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Abstract. A token-based model for fraud detection and prevention in information systems is

presented. Due to the high false alarm rates experienced in currenl fraud detection systems,

this model has the goal of saving overall system losses. The system raises an alann only when

the token associated with an entity reaches a negative value. It ranks acLions (or transactions)

by their suspicion level. The most sll:>picious action will have the lowest token value. This

model is more appropria[C in evaluating commercial fraud detection and prevention systems

by conducting experiments on three types of behavior patterns, intentional cheating, sman

repeated cheating, and unintended carelessness. The results show that our model can catch

certain repetitive small-eost fraudulent actions which may escape other models. It has a low

rate of false alarms and achieves almost optimal decision-making. This mechanism can be

easily adopted by current fraud detection and prevention systems.

1. Introduction

Fraud is a deception deliberately practiced in order to secure unfair or

unlawful gain [1], or as an intentional perversion of truth in order to induce another to

part with something of value or to surrender a legal right [2]. Although cryptographic

techniques make fraud more difficult, they cannot eliminate it. As more and more

people use online transactions and rely on telecommunications, there has been an

increasing interest in developing fraud management engines. For e-commerce, fraud

affects less than 2% of consumers; however, it is expected to grow rapidly [3].

Several factors make fraud detection and prevention challenging. First,

detection methods effective for one specific domain are high likely less effective for

others [4]. Second, for fraudsters and legitimate clients, their behavior patterns

change over time. The detection system needs to adapt to new fraud patterns, and it

should also recognize new legitimate behaviors. Third, huge volume of involved
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infonnalion makes it hard to analyze them lhoroughly. Fraud needs to be detected in

real time to avoid more losses, but overwhelming amount of datu makes real-time

discovery more difficult. Moreover, the fraud to legitimate ratio is miniscule,

sometimes as low as 0.2%. False alarms are unavoidable because most systems can

only correctly classify 70% to 80% instances. If every instance is classified as

legitimate, in fraud detection area, we could correctly classify 90% instances or even

higher. However, this is not the function of fraud detection and prevention. It is

difficult to decrease false alarms and also catch more fraud.

Table 1 lists the results from a fraud detection engine. Several criteria have

been used in evaluating fraud detection engines. In [5, 6, 7J researchers use Receiver

Operating Characteristics (ROC). A ROC graph shows the relationship between True

Positive (TP) rate and False Positive (FP) rate. A classifier is defined by its ROC for a

dataset, independent of class distribution. Rosset et at. [8] use accuracy and fraud

coverage as criteria. Accuracy is the number of dctected fraud over the total number

of classified fraud. Fraud Coverage is the number of detected fraud over the true

number of fraud. It is impossible to know precisely the number of frauds.

Table 1. Fraud Detection Confusion Matrix

Fraud Legitimate

Alarm Correct False alarm

No-alann Missed Correct

The false alarm rate and the fraud detection rate are more appropriate criteria.

The false alann rate is the percentage of false alarm in alarm set. The fraud detection

rate is the loss by detected fraud over the total loss due to fraud. These two can not be

obtained in real time. They may be calculated monthly or weekly in financial area in

order to evaluate the performance of fraud detection and prevcntion engines. For

other applications, each compromised state can be associated with a cost, even though

patterns of fraud leading to that compromised state are unknown.
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False alanns cause the loss of investigalors' efforts and a potential loss of

clients. A missed fraud has obvious costs. The loss caused by both is called a s)'srem

error cost. A good fraud detection engine should reduce the system error cost.

We propose a loken-based model for fraud detection and prevenlion.

Experimenls show that it can facilitate the near optimal decision making in alarm

generation, and provides a more appropriate metric in evaluating fraud management

systems. Proposed design is similar to the earlier proposals [9, 10) in some respects. It

has additional advantages of being able to detect the repetitive small-amount frauds

that are not caught by the earlier designs and has a lower false alarm rate.

The rest of this paper is organized as follows. Seclion 2 introduces a state-of­

an fraud detection system, followed by token-based fraud detection models in Section

3. Seclion 4 identifies three lypes of user behavior. Section 5 describes the

experiments and their results. Conclusion is given in Section 6.

2. A State-of-the-Art Fraud Detection System

Fraud detection and prevention systems arc widely uscd III

lelecommunications [11), online transaction processing [12, 13), and intrusion

detection in computers or networks [14, IS]. These systems share the feature that

actions are recorded. Based on these recorded data, methods such as data mining [10),

machine learning [9, 11) can be applied for fraud detection. Preprocessing is done to

select and format the data before using them. Preprocessing can hide private or

sensitive infonnation visible in the raw data.

Currently, most fraud detection and prevention systems consist of a profiling

engine and a decision-making component.

Profiling Engine. A profiling engine normally involves three major subcomponents:

rule generation, user profiling, and online detection. Rule generation subcomponent

[8, 10, 16, 17) mines massive amounts of database records to get association rules and

estimates accuracies of these rules. Both user-level and behavior-level information

can be used in mining. Normally, a large volume of fraud rules will be generated.

In the user profiling subcomponent, the first step is to select variables that can

be used to characterize the range of normal behaviors. The variables should be

sensitive to abnormalities and comparable over time. If a fraud happens, at least one
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of the patterns for these variables should show an abnormality. The variables can be

identified in a number of ways. One approach is to derive them from the fraud rule

generation process. The variables will be a subset of those used in the rule set.

Pattern nonnalization follows variable selection and involves only legitimate

behavior data. Patterns inelude group patlerns and individual patterns. Group pattern

lIol7lwlizatioll groups clients with similar backgrounds within the period of

investigation. It is possible that clients are moved from one group to another over

time. Patterns with obvious abnormalities arc eliminated from the group pattern

normalization.

The nonnalizalion process makes a normal distribution of the data for a

variable during a short period, such as per twenty four hours. These variable patterns

are stored as the user profile histories and will be retrieved for reference during online

fraud detection. Another set of data is called current use behavior patterns. It is

similar to the previous set, ex.cept that there is no elimination of data. New users have

their profiles initiated based on their expected behaviors. For example, it can be based

on their user group classification.

The third subcomponent of a profiling engine is onlille detectioll. When a new

action or transaction starts, the detection engine retrieves the related rules from the

llser profiling subcomponent for the user running the action or transaction. It may

need to retrieve user's profile history and his or her current behavior patterns. Each

rule is checked. If the action or transaction does not match any fraud rule, the output

is zero. Othenvise, the maximum accuracy of the rules that match this action or

transaction can be used as the output. This is called fraud indicator and denoted "PI".

Decision-making Component. Based on the fraud indicator from the profiling

engine, the decision-making component decides if an alarm needs to be generated or

not, depending on its decision algorithm. For example, in a cost-based model, an

alann is generated only when the loss from an action or transaction is higher than the

cost of investigation.

3. Token-based Fraud Detection Models

The token-based models combine both absolute and differential fraud

analysis. Absolute analysis uses predefined and static domain-specific rules for fraud
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detection. If an action or a transaction matches any of these rules, the system can havc

100% confidence that a fraud has happened. For example, in the telecommunications

domain, detecting a call collision means that phone is cloned. Differential lll1aly.',is

uses generated association rules as described in Section 2. Each rule may have

different thresholds for different users. This type of analysis is attractive because it is

domain-independent. It can be used to find new fraud patterns. The rule generation

subcomponent operates continuously to generate or update rules from newly found

frauds and disputable cases, thus producing new sets of rules and their accuracies.

The user profiling subcomponent updates the currenl user behavior patterns and user­

level information. The online detection rules are dynamically updated either

periodically, or when the rules generated by the rule generation subcomponent have

reached a certain predefined level of change defined by the administration. Thus, the

token-based model can be easily adopted by current fraud detection and prevention

systems. The online detection will adapt rapidly as the other two subcomponents keep

adjusting to new patterns.

At the beginning, a system administrator assigns tokens for each participating

user. The total number of tokens is system-dependent. The output PI from a profiling

engine is used by the decisionwmaking component. FI can be interpreted as the

estimate of the probability of fraud given by the profiling engine.

The risk ofloss R can be defined as

R = FI -f (0 < f < 50%)

where r is called risk adjustment parameter. The higher the sensitivity of a

transaction, the lower the risk adjustment parameter. For example, exchanging a good

of value $10,000 has higher risk than exchanging a good of value $1 under the same

procedure. So the first transaction will have a lower r to make the risk of loss R

higher. As another example, intrusion puts the computer system into a higher risk

state than Denial of Service, so a low r can make the fjrst action have a higher risk of

loss.

Suppose that the expected total benefit from a transaction is B. The token

value for the user committing this transaction is updated by the risk of loss R

associated with this transaction:
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{
lOken-bXBXR

token =
tokell-dxBxR

(b <I)

(d > 1)

ifR:50

ifR>O

where band d are called bellefit adjustmellt parameter and damage adjustment

parameter, respectively. If the risk of loss is not positive, then the token value will

increase. The amount of increase depends on the benefit B of this transaction. As the

benefit adjustment parameter is less than 1, the increase in token is less than the

benefit. If the risk of loss is positive, the token value is decreased. The damage

adjustment parameter can be varied, depending on the expected security level of the

system. By awarding Loken conservatively with good behaviors and taking away

token aggressively with bad behaviors, a system can achieve nearly optimal decision

making.

If the token owned by an account becomes negative, the system generates an

alarm and outputs the negative token value. As the output is ordered, the higher the

fraud cost, the lower the token value. According to this order, investigators can give

priorities to their investigations.

4. Types of User Behavior

Based on three categories on fraud indicators (figure 1), we define three types

of user behaviors [18] and use them as the input in the experiments. They arc:

intentional cheating, smart repeated cheating, and unintended carelessness. In each

category, fraud indicator has a nonnal distribution, that is FI - N (J.!, a2
) with mean of

J.! and standard deviation of a.

1.0 ,----------------,

Bod

,~ 0.7

]
] 0.4

Suspicious

Good

0.0 '-----------------'

Figure 1. Categorization based on fraud indicator.
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Illtended cheating means that a user makes an attempt to cheal. The value of

fraud indicator fluctuates in the good domain without causing the system alarm, and

then suddenly moves toward bad domain. Figure 2 is an example behavior for this

model. The fraud detection engine shows the following value of fraud indicator for

the user of these 120 transactions:

Fraud Indicator =

0.85 if seqllencenumberis30

0.9 if seqllence IIll/1lbe,. is 70

0.78 if sequence 1/umber is 100

N(0.2,0.05 2
) otherwise

0.9

0.'

0'
§
20.6

~
-n0.5
",
U.OA

~__ User Behavior Model. Intenlional Chealing_T_yp_,__

]

I
I

I

I' I
0'3~ f ,I "_ I, .. lqi'll l'At III jl "I II I j. ,II .\
0' f.·,I,"II,.,'·;!I;i/I!I' ~ ,I,,' ." 'i',n,1 'I'!"'1'",1 Ai'-

:I .~. i",/I,ll j" It iijl i I, II"·
0.1 ~ 1 i I
o -_._-' I I -"~--~c--'Co 20 40 60 80 100 120

Observalion Sequence

Figure 2. Intentional cheating.

Smart repeated cheating is the behavior model for a user that has repetitive

small-cost cheating actions with the intension of avoiding being caught by the fraud

detection system. The user constrains his or her actions in suspicious area and

commits no bad behaviors. Figure 3 shows an example of smart repeated cheating

type. The system shows the fraud indicator of the user behaviors has a mean of 55%

and a standard deviation of 2%.
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Usar Behavior Model- Sma~ RepllaledCheaUnllType

0.'

0.'

0.'

0.'

0.'

0.'

o!--~~--~--~- 1 ._,.

o ~ ~ W ~ 100
ObsBlVatlon Sequer><:e '"

Figure 3. Smart repeated cheating.

Uilintended carelessness is the behavior model for a user that does not intend

to cheat. But occasionally either due to the careless of an entity or because of

limitations of the expert system, the system may indicate a little high possibility of

fraud. Figure 4 shows an example of unintended carelessness. For the 120 sequential

transactions, the fraud detection engine indicates that the fraud indicators follow:

Fraud [lldicator =

0.'

0.'

0.'

0.'

0.'

0.65 if seqllellC:e 1/umber is31

0.55 if seqlfencellumberis62

0.63 if sequencellflmberis93

N(O.2,O.OS2) othenvise

00 40 60 80
Obsorvation SoqvOl'lCO

"0 '"

Figure 4. Unintended carelessness.
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s. Experimental Results and Evaluation

We assume that the threshold for cost-based model is 1. When a cost is above

the threshold, an alarm wiII be generated in this model. For simplicity, we assume

that each transaction has the same benefit B, which may not be true in reality.

Table 2 describes the input simulation parameters and their values_ We run the

experiment using Matlab.

Table 2 Simulation Parameters

Benefits b d r Token

1.6 0.01 1.5 0.5 0.5

Figure 5 shows the companson of the results from a cost-based decision

making model and a token-based model for the intentional cheating behavior models

of Section 3. Both models catch these anomalous behaviors and trigger alarms. There

is no time delay in our model comparing with the other.

Comparison of Alarm Generation Algorilhms
1.5 ,-

• [- TOken-based

I,

.-. Cosl-based

I-----r

"8
~• 0.5~..

1Ji,rm/1h
l
l~z

0 J
1

,

!
~.5

0 20 40 60 BO 100 120
Number 01 ObseMllions

Figure 5. Decision making model comparison for intentional cheating.
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If someone figures out the threshold of triggering an alarm, he or she may

make smart small-cost repeated cheatings and can successfully avoid being caught

under the cost-based model. But the loken-based model will detect it, as the token

will go down the threshold and an alarm will be generated. Figure 6 shows the results

of two models for the smart repeated cheating behavior of Figure 3.

Compansoo of Alarm Generalioo Afgorithms
'5 ---~--~--~--'-;==O===il

1

_--0- Token·based
--.- Cost-based

.0.5oL_-;;o·~---·4'O·-··-- -607----~80~--,~OO~-~"O

Numbero[ Obserwlions

Figure 6. Decision making model comparison for smart repealed cheating.

Figure 7 shows token-based model can reduce false alarms under certain

conditions. For the instance of unintended carelessness type in figure 4, we will use

the entity's token to offset that entity's carelessness or shortcomings of profiling

engine. If the adjusted token value is still above threshold, an alarm will not be

generated. Cost-based model triggers two times in figure 7.

to



--._- ' -,.

[
• Token-based I
-~ Cost-based I

Comparison of Alann Generation Algorithms

-,[=~~o=il
----r-"'.5

of----

-0.5
o -- ~oc-----c,';cO----::6';;-O ---,"'oc-----c,"'ooO;- -... 120

Number of Observations

Figure 7. Decision making model comparison for unintended carelessness.

Next, we simulate each type on 1000 observation sequences. For Intentional

cheating, 97% time the fraud indicator is within good area, with 3% time in bad area.

For smart repeated cheating, the fraud indicator is within suspicious area. For

unintended-carelessness, 97% time the fraud indicator is within good area, 3% time in

suspicious area. The other parameter is the same in Table 2. We use the standard

deviation of 5%. For smart repeated cheating, as the fraudster tries to control his or

her activity, the standard deviation is less than this. We set it as 2%. Figure 8-10

shows token-based model generate a little small alarm number than cost-based model

for intentional cheating type and unintended carelessness type. However, it catches

much more in smart repeated cheating type.
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User Beha";our Moc\el· InlenlloJ\ilI Chealing Type
--,--------..--r-~-,.-_.-...,-.-,-----, .---,-..---

Token-based
- COst-based

"
•,
"~

"", ",
z

5

Olc·_-=~-=~-=~~=-~=-~=~=-=~=~c".o 100 200 300 400 SOD 600 700 BOO 900 1000
Number of ObseMlions

Figure 8. False alarm number in inlentional chealing Lype.

User Beha";our Model· Small Repealed Chealing Typ.e

"" --~~-~~-~-~r==o=.':=.':=c'il
- TOken·based

COsl-based

200

/////
•E ''0
~

" //", 100,
z

50

o --..-1-----I---.I---------'-----""=-~=-o!o 100 200 300 400 500 600 700 800 900 1000
Number 01 Ol1servallons

Figure 9. False alann number in smart repeated cheating type.
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User Behirnour Model - carelessness Type
.~__~.:c:. __, ,

""""'" "'"

!
'--- , ••_. _ L _ •••_L '----_.l.._---'

300 400 500 600 700
NumOer OrObSeMlllOllS

100 200
,,
"

,"

~ 2.5

"<; ,

Z
i "

Figure 10. False alarm numbcr in unintended carelessness type.

Figure 12 shows the results of two instances in Figure 11 for intentional

cheating type. The most common one is instance a, it is similar as Figure 2. Missing

alarm is still possible in token-bascd model, as shows in instance of b. However, this

will not affect the functions of the fraud detection system. As the overall benefit from

missed-alarm entities is still positive, the overall system benefit is positive. Also, as

most entities are well behaviors, missed alarms from cheating entities are quiet smalL

.., •••.., .,.,
"

~ 0.6
" ~,e

'"

~~,~
!

,+v\lf'l'I~
,t'" .

... 0.4 .,
" ., ) ~ ,
" ,iii " lrv!t1 "\ ~"V
"

.,
• '. " .. ~ ~ '00 '"
,

" .. ~ ~ '00 '"O\l$(t"",titn Soquonco Obsl!",",""" Seq"""""

(a) Intentional cheating instance (b) Intentional cheating instance

Figure 11. Intentional cheating.
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"

'D.'I,--cO--~-~o--._" ..---c.---e
~ • 00 00 '00 ,~

N..mo,oIOt>>CN"""",

(a) Result for instance a (b) Result for instance b

Figure 12. Results of intentional cheating.

There is no difference in smarl repealed cheating type as previous result.

Besides the instancc as we show before, there are two additional instances we

observed for unintended carelessness type, as show in Figure 13. Figure 14 is the

results for them. In instance a, both models tolerate suspicious activities. In instance

b, the token-based generates alann when several suspicious activities observed.

..
••.,

.,I,---ec-~c--cO---O~-O=---J.
D W ~ 00 00 '00 ~

CII>or..-o"""S_

..
••

",
.lI D.ft,
1 0.•

.\'i\vJ j'l

,
"

if#I~.,vJ ll'ij
.....'

(a) Unintended carelessness instance (b) Unintended carelessness instance

Figure 13. Unintended carelessness.

14



f------ir -.

i ~ I :
,*-"lnlJ

I l i~" j .. I
e--".
-~if--- ---

j j I, ,
.~

,
I,

t' l M
i ,

.,,
\~"I1.'w r~ N'Jlll

,
JNIi ~I ~

• •

o,~.----c.Oc--~,e_.----o.e--~.,-------o,.
1l~"IOb......",""",

,. 0'.' ----coc--~-- ,~20"6000
fIIrnb« 01 Ob><ov."'...

,. '.
(a) Result for instance a (b) Result for instance b

Figure 14. Result of unintended carelessness.

6. Conclusion

We present a token-based model for fraud detection and prevention in real­

time. By combining absolute analysis and differential analysis, we propose to use

tokens in order to save overall system cost and reduce false alarm rate without

comprising the function of fraud detection system. This model achieves almost

optimal decision-making in alarm generation. This mechanism can also cutch small­

cost repetitive fraudulent activities. The system raises alarm only when the token

associated with an entity reaches a negative value. Our experiments demonstrate that

token-based model is more appropriate for fraud detection and prevention than cost­

based models. This model can be easily adopted by current fraud detection systems.
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