
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1995

A Performance Study of Method Execution Alternatives in a A Performance Study of Method Execution Alternatives in a

Distributed Object Database System Distributed Object Database System

Shalab Goel

Bharat Bhargava
Purdue University, bb@cs.purdue.edu

Report Number:
95-037

Goel, Shalab and Bhargava, Bharat, "A Performance Study of Method Execution Alternatives in a
Distributed Object Database System" (1995). Department of Computer Science Technical Reports. Paper
1213.
https://docs.lib.purdue.edu/cstech/1213

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Purdue E-Pubs

https://core.ac.uk/display/4971422?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

A PERFORMANCE STUDY OF METHOD
EXECUTION ALTERNATIVES IN A

DISTRIBUTED ODJECT DATABASE SYSTEM

Sbalab Goel
Dharat Bhargava

Department of Computer Science
Purdue University

West LafayeUe, IN 49707

CSD·TR·95·037
June 1995

A Performance Study of Method Execution Alternatives in a
Distributed Object Database System*

Shalab Gael Bharat Bhargava
Department of Computer Sciences

Purdue University
West Lafayette, IN 47907

Efficiency in query processing is a major issue to achieve performance in future database appli
cations. Dynamic method execution and object referencing (both inter and intra object referencing)
are two features of object query languages like SQL-2 and SQL-3. These features add great power
to the users in presenting their inqueries to the database systems. In tills paper we describe the
model and implementation of dynamic method (or user-defined procedures) execution during query
processing, as supported by the O-Raid distributed object-oriented database system. The methods
invoked on objects include constructor methods for insert queries during initializing of the objects
and predicate methods for selection queries. To achieve greater extensibility to an object-oriented
system, our model allows user-definable methods to be tailored as users desire, and to be loaded
on demand. It also supports object fragmentation and replication in distributed object-oriented
systems. Data as well as executable method codes can be fully or selectively replicated among all
sites. In addition to remote data access, we also provide remote method invocation, in which meth
ods are executed on data located on a remote site, and the results are sent back. This paper also
presents the results of our experimental studies. We use the O-Raid distributed database system in
our experiments. We demonstrate how the query processing functionality can be improved using
user-defined C++ programs, and how new functions such as the pattern matching can be added
to the database system. We develop a benchmark for dynamic method execution in queries and
perform measurements. The overheads in dynamic execution of user-defined procedures in queries
are identified and analyzed. We also study the overheads for data migration (getting data from
remote site and processing them locally) versus method migration (processing query on remote site
and bring back the results) in distributed query processing. We discuss the heuristics on how to
choose the schemes to improve efficiency of distributed query processing.

"This resea.rch is supported in part by a grant from AIRMICS and UNJSYS.

1 Introduction

Efficiency in object query language processing is a major issue in achieving performance in dis

tributed "non-traditional" database applications. The two main features of object query language

standards such as SQL-3 and ODMG are the support for method invocations and object referencing

in the user queries. These features add great power to the users in presenting their queries to the

database systems.

Many proposals have studied the performance optimization of object quenes III distributed

environments. The object query execution models presented by Kim ct. aL in [1], Valduriez

et. aI. in (cite Rozaquette) , and Bertino in [2] have focused on optimizing the performance of

subobject references (or path specifications) in the object queries. A subobject reference is mapped

into a set of semi-join and join operations which is optimized for the optimal execution sequence.

The objects in distributed query model are assumed to be configured in LAN environment which

provides similar communication delays between any two sites of the database. Efficient access

mechanisms to support subobject referencing have been proposed in [3, 4]' Thus, most of this work

focuses on efficient object traversal in distributed object databases.

For supporting method invocation in object queries, Bertino [5J and Kemper [6] have proposed

the method pre-computation approach. In this approach, the method is computed on an object and

the results of this computation stored as attributes of the object in the database. These attributes

are called derived attributes for the object class in [5]. The method invocation in a user query later

can be completed by retrieving these attributes from the database. The approach of precomputing

the methods, although attractive and efficient, is limited in its applicability due to the following

assumptions in the model:

• Only the internal state of the object can be used in method computation. This eliminates

the methods that specifies external arguments from getting pre-computed.

• Only the primitive type attributes can participate in the method computation. This means

a method defined on a complex object class (an object containing references to other user

defined class objects) and which invokes methods on (or accesses) its subobjects cannot be

2

precomputed.

These restrictions limit the scope of methods that can be defined on object classes in the

database schema. Even if we assume that these limitations do not exist and that aU methods

invocations in the user queries can be processed by retrieving the stored resullts from the database,

the methods still need to be executed either for initial computing of the derived attributes for

an object, or for recomputing them when the internal state of the object changes. Thus, the

execution of methods in object queries is inevitable if the expressiveness of user queries cannot be

compromised. In this paper, we study the performance of two approaches for method execution in

object queries on object-oriented databases distributed over different network environments such as

local area networks (LAN), metropolitan area networks (MAN), and wide area networks (WAN).

In the first approach, the traditional approach of method execution in an object query, the

remote component objects are fetched to the local site (the query site); an in-memory object is

assembled locally; and method specified in the query is invoked on this object. This approach of

data migration may have poor performance when number and size of objects located at remote

site are large. The performance may further aggravate in distributed environment such as wide

area network which may be both slow and unreliable. The alternative approach is to migrate the

method execution to a remote site - an in-memory object is assembled at the remote site; method

is executed on the assembled object at the remote site; and the results of method execution are

returned to the local site where the query processing is resumed. This approach of method migration

may minimize the cost of method execution if the component objects are located either locally or in

close proximity of this method execution site. However, there are overheads of initiating a remote

method execution request and retrieving the remote computed results. We present the experimental

evaluation of these approaches in the following scenarios:

1. The size of object is large: It may be better to migrate the method execution to the remote

site where the large object (for example, multimedia object) is located than to bring it locally

over a possibly slow and unreliable communication channel.

2. The object is complex and distributed over multiple sites: The complex object may be frag

mented on multiple sites to provide better availability and performance to the database

3

users [7J. It may be better to migrate method execution to a remote site where the cost

of composing the complex object will be low.

We present a heuristic that uses the communication delays between any two sites, and the size

and the configuration of object on distributed sites to determine the appropriate method execution

approach. The heuristic also determines the optimal cost for migrating the method execution to

a remote site. We use a distributed object-oriented database system called O-Raid [8] developed

at Purdue University, as our testbed for implementing and analyzing the performance of these

method execution approaches in various network environments. We have integrated O-Raid with

WANCE tool [13], a Wide Area Network Communication Emulator, to provide real wide area

network communication environment for conducting our experimental studies.

The rest of the paper is organised as follows. Section 2 presents the overview of a-Raid system

and the support for method execution in a-Raid. Section 3.1 describes the heuristic for determining

the site with optimal cost of method execution. Section 4 presents the database benchmark and

the experimental facilities such as WANCE tool for our experimental study. Section 5 evaluates

the method execution schemes and the validlty of our heuristic. Section 6 concludes the paper with

the directions about our current and future proposed work.

2 Supporting Method Execution in O-Raid

a-Raid supports object-oriented features on top of Raid [9] relational distributed database system.

OpenODB [10], UNISQLjX [11] and Oracle Relation-Object product [12] are some of the com

mercial systems that use a similar layered approach for supporting objects on top of an existing

relational system.

2.1 Overview of O-Raid System

The O-Raid system supports a hybrid object-relation data model. The basic unit of storage is still

a relation. However, the attributes are not limited to simple data types such as integer and strings,

but can be arbitrary complex objects of pre-defined user C++ [14] classes. O-Raid supports both

4

Legend

UI • Uso' InlerlaClil

O·RAIDsite
OM·~ QiiOGtMWge;S;.vil;-------

RC • RepOcelion Coo~e' 5eMl'

AC.AIcrnii:iIYCm~e'5eMl'

CC B Ccncummcy CantrDlre,SeMl'

AM: Al:cB"" Manage,s.,,,,,,, ..®J

Wide Area Networ

Raid Transaction
Manager

Figure 1: Architecture of a two site a-Raid system

inter-object referencing (or pointer referencing) and intra-object referencing (or embedded object

referencing, where an object is stored with another object).

The O·Raid system site consists of an Object Manager (OM) server and an instance of Raid

Transaction Manager (TM) as shown in figure 1. The OM server manages all aspects of object

manipulation and generates a transaction consisting of reads and writes operations (actions) which

is submitted to Raid TM for further processing. Thus, the underlying Raid servers only deal

with transactions consisting of operations on relations, while the OM server provides support for

object-oriented features to the object database designers. a-Raid uses SQL++ [15] query language

interface for user queries involving objects. Further details about a-Raid can be found in [7].

Object Swizzling and Unswizzling in O-Raid Each class definition A in an a-Raid database

schema is associated with a unique class relation Astored in the underlying Raid relational database.

The objects of a class are stored as the tuples of the corresponding class relation. Each pointer

reference "b" of class B in the definition of class A is stored as a 3-tuple called persistent pointer in

the class relation A as shown in figure 2. This persistent pointer identifies uniquely, for each class A

object stored in the class relation A, the tuple of class relation B that corresponds to the referenced

class B object.

To compose an in-memory object of class A , the OM server must recursively request from Raid

5

class A {

class B 'b;

class relation A

class relation B

.JiIr" persistent pointer b
,..--.-...--..,

O-Raid Data Schema O-Raid Data Model

Figure 2: Hybrid Object-Relation Data Model in a-Raid

TM the tuple corresponding to the subobjects referenced in class A object. The persistent pointer

in the class relation A tuple uniquely identifies the class relation B tuple. OM server submits a read

request to Raid TM to retrieve this tuple. The tuple returned by Raid TM is used to complete

the assembly of an in-memory class A object as follows - the retrieved tuple is used to compose

an in-memory object of class B 1; and the pointer reference "b" in the class A object is updated to

point to this class B object. Further details about the engineering of object-relation model can be

found in [16].

Method Execution in O-Raid a-Raid supports the dynamic execution of methods in SQL++

queries. A dynamic linking library package called dId [17], available from GNU Free Software

Foundation, is used for dynamically loading and linking the precompiled code for the method

invoked in the user query with the OM server process at the run time.

A method invocation in the SQL++ query is processed by the OM server as follows:

• An in-memory object of the base attribute class (for example, a->b.c->d.procO has base

attribute d) 1s composed at the query site as described above above .

• The object code module for the base attribute class is loaded into the memory, if it is not

already there. The method invoked in the query is searched for in object code. A dId library

ITf class relation B tuple itself contains persistent pointers, tlley will be swizzled first.

6

routine returns a pointer to the beginning of method code in the object code. An explicit

function call with the arguments specified in the query is executed.

O-Raid supports data migmtion since the objects distributed on multiple sites will be migrated

to the query site for method execution. The data migration is transparent to the users and is

achieved by the Raid TM's Replication Controller (RC) server.

3 Building Support for Method Migration in O-Raid

The server-based architecture of O-Raid has provided the ease of design and implementation for

supporting method migration approach to method execution. The dashed line between the peer OM

servers in figure 1 represents the augmented message based control flow in O-Raid for engineering

this support. This provides the query site capability to request remote site for method execution.

Message Control Flow: The interaction between the OM servers at query site and target remote

site is realized by a synchronous message exchange as follows: The OM server at query site sends a

request message to the OM server at remote site. The request message specifies the method identifier

which uniquely identifies the method to be invoked, the arguments for the method invocation, and

a persistent pointer to object on which method will be executed. The OM server at remote site

parses the message and initiates a subtransaction to process the method invocation request. An

in-memory object identified by the persistent pointer is composed and the method executed on

it. The results of method computation are returned in an acknowledgement message to the query

site. The query processing at the query site is resumed after the result of method computation

is extracted from this message. It must be noted that eventhough the subtransaction completes

successfully, it does not terminate and release its locks 2 on the data items. Th esubtransaction

will terminate only when the query transaction terminates.

Synchronous Method Migration: Our design uses a handshake mode of message interaction

between peer OM servers for implementing method migration. We have made this deliberate choice

2Raid TM uses two phase locking in Concurrency Controller (CC) server

7

to eliminate the performance gains in method migration approach due to concurrent execution of

different parts of the query at query site and target remote site for method invocation respectively.

This allows us to make a fair comparison of method migration approach with data migration

approach where the entire query is executed at the query site. At the time of writing of this

paper, however, we are investigating the potential gains in performance by allowing asynchronous

interaction between the OM servers and thus achieving parallel processing of the query at multiple

sites. Tills is briefly outlined in our future work in section 6.

The OM server uses the cost model described next to determine the approach for execution of the

method specified in the query. It also determines the site with optimal cost for method migration.

The cost of migrating the method execution consists of the cost for initiating a subtransaction

for processing method invocation request, cost of composing an in-memory object from possibly

distributed or remotely located object, and the cost of executing the method itself.

3.1 Cost Model for Optimal Site Selection

Given a method Mi;(Alj , A[j' ... ' Arj) such that Mij is the jth method defined on class Ci and Afj

k=l(l)n are the formal arguments of M;j with class in { C I , C2, ••• , Crn } where m is number

of class definitions in object database schema; we have the following parameters that describe the

class and its attributes:

• Si : Size of class Ci object

• Nj : Number of attributes of user-defined classes in class Cj object.

• Lj : Location of class Ci objects

• Commj,!.: : Communication Cost for transferring unit data from site j to site k.

• RM;j : Size of request message for mlgration of method Mij.

• Qs : Query Site

The parameter Commj,!.: models the cost of transferring object from from one site to another site

using the real communication delays, and impacts the cost of method migration most significantly

8

in wide area network environment.

To simplify our model and also to make it applicable to O-Raid system, we make the following

assumptions:

1. The precompiled code for all the methods is replicated on all sites.

2. The objects of a class are located on one particular site, i.e. there is no replication or horizontal

fragmentation of the class.

3. The class attributes are single valued.

tJ. The formal parameters in method definition are simple typed.

5. The I/O costs are neglible.

At present, O-Raid supports processing on main-memory databases. So the paging and clustering

issues are not considered. However, our results are applicable under the conditions when the entire

working set of application fits in the workstation's bufferpool.

The cost of migration of execution of method Mij to site 1from query site Q. written as CostTotal

(Mij, 1), consists of three components:

1. CostI(Mij, 1) Cost of initiating a sub transaction at site 1 for executing method Mij. This

involves the cost of sending a request message from site Qfrom site I and the startup cost for

the subtransaction.

2. CostA(Cj, 1) Cost of in-memory assembly of class C; object at site 1.

3. CostM(Mij , 1) Cost of method invocation at site I. This includes the assembly cost for complex

type arguments of method M;j, and the method invocation cost.

N,

CostA(C;,I) = CommL"I' s;+ I: CostA (Ck, I)
k=l

9

string
string
string

VehicleTrain pistonEn"ine
HPSize intege

vehicle ---!-Engine CylinderN intege

~ DriveTrain Transmission Istring Manufacturer
Customer Color string ./. . Model string

Vdescrl.pt1on Year integer • [(arne ~jstringPolicyi string Manufacturer po HeadQuarter
VOwner ---==:::::::=::

\Customer log
C__

Street

""- City
N_ string Country
Education string

!Text Area Istring I;:;;rital Statu string Address

Text Person

Figure 3: Class Attribute Hierarchy for Customer object

n

CostM(Mjj , I) = L CostA(CA~"l)+ Exec(Mij
"k:=l

Find site k such that CostTo/al (Mij, k) is minimized.

4 Experimental Infrastructure

4.1 Benchmark

Database Design Since our main concern is the relative comparison of data migration versus

method migration for processing user-defined procedure calls in the object queries under different

distribution and fragmentation of composite objects on multiple sites, we use a simple database

called Insurance-Agents database. Its basis is a set of customer objects. Each customer object

specifies the owner of a vehicle and description of the vehicle he/she owns. The information is

maintained using an embedded object Person and a pointer to object of type Vehicle. The class

attribute hierarchy as defined in [3] and rooted at class Customer is shown in figure 3. The following

schema makes the database specifications.

class Address {

char Street [64] J City[24] i

class Company {

char Hame [64] ;

10

char State[12] ,Country[16];

Address(char *,char *,char *,char *);

};

class VehicleTrain {

PistonEngine *Engine;

char Transmission [24] ;

VehicleTrain(char *);

int Imported_Engine();

};

class Vehicle {

char Model[64] I Color [32] ;

Company *Manufacturerj

VehicleTrain *DriveTrain;

Vehicle(char *,char *);

int Estimated_Value(int,int);

};

};

class Customer {

Person *VO~er;

Vehicle *Vdescj

char Policy_Ho[i6];

class Text Customer_log;

Customer (char *);

};

Address *HeadQuarters;

int Located_In(char *);

Company (char *);

};

class PistonEngine {

int HP5ize, CylinderN;

Company *Hanufacturer;

PistonEngine(int,int);

};

class Person {

char Hame [64] ;

char 55#[16];

char Education[4];

char 5tatus [8] ;

int EducationLevel(char *);

Person(char *, char *, char *, char *);

class Text {

char **Text_Area;

int contain_key(char *);

Text(char *);

};

For each class, we have a constructor method as well as other user-defined methods. The

Insurance..Agents database contains the classes as described above and a relation customers that

contain a single attribute of type Customer.

11

Queries and Output Parameters Select queries invoking predicate methods on different class

objects are defined in the benchmark and are a.<> follows:

• QuenJ 1: Find the owners of vehicles with estimated insurance value greater than 50000.

• QuenJ 2: Find the owners of vehicles with imported engines.

• Query 3: Find the owners of the vehicle manufactured in Midwest USA.

• Query 4: Find the name of the vehicle owners with education higher than high school.

• Query 5: Find the vehicle owners who have never received a citation for reckless driving.

For each query, we measured the total time for method execution at each site of the database and

its component time for assembly of an in-memory object on that site. We also measured the same

output parameters for the optimal site selected using our cost model. The timing was obtained by

putting probes in the Object Manager server code.

The execution of the same query is repeated to filter out the effects of wide variance in com

munications performance on the Internet [18J in order to have statistically significant results. The

experiments are run at the late night to avoid network load peaks.

4.2 Experimental Facilities

We use Sun SparcStation·ls running SunOS 4.1.1 in the Raid Laboratory as our testbed. All of

them have local disks and are connected by a 10 Mb/s Ethernet. Furthermore, they form their own

suhnet that is separated from departmental network. We use Raid communication subsystem that

is an efficient, location-transparent, and transaction-oriented message pa.<>sing facility [9J. After

receiving a user query, the O-Raid system generates transactions for local Raid TM, which will

send messages to other Raid TMs when remote access is necessary. The messages are packed into

UDP lIP packets and delivered by the networks.

WANCE Tool For wide area network environment, we use a Wide Area Network Communication

Emulator (WANCE) tool to emulate Inetrnet communication in a LAN environment [13]. We chose

12

silO 1
,,,;A:c'

•••
reall".xperillll""t sefllp

LAN

•••

x,,:=,:=,
::::"""..

Internel

•••
enmlatioll experlmellt sewp

Figure 4: Emulating the real experiment

the emulation approach for our WAN experiments because we can have real WAN communication

in a LAN environment. We avoided the simulation experiments because the current simulation

models oversimplifies the Internet, which consists of over 1,000,000 hosts around the world. Also,

our goal is to evaluate our scheme in the real experiments.

The emulation approach is based on the observation that the difference between the behaviours

ofa distributed system running on a LAN and that on a WAN is primarily due to the communication

performance, not the location of the experimental host. To emulate a two site system spanning site

A and site C that spans over WAN, we only need to fmd another computer B comparable to C but

in same LAN as A. We run the O-Raid sites on A and B instead of A and C. The WANCE tool can

be specified to automatically route all messages from A to B through C. Although our experiments

are run in A and B (two SparcStations in our lab) we have the same effect of running them in A

anc C as shown in [18J.

13

5 Evaluation of Method Execution Schemes in O-Raid

5.1 Statement of the Problem

The cost of method invocation on an object in distributed environment will depend on the number

and the size of subobjects required for its in-memory assembly. The method migration approach

relocates the method execution to remote site (different from query site). Depending upon how

the object is configured, this relocation may reduce the cost of object assembly and hence the total

cost of method execution. However, as pointed out there are some overheads associated wlth this

approach.

The experiments in tills section compare the performance of migrating the method execution to

a remote site with the traditional one of migrating the object data to the query site. We compare

the cost of object assembly cost as well as total cost of method execution for both the approaches.

In the first set of experiments, we compare the performance of these schemes for methods defined

on class objects with different number of subobject references. In the second set of experiments,

we analyze the impact of the size of the fiat object on thelr relative performance.

Site1 (raldl1.l:1.purduudul Site2 (raldl0.tl.pullluudul

Figure 5: Configuration of Two Site Benchmark Database

14

5.2 Procedure

Figure 5 shows a two site benchmark database. All the class objects - Vehicle, Text, VehicleTrain,

etc. in the benchmark are stored at sile2. The customers relation which contains objects of classes

Vehicle, Text, and Person respectively is replicated on both sites.

In our experiments, we consider three alternatives for method execution:

1. Data Migration from Local Site (DML): The benchmark queries are submitted at site2.

The object on which method specified in the query is to be invoked Is composed at site2.

2. Data Migration from Remote Site (DMR): The benchmark queries are submitted at

sitcl. The object on which method specified in the query is to be invoked Is composed at

sitel.

3. Method Migration (MM): The benchmark queries are submltted at slte!j the class object

is composed and method invoked on it at site2.

We run sitel and site2in raidl1. cs . purdue . edu (raldll) and raidl0. cs .purdue . edu (raidl0)

respectively in our LAN environment. We set up WANCE tool so that raidlO simulates the following

Internet sites: attospm. physics. purdue. edu, tajmahal. ecn. purdue. edu, teresa. cs. uiuc. edu,

pegasus. cs .pitt. edu and seoul. usc. edu. The experiments were run at the late night to avoid

network load peaks.

Each query is reapeated 50 times to filter out all the factors other than those of O-Raid system

In order to have statlstically significant results. Furthermore, the executions of the queries are

interleaved one by one rather than group by group to allow them to run under similar environment

and result in fair comparison.

In the first experiment, the benchmark queries 1, 2, 3, 4 are submitted to the UI at sitel or

site2 depending on the choice of method execution alternative (l.e. DML, DMR, or MM). These

benchmark queries specify a method invocatlon on objects of different classes. For example, Query

1 invokes method Estimated_ValueC ..) defined on class Vehicle object. A Vehicle object is

assembled from six subobjects - a VehicleTrain object, a PistonEngine object, two Company

objects, and two Address objects (see figure 3). Thus, the benchmark queries 1, 2, 3, 4 represent

15

400

350

100

LAN (raid 10)

. -. Dala Migration - Local (DML)
-- Dalll Migr.llion - RemOle (DMR)
- - _. Method Migration (MM)

MAN (physics.purdue)

-----.",,,,,""
,,'

-"","'
.'

WAN (uiuc.edu)

..

Figure 6: Total Method Execution Time vis Size of object

Emulated Comm. Data Migralion - remote (DMR) Method Migration (MM)

Host Delay lK 2K 'K 8K 10K lK 2K 'K 8K 10K

physics.purdue , 88 95 130 162 189 99 103 116 143 158

een.purdue 6 " 111 126 170 189 98 106 122 154 167

uiuc.edu 36 160 166 208 273 283 122 132 152 179 192

pitt.edu 78 244 267 289 359 385 180 182 188 220 236

usc.edu 97 364 360 350 420 456 192 197 212 2<5 267

Table 1: Method Execution Time (ms) vis Size of the Object (in WAN)

queries with methods invoked on objects requiring different number of subobjects. The cost of

object assembly as well as the cost of method execution are measured.

In the second experiment, benchmark query 5 is submitted to the UI. This query invokes

method on a variable length Customer_log object of class Text. The size of the object is varied

from 1 Kilobyte to 18 Kilobytes. The actual method computation cost on the in-memory object of

this class is kept independent of the object size. The intent is to determine a relationship between

the the cost of method execution and the size of object, without having the need to factor out the

varying method computation cost due to changing object size.

16

Emulated Site! Site2

Host lK 2K 4K 8K 10K lK 2K 4K 8K 10K

LAN 60 69 86 121 137 48 55 69 96 110

physics.purdue 76 84 119 150 175 48 54 68 95 108

cen.purduc 86 97 116 15' 176 47 55 66 '4 107

uiue.edu 13' 153 18' 263 272 4' " 68 95 110

piU.edu 233 254 277 342 374 48 55 69 95 112

use.cdu 293 3<0 339 408 438 48 59 69 96 112

Table 2: Object Assembly Cost (ms) vis Size of the Object

5.3 Data & Discussion

Size of Object Figure 6 shows the performance of three alternatives of method execution with

the varying size of object on which method is executed. The remote sites for LAN, MAN, and

WAN environment are raid10 (1 hop away), physics.purdue (3 hops away), and uiuc (18 hops

away). Table 1 shows the total method execution cost for the other emulated Internet sites.

We observe that the cost of method execution on an object locally available at the query site

(Le. in DML approach) is the same in all distributed site configurations. This is expected since

there is no interaction with the remote site sitel, and therefore the invariance of method execution

costs to different communication delays.

For a particular network configuration, the overheads associated with method migration - the

cost of sending a method execution request to remote site and the cost of initiating a subtransaction

to process this request - are relatively fixed. The difference between the cost of composing an object

locally at query site via remote read requests to access data (in DMR approach) and the the cost of

composing an object at remote site via local read requests to access data (in MM approach) increases

with increasing object size (see Table 2). Thus, as the size of object increases, the overheads of

method migration become more and more offset ted by the gains in composing the object locally at

the remote site. In the LAN environment, the difference in cost of local and remote reads increases

very slowly with the increase in object size. This is because the messages between the O-Raid

17

Benchmark Query Method Name Object Class No. of Subobjects

Query 1 Estimatcd_Value(...) Vehicle 7

Query 2 Imported_Engine(...) Veh..iclcTrain 5

Query 3 Located-.fn(...) Company 2

Query 4 EducationLevcl(...) Person 1

Table 3: Subobjects required for class objects in Benchmark Queries

servers for a local read uses the same UDP lIP based communication library as is used for remote

reads. Since the communication delays between two sHes in LAN are low « 1 ms), the cost of

reads are similar. The method migration overheads, therefore, are counterbalanced only by gains

in composing large objects locally at the remote site. On the other hand, in a WAN environment,

the cost of remote reads is high (average communication delay to uiue site is 30 ms for 64 bytes

packet through the experiment). The overheads of method migration become insignificant; and the

method migration approach outperforms remote data migration approach for small size objects.

Number of Subobjects As shown in figure 7, the method execution on a class object at the

query site that is composed from the locally available subobjects displays the best performance in

all distributed site configurations. The reasoning is same as the one for method execution on large

flat objects in the previous paragraph. All the data reads for composing the in-memory object as

well as the method invocation are local to the query site hence no interaction over the network.

The performance comparison of data migration from remote site and method migration to a

remote site is more interesting. As in the previous paragraph, the overheads of method migration

are relatively fixed for a particular sites configuration.

Since each persistent pointer stored in a class relation tuple is swizzled into an in-memory

pointer by recursively fetching the tuple identified by the persistent pointer (see section 11), a

complex class object with a total of "n" pointer references (direct references in the complex object

or the references in the objects pointed to by the direct references, and so on) will require "n" read

requests from Raid TM to compose an in-memory complex object.

18

900
LAN (raid10)

800

700

"'"
1 500

•C 400

'")00

200

100

0

MAN (physics.purdue)

I7.l Method Computation Time
l£I + Overheads (for MM)

l'1li In-Memol)' Object
.., Assembly Time

Query4

WAN (uiuc.edu)

QucryJ

Query4

For a particular site configuration, the difference in cost of composing a complex object at query

site via remote reads to access subobject data and the cost of composing this complex object at

the remote site via local reads to access subobject increases as the number of subobjects required

for the complex object assembly increases.

In LAN configuration, the overheads of method migration arc offset ted only for large number of

remote data accesses required for composing the complex object. In OUf benchmark database, only

Queryl demonstrates better performance with method migration approach. This is due to the fact

that loca] and remote access costs in LAN environment in O-Raid are very similar as explained

above.

In a WAN site configuration, high communication delays to remote site (average communication

delay to uiuc is 31 ms) makes remote reads expensive. Thus, the gains due to access of only a

few subobjeets locally at the remote site offsets the overheads of method migration; and makes the

method migration approach more appealing.

19

Emulated Comm. Data Migration - Remote (DMR) Method Migration (MM)

Host Delay Query1 Query2 Query3 Query4 Query1 Query2 Qucry3 Qucry4

een.purdue 6 510 306 145 74 36' 227 1<3 96

pitt..edu 73 1492 '" 416 210 411.7 284 199 156

use.edu 97 2066 1106 528 260 <49 316 239 182

Table 4: Total Method Execution Cost (ms) vis Number of Subobjects referenced (in WAN)

Emulated Site! Site2

Host Queryl Query2 Query3 Query4 Queryl Query2 Query3 Query4

LAN 362 204 103 51 306 180 91 46

physics.purdue 514 284 137 72 305 181 92 46

cen.purdue 501 298 138 66 306 180 91 47

uiue.edu 831 473 239 115 303 186 88 45

pitt.cdu 1483 817 468 202 304 176 89 44

use.cdu 2056 1098 519 252 304 178 89 45

Table 5: Object Assembly Cost (ms) vis Number of Subobjects referenced

20

6 Conclusionsk

We have presented a method execution scheme called method migration, which relocates the exe

cution of method invocation specified in the user query to a remote site where the object resides.

We have implemented the support for method migration in a distributed object database called 0

Raid. We have conducted an experimental study to compare the performance of method migration

scheme with the traditional approach of mlgrating the remotely located object (data migration) to

local site for method execution.

We can summarize our analysis of experimental results as follows:

1. As the cost of remote data access increases (fOf example, due to transition from LAN to WAN

environment), the method migration approach becomes more cost effective.

2. For any network environment, as the size of remotely located object increases (for example,

multimedia object), the method migration performs better than data migration approach.

Future Work We are currently working on a cost model to determine the site with optimal cost

for method migration when the complex object is fragmented [7] over multiple sites. The model

uses the communication latencies between the sites and the configuration of complex object on

these sites to make an apriori estimate of costs of method execution at various sites.

The synchronous method migration approach presented in this paper may be too restrictive

in wide area environments since it may impose long blocking periods at the query site. We are

studying approaches to exploit parallelism in query execution by providing support for overlapped

execution of the query at query site as well as the remote method execution site.

References

[IJ B. Jcnq, D. Woelk, W. Kim, and W. Lee. Query Processing in Distributed Orion. In Int./ Conf. on

Extending Dutabu5e Technology, Venice, pages 169-187, Mar 1990.

[2] E. Bertino. Query decomposition in an object-oriented database system distributed on a local area

network. In RIDE-DOM 95, Mar 1995.

21

[3] Elisa Bertino and Won Kim. Indexing Techniques for Queries on Nested Objects. IEEE Transadions

on Knowledge and Data Engineering, 1(2), June 1989.

[4] P. Valduriez. Join Indices. ACM Transadions on Database Systems, 12(2), Jun 1987.

[5] Elisa Bertino. Method precomputation in object-oriented databases. In Proceedings of Organizational

Computing Systems, Atlanta, Georgia, Nov 1991.

[6] A. Kemper, C. Kilger, and G. Moerketle. Function Materialization in Object Bases. In ACM SIGMOD,

pages 258-267, 1991.

[7] Jagannathan Srinivasan. Replication and Fragmentation of Composite Objects in Distributed Database

Systems. PhD thesis, Purdue University, Aug 1992.

[8] B. Bhargava, Y. Jiang, and J. Srinivasan. O-Raid: Experiences and Experiments. In Proceedings of the

Int.l Conf. on Intelligent and Cooperative Information Systems, May 1993.

(9] Bharat Bhargava and John Riedl. The RAID Distributed Database System. IEEE Transadions on

Software Engineering, 16(6), June 1989.

[10] S. Ford, J. Blakeley, and T. Bannon. Open OODB: A Modular Object-Oriented DBMS. In ACM

Sigmod, pages 552-553, Washington, DC, May 1993.

[11] Won Kim. UNISQLjX: Unified Relational and Object-Oriented Database System. Sigmod Record,

23(2), 1994.

[12] Nicole Melander. Personal communications. In Oracle Corporation, Bethesda, Maryland, USA, Febru

ary 1995.

[13] Yongguang Zhang and Bharat Bhargava. WANCE: A Wide Area Network Communication Emulation

System. Tn Proceedings of the IEEE Workshop on Advances in Parallel and Distributed Systems, pages

40-45, Princeton, New Jersey, October 1993.

[14] B. Stroustrup. The C++ Programming Language. Addison-Wesley, Reading, Mass., 1986.

[15] J. G. Mullen, J. Srinivasan, P. Dewan, and B. Bhargava. Supporting Queries in the a-Raid Object

Oriented Database System. In Proceedings of the International Computer Software and Applications

Conference, 1990.

[16] P. Dewan, A. Vikram, and B. Bhargava. Engineering the Object-Relation Model in a-Raid. In Pro

ceedings Of the International Conference on Foundations of Data Organization and Algorithms, pages

389-403, June 1989.

22

[17] Wilson W. Ho and Ronald A. Olsson. An Approach to Genuine Dynamic Linking. Software. Practice

and Experience, 21(4):375-390, april 1991.

[18] Yongguang Zhang and Bharat Bhargava. A Study of Distributed Transaction Processing in Wide Area

Networks. Technical Report CSD-TR-94-016, Department of Computer Sciences, Purdue University,

January 1994.

23

	A Performance Study of Method Execution Alternatives in a Distributed Object Database System
	Report Number:
	

	tmp.1307986960.pdf.5PsoJ

