this state avoids unnecessary rejects of the lock requests that, governed by the failure of

constraints are anticipated to, but do not actually lead to an incorrect execution.
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Illustrative Example The following sample execution compares the behavior of the

C2V2PL scheduler in aggressive and conservative state. Consider the following transac-

tions T8 = R8[z]W8[x], Tg = Rg[x]Rg[z]Wg[y], TlO = RlO [y]WlO [z] and the following order

of requests submitted to the scheduler: R8[z], Rg[x], RlO[y], W8[x], Rg[z], WlO [z], Wg[y].

Assume an initial consistent database state Do.

The C2V2PL scheduler in aggressive state processes R8[z], Rg[x], and RlO[y] as R8[z8],

Rg[xg], and R lO [y8] after granting the rl~(z), rlg(x), and ri~o(Y) locks to the transactions

T8, Tg and TlO respectively. The wi8( x) lock request for W8[x] fails to satisfy Constraint2

and is rejected. Rg[z] is processed as Rg[z8] after the rlg( z) lock is granted to Tg. The

WilO(Z) lock request for WlO[z] is granted and TlO writes the version zi8. TlO commits and

WilO(Z) lock is converted into VilO(Z) lock. The wig(y) lock request for Wg[y] fails to satisfy

Constraint2 and is rejected. The scheduler invokes the terminate action tlO and the ri~o(Y)

and VilO( z) locks are released and the version z8 is replaced by Z6° obtained from version

The C2V2PL scheduler in conservative state processes R8[z], Rg[x], and RlO[y] in exact

same way as in aggressive state. The wi8( x) lock request fails Constraint2 and is blocked.

Rg[z] and WlO [z] are processed as in aggressive state. TlO commits. The wig(y) lock request

fails Constraint2 and is blocked. A deadlock situation now results. To terminate TlO , the

scheduler must wait until Tg releases its rig( z) lock. On the other hand, Tg is waiting for

TlO to release its rilO(Y)' so that the wig(y) lock request can be unblocked.. The deadlock is

resolved by aborting the transaction Tg . The wi8( x) lock request blocked by the failure of

Constraint2, can now be granted. T8 commits and is eventually terminated by the scheduler.

The scheduler can now terminate the transaction TlO •

The case of reduced number of transaction aborts in low data contention environment
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at the expense of increased blocking is motivated by the C2V2PL scheduler in conservative

state. In higher data contention environments, the blocking of the transactions is mini

mized at the cost of increased number of transaction restarts by the C2V2PL scheduler in

aggressive state.

4 Correctness of C2V2PL

We will prove the correctness of C2V2PL scheme by describing it in multiversion serial

izability theory and confirming that all the histories produced by C2V2PL are lSR. The

interested reader is directed to the theory of multiversion serializability in [BG83].

Let H be a history over { TI , T2 , T3 , •••} produced by C2V2PL. Then H must satisfy

the following properties.

C2V2PLI : For each Ti, there is a unique timestamp tS(Ti)' For simplicity, we assume

that tS(Ti) = i.

C2V2PL2 : For each Ti , the terminate action ti follows the commit action, Ci; i.e. Ci < ti.

C2V2PL3a : For each Rk[xb] E H, either (1) tj < Rk[xb] and j > 0; or (2) xg E Do.

C2V2PL3b: For each Rk[x)] E H, either (1) Cj < Rk[X~] < tj < tk and ts(X)) < tS(Tk);

or (2) Wj[X)] < Rdxj] and j = k.

C2V2PL4 : For each Rdx~] and Wk[X~] E H; if Wk[X~] < Rk[X~] then a = k and 1 = k.

Properties C2V2PL3a ,3b together say that every Read Rdx] either reads a committed

version or reads a version written by itself (Le. Tk). In either case, it reads the version with

the timestamp less than or equal to tS(Tk). tj < tk in property C2V2PL3b follows from the

definition of unary relation terminates. Property C2V2PL4 says that if Tk wrote x before

the scheduler received Rdx]' it translates the request to read the version written by Tk.

C2V2PLsa : For every Rdxb] and Wi[X~] E H; either ti < Rk[xb] or Rk[xb] < ti.
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Property C2V2PLsa says that Rdxb]' i.e. a Read on the version xb, created by the

terminated transaction Tj, is strictly ordered with respect to the terminate action of every

transaction that writes x. This is because each transaction Ti that writes x~ holds a verified

lock Vli(X), while it waits for each transaction that has read the existing version xb to

terminate, before it can terminate and release Vli( x) lock. Since the vl and wllocks conflict,

for each transaction Tk that reads xb, either Ti must have terminated before Tj even got

the wlj(x) lock, Le. ti < wlj(x) < tj < Rk[xb]; or Ti must have terminated after Tk reading

the version xb had terminated, Le. Rk[xb] < tk < ti.

C2V2PLsb: For every Rk[X~] and Wi[X~] E H; if Wi[X~] < Rk[X~] then (1) ti < Rk[X~];

else (2) Rk[X~] < ti and tk < ti.

Property C2V2PLSb says that Rk[X~], Le. a Read on a committed version x~ due to a

committed but not terminated Tj is strictly ordered with respect to the terminate action

of every transaction that writes x. (1) says that since the vl and wl locks conflict, Ti

must have terminated and released the Vli(X) lock before Tj even got the wlj(x) lock, Le.

ti < wlj(x) < Cj < Rk[X~]; (2) By definition of the terminate action, tj converts the version

x~ read by Rk[X~J into xb; converts the rrto(x) lock into rl~(x) lock; and then releases the

vlj(x) lock. By the Property C2V2PL3b , tj < tk. Thus after Tj terminated and before Tk

terminates, if tS(Tk) > tS(Ti), Wli(X) lock request must wait for Tk to terminate and release

the now r~(x) lock in accordance with Constraint2, Le. Rk[X~J < tj < tk < Wli(X) < ti;

otherwise Ti obtains the Wli( x) lock, writes the version xL and then waits for Tk that has

read, the now version xb to terminate. i.e. Rk[X~J < tj < Wli(X) < tk < ti.

C2V2PL6a : For every Rk[xbJ and Wi[X~], (i, j, k distinct); if ti < Rk[xbJ then ti < tj.

C2V2PL6b: For every Rdx~J and Wi[X~], (i, j, k distinct); if ti < Rk[X~J then ti < tj.

Property C2V2PL6a says that Rk[xbJ reads the most recently terminated version of x.
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Assume to the contrary that tj < ti. But then, the version xb generated when Tj terminated

must have been deleted and replaced by xb when Ti terminates, and thus Rk[XJ could not

have accessed xb. Property C2V2PL6b combined with Property C2V2PL3b says that Rk[X~J

either reads the version written by itself or the most recently committed version x~. Since

the vi and wi locks conflict, if ti < Rk[X~J then ti < Wj[x~J < Cj, which combined with

Property C2V2PL3b says ti < tj.

C2V2PL7a : For every Rk[xbJ and Wi[X~], i i- j,j i- k, if Rk[xbJ < ti then tk < ti·

C2V2PL7b: For every Rk[X~J and Wi[X~], i i- j,j i- k, if Rk[X~J < ti then tk < ti.

Property C2V2PL7a ,7b: says that Ti cannot terminate until every transaction that has

read the existing terminated version, has terminated. Property C2V2PL7a follows directly

from the definition of unary relation terminates. Property C2V2PL7b follows from Property

C2V2PLsb.

C2V2PL8 : For every Wi[x;J and Wj[x~], either ti < tj or tj < ti.

Property C2V2PL8 says that the termination of every two transactions that write the

same data item are atomic with respect to each other.

Theorem: Every history H produced by the C2V2PL scheduler is ISR.

Proof: By C2V2PL2 , C2V2PL3a,3b, C2V2PL4 , H preserves reflexive reads-from relationship

and is recoverable. Hence it is a MV history. Define a version order ~ as xi ~ x j only

if ti < tj. By C2V2PL8 , ~ is indeed a version order. We will prove that all edges in

MVSG(H, ~) are in the termination order. That is Ti ---+ Tj in MVSG(H, ~) then ti < tj.

Let Ti ---+ Tj be in SG(H). This edge corresponds to a reads-from relationship such as Tj

reads x from Ti. By C2V2PL3a ti < Rj[xbJ and from C2V2PL2 Rj[xbJ < tj. Hence ti < tj.

Similarly, by C2V2PL3b for any Rj[x~], ti < tj.
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Consider a version order edge induced by Wi[X~], Wj[xjJ and Rk[xb]' (i, j, k distinct).

There are two cases: xi ~ xj or xj
~ xi. If xi ~ x j , then the version order edge is

Ti --+ Tj , and ti < tj follows from the definition of~. If xj
~ xi, then the version order

edge is Tk --+ Ti. Since xj
~ xi, tj < ti follows from the definition of the version order. By

C2V2PLsa either ti < RdxbJ or Rk[xbJ < ti. In former case, C2V2PL6a implies that ti < tj

contradicting tj < ti. Thus Rk[xbJ < ti and by C2V2PL7a tk < ti as desired. The case of

the version order edge induced by Wdx~]' Wj[xjJ and Rk[X~], (i, j, k distinct) can be proved

in exactly same way and is left for the reader to work out.

This proves that all edges in the MVSG(H, ~) are in termination order. Since the

termination order is embedded in a history, which is acyclic by definition, MVSG(H, ~) is

acyclic too. Thus, H is 1SR.

5 Conclusions

We have proposed a new concurrency control scheme which utilizes the versions maintained

for the purpose of recovery, to allow the concurrent execution of read-write actions on

different versions of a data item in a constrained manner. These constraints not only

eliminates the need for validation phase in transaction execution, but in high data contention

environment guarantees deadlock free execution which further reduces the lock holding

times for a transaction. The constraints are specified using the unique timestamps on

the transactions making the lock requests. The scheme adapts to the low data contention

environments by accepting those requests that fail the constraints but do not lead to a non

serializable execution.
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