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Abstract—Energy consumption has always been a major
concern in the design and cost of datacenters. The wide adoption
of virtualization and cloud computing has added another layer of
complexity to enabling an energy-efficient use of computingpower
in large-scale settings. Among the many aspects that influence the
energy consumption of a cloud system, the hardware-component
level is one of the most intensively studied. However, higher-
level factors such as virtual machine properties, their placement
policies or application workloads may play an essential role in
defining the power consumption profile of a given cloud system.

In this paper, we explore the energy consumption patterns
of Infrastructure-as-a-Service cloud environments undervarious
synthetic and real application workloads. For each scenario, we
investigate the power overhead triggered by different types of
virtual machines, the impact of the virtual cluster size on the
energy-efficiency of the hosting infrastructure and the tradeoff
between performance and energy consumption of MapReduce
virtual clusters through typical cloud applications.

I. I NTRODUCTION

Modern data centers are continuously expanding as they
attempt to accommodate the surging scientific and enterprise
demand for computing resources. Driven by this fast-paced
demand, the cloud computing paradigm has emerged as a
key to leverage virtualization technologies and to enable a
more efficient resource management. In this context, however,
energy consumption becomes a critical concern for large-scale
datacenters, as well as for the growing cloud infrastructures
they host. While cloud computing holds the promise to deliver
unlimited processing power on demand, its requirements for
large-scale resources and the associated costs have shifted
the research focus from optimizing performance to finding a
tradeoff between performance and energy efficiency.

Existing works focus on profiling the energy usage of
hardware components or the virtualization overhead introduced
by cloud environments, yet fail to assess how the overall cloud
energy consumption is impacted. More advanced works pro-
pose consolidation and resource allocation strategies to build
energy-efficient platforms. Nevertheless, they do not consider
the effects of cluster customization and virtual machine (VM)
settings on the platform power profile.

The goal of this paper is to investigate such aspects
and to provide an in-depth understanding regarding energy
consumption dynamics in Infrastructure-as-a-Service (IaaS)
environments. Our main contribution is twofold. First, we
provide an evaluation of two well known IaaS cloud platforms
with respect to energy consumption. Second, we study the
impact of virtual cluster management on the cloud power

profile. We discuss the effects of executing applications in
customized virtual clusters both in terms of application per-
formance and energy usage. Our objective is to provide users
with a basis and a set of guidelines for making energy-aware
decisions when selecting specific cloud infrastructures and VM
configurations for typical cloud workloads. Our findings can
serve as a starting point to build higher-level services capable
of achieving overall energy reductions at the cloud level, while
delivering the same performance to the users.

The reminder of this paper is structured as follows. Sec-
tion II provides a review of the existing approaches to optimize
energy consumption in IT infrastructures. In Section III, we
introduce the cloud platforms we investigate, followed by a
detailed description of the use case applications in Section IV.
The experimental setup and used metrics are presented in Sec-
tion V. and Section VI introduces and analyzes our evaluation
results. Finally, Section VII highlights our key findings, while
Section VIII draws conclusions and directions for future work.

II. RELATED WORK

Understanding and optimizing power usage in cloud en-
vironments has emerged as a significant topic for both re-
searchers and cloud service providers. Several research direc-
tions are currently being investigated, each of them targeting
energy-efficiency at different levels.

Several works have focused on profiling the power con-
sumption of individual node components, such as the CPU [1],
[2], memory [2], [3], network cards [4] or hard disks [5],
[6]. Among them, the most extensively studied is the CPU,
as it is the component with the largest impact on the overall
energy usage of physical servers [1]. As virtualization is akey
technology enabling cloud computing, an increasing amount
of studies started to explore the energy consumption of VMs.
In [2], [7], [8], the authors analyze both the performance
overhead of virtualization and the corresponding power usage
of VMs under various configurations and workloads. However,
despite providing extensive experimental results for individual
machine components, these studies rely on specifically tuned
environments and do not consider the management systems
deployed on cloud infrastructures. Similarly, the works in[9]–
[11] study the energy consumption of virtualized environments
under various workloads. However, the experiments provided
involve few physical servers, or are based on simulations with
no real cloud environment. Currently, no cloud environment
has emerged as the ultimate cloud computing offering capable
of providing the standard architecture for cloud software.It
is thus essential to put energy in the balance when choosing

alexandra.carpen-amarie@inria.fr
anne-cecile.orgerie@irisa.fr
christine.morin@inria.fr


among the available cloud environments. However, most of
the existing studies focus on analyzing or reducing the energy
consumption of the virtual machines themselves, without tak-
ing into account the intrinsic energy cost of the management
software. To the best of our knowledge, no study based on
in-depth measurements exists that analyzes and compares the
actual energy consumed by a cluster running representative
cloud management systems in real-world conditions.

III. I AA S CLOUD MANAGEMENT SYSTEMS

In this section we introduce two widely-used cloud infras-
tructures we rely upon for our experiments.

Apache CloudStack [12] is a highly-scalable IaaS cloud
computing platform designed to support the deployment and
execution of large networks of virtual machines. The Cloud-
Stack implementation is open source, providing modular
components for every level of IaaS cloud software stack,
such as virtual machine management, scheduling, resource
orchestration, accounting or network services. A full and open
API ensures user access to all the features of the cloud,
complemented by an Amazon EC2- and S3-compatible API
to facilitate application migration between cloud platforms.

OpenNebula [13], [14] provides fully open-source IaaS
services designed to address the requirements of business
use cases across multiple industries. The main design prin-
ciples on which the OpenNebula project relies include a
modular and extensible architecture, scalability for large-scale
infrastructures, interoperability with existing cloud offerings,
open-source implementation. Furthermore, OpenNebula aims
at providing standardized interfaces for managing VMs and
data, such as the Amazon EC2 “de-facto” industry standard.

While most IaaS cloud frameworks have similar archi-
tectures and provided services, we selected CloudStack and
OpenNebula to emphasize the impact of several specific fea-
tures. Both clouds rely on a centralized architecture, where
the cloud frontend deals with user requests, resource and VM
management. However, OpenNebula is designed to work as
a private cloud, whereas CloudStack is intended as a public
cloud offering. CloudStack benefits from several mechanisms
to reduce the load on the frontend node. First, it implementsa
VM storage repository hosted on one or more separate servers
typically sharing the files across the cloud. Second, CloudStack
delegates the VM image management operations to a system
VM, which is automatically deployed on the compute nodes. It
thus shifts the burden of transferring and managing VM images
to a compute node, reducing the load of the frontend node.
OpenNebula plays the role of the typical cloud platform, for
which all management operations happen at the frontend level.
Both frameworks allow for the deployment of virtual clusters
of customizable VMs. We employed the default settings in the
deployment of both clouds. This implies a local storage-based
VM management, that is each cloud needed to copy the VM
image from the image repository to the local disk of each
compute node. Two specific features have a critical impact on
the behavior and performance of hosted VMs:
VM allocation policy. OpenNebula used a round-robin VM
allocation policy, whereas VM placement in CloudStack was
based on a random algorithm, which chooses the a random
node to host the VM, provided that it has enough available
CPUs and memory to accommodate the VM. Additionally,

TABLE I. V IRTUAL MACHINE TYPES

VM name CPUs Memory
Small 2 4 GB
Medium M1 4 8 GB
Medium M2 6 12 GB
Large L1 8 16 GB
Large L2 10 20 GB
XLarge 12 24 GB

CloudStack supports CPU over-provisioning (but not memory
over-provisioning), an attribute that results sometimes in multi-
ple VMs competing for the node resources and yielding worse
performance.
Cloud monitoring mechanisms. CloudStack employs an
event-based approach to collecting performance and status
information from its resources and VMs. Each time a change
occurs in the system (e.g., when a VM is deployed), the
affected node notifies the cloud frontend, which adds the event
into a monitoring database. In the case of OpenNebula, moni-
toring is achieved through probes that are periodically executed
on the compute nodes by the frontend. Such mechanisms may
generate additional resource utilization and power consumption
at the level of each node.

IV. A PPLICATIONS

This section details a set of representative applications we
selected to explore the power consumption patterns of cloud
environments.

A. Microbenchmarks

We employed a set of benchmarks to isolate the impact of
simple application workloads on power consumption. To this
end, we used thestress1 tool to generate specific workloads
targeting the CPU, memory and disk accesses inside virtual
machines. We configured each of them as follows.
CPU: We simulated CPU-bound applications by starting a
number ofstress threads equal to the number of virtual cores
allocated to the VM, so as to achieve 100% CPU utilization.
Memory: The influence of memory utilization is profiled by
executing an increasing number ofstress worker threads that
continuously allocate, read and free 256 MB of memory. Such
a memory-intensive pattern is typical for various MapReduce
applications, such as those based on sorting massive amounts
of data, as they need to fully load large data chunks into
the main memory, rather than sequentially processing small
blocks.
Disk: IO-intensive jobs are specific to Big Data applications
typically designed for cloud environments. To analyze the
impact of disk utilization within virtual machines on power
consumption, we deployed an increasing number of IO-bound
stress threads, each of them writing 5 GB of data.

B. MapReduce applications

MapReduce [15] is a powerful paradigm enabling efficient
and scalable distributed processing of vast amounts of data. A
MapReduce application typically takes a set of key/value pairs
as input and produces a similar set as a result. The user has
to specify only two functions, namelymap andreduce, which
process the data in parallel on multiple machines. Themap
function parses the input data and passes a set of intermediary

1Stress is available here: http://weather.ou.edu/∼apw/projects/stress/
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TABLE II. M ETRICS

Name Definition Values Application
Average power Average power consumed by a physical machine

over a given time interval.
Average of a set of values measured by the hardware wattmeters. Benchmarks

Idle power The default power consumption of powered-on
machines.

The lowest power value reported by hardware power meters for
all the idle machines over a 24-hour duration.

Benchmarks

Dynamic power Highlights the power consumption overhead gen-
erated by various workloads.

The difference between the average power and the idle power.Benchmarks

Runtime Application execution time, the main metric to
assess application performance.

Reported by the application logs within the virtual machines. MapReduce

Total energy The energy consumed by the cloud infrastructure
in a given time interval.

Computed as the sum of the consumed energy per node. The
energy consumed by each node is the sum of the instant power
values reported by the wattmeters in a specific time interval(e.g.
during the application execution) multiplied by the monitoring
resolution.

MapReduce

key/value pairs to thereduce stage of the computation. The
reduce function is responsible for merging the values with the
same intermediary key into the final results.

The Hadoop [16] project is a very popular open-source
MapReduce implementation developed by the Apache Soft-
ware Foundation, designed for huge clusters of comodity
hardware and used to process hundreds of petabytes of data
in various datacenters. The architecture of a Hadoop cluster
is based on the master-slave model, where the worker nodes
process tasks assigned by one master node. The user submits
MapReduce jobs to the master node, called thejobtracker,
which in turn is in charge with scheduling the jobs for
execution, monitoring their status and handling the finished
and failed tasks. Worker nodes are configured astasktrackers.
They are the entities that execute severalmap and reduce
tasks forwarded by thejobtracker, according to their capacity.
Data management is dealt with by the Hadoop Distributed
File System (HDFS), a highly reliable distributed file system
designed to store huge amounts of data on low-cost commodity
machines. HDFS splits data into equally-sized chunks of 64
MB and then it distributes and replicates the chunks across
its datanodes. The location of each chunk and the filesystem
directory structure are managed by anamenode, a centralized
entity playing the role of the file system frontend.

MapReduce applications can be classified into CPU-bound
applications, IO-bound or both. To provide an analysis of each
type of MapReduce workloads, in this paper we investigate
three typical MapReduce applications:
Distributed Pi estimates the value of Pi using a quasi-Monte
Carlo method. Eachmapper generates a set of points in a
one unit square and then it counts the number of points that
were placed within the inscribed circle of the square. The
reduce phase gathers the results from all themappers and
computes Pi as the ratio between the inside points and the total
number of points. The application is purely CPU-intensive,
as the generated data is very small. The particularity of this
application is that increasing the number ofmappers will not
result in a shorter execution time, as there is no input data to be
split among the workers. Instead, a larger number of workers
leads to a better accuracy of the result.
Distributed Grep is designed to search for a specific pattern
in very large files. It is a data-intensive application in themap
phase, when the data is fetched from HDFS and split among
themappers. Grep also requires a significant processing power
to process data and gather the results in the finalreduce stage.
Distributed Sort represents the typical example of an IO-

bound MapReduce application, devised to sort key/value pairs
in a distributed fashion. It can handle a large amount of
input data, which is divided into chunks assigned to existing
mappers. The output results have the same size as the input,
makingSort a convenient benchmark for both read and write
operations.

V. EVALUATION METHODOLOGY

The experimental study presented in this paper focuses
on investigating the tradeoff between energy consumption and
performance in cloud systems under various workloads. This
section introduces the experimental platform employed forthe
experiments and details the deployment setup.

A. Platform

We performed all our experiments on the Grid’5000 [17]
experimental testbed, a geographically-distributed gridplat-
form designed for the research community. It gathers over 8000
CPU cores across 10 sites in France, allowing scientists to
design and execute large-scale, reconfigurable experiments at
any level of the software stack. For the experiments presented
in this paper, we employed 15 nodes belonging to thetaurus
cluster in Lyon. The nodes are equipped with 12-core Intel
Xeon processors running at 2.3 GHz, as well as with 32 GB
of memory and 10 Gb Ethernet cards. Each node is monitored
by Omegawatt wattmeters [2] that provide accurate real-time
power-consumption measurements with a resolution of 1s.

B. Experimental setup

We deployed each of the two cloud frameworks on all
the 15 nodes, dividing them into one cloud frontend node
and 14 compute nodes, using KVM as the VM hypervisor
for both clouds. Then we started a variable number of VMs
according to the investigated experimental scenario. To assess
the impact of VM characteristics on the power consumed
by a physical node, we employed different types of VMs,
increasing the number of virtual CPUs assigned to each of
them and the size of their memory. The details corresponding
to each type are summarized in Table I. We used 2.7 GB-sized
compressed QCOW2 VM images, one featuring Debian for
OpenNebula experiments and the second one running CentOS
for CloudStack. The VMs were equipped and configured for
our target applications as a final step of the deployment
process, the required configuration files being generated onthe
fly by a set of deployment scripts we developed. The number
of CPUs and the memory of each VM is dynamically set when
the virtual cluster is deployed, while the VM allocated hard
disk size is fixed to 20 GB.
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(c) Hard disk stress.

Fig. 1. Average power consumption vs. number of VMs when running stress in each cloud setting.

C. Applications setup

We configured Hadoop in the VM images. Within each vir-
tual cluster, we deployed Hadoop as follows: one node played
the role of thejobtracker, one represented thenamenode, while
the rest acted as bothtasktrackers and datanodes. For each
application, the number ofmappers was set to the total number
of CPUs comprised in the virtual cluster, that is each VM has
a number ofmappers equal to its number of CPUs. HDFS
replication degree was fixed to 3 and the data chunk size to
its default value of 64 MB. Before executing the experiments,
we generated input files forGrep andSort and uploaded them
into HDFS. The size of the input files was fixed for all the
experiments and amounted to 52 GB, ensuring from 5 to 35
chunks permapper, depending on the virtual cluster capacity,
i.e. on the number of VMs.
D. Metrics

We employ several metrics to analyze the behavior and
power profile of the investigated clouds. These metrics are
described in Table II, classified according to the application
for which they are relevant. We used thepower metrics to
evaluate the power consumption of the virtualized hardware
components. Such metrics based on average power values
are appropriate to assess the power overhead of applications
characterized by a fixed execution time and a constant work-
load. Theruntime and total energy metrics are essential for
applications where performance is an important aspect, such
as MapReduce, and they allow us to estimate the tradeoffs
between execution time and energy consumption.

VI. EXPERIMENTAL RESULTS

The goal of this study is to investigate how various types
of workloads executed in virtual clusters reflect on the energy
profile of the entire cloud and to identify configuration alter-
natives to achieve similar performance within more energy-
efficient virtual clusters. To this end, we perform two types
of experiments. First, we carry out a set of component tests
to analyze the impact of virtualized workloads on the power
consumption of each node. In the second experiment, we focus
on three typical MapReduce applications to estimate the effect
of increasing the capacity of a virtual cluster on performance
and energy consumption.

A. Benchmarks

We study the power consumption of physical nodes hosting
one or several virtual machines with various capabilities,when

the VM workloads target a specific hardware component. This
section provides two different evaluations reflecting the two ap-
proaches for increasing virtual cluster capacity:(1) increasing
the number of VMs to accommodate larger workloads and
(2) augmenting the capacity of each VMin terms of virtual
CPUs and memory. Comparing the results of these experiments
will help cloud users find the best tradeoff between employing
several high-performance VMs and a large number of small
VMs, in terms of both performance and energy consumption.

We select thestress benchmark according to the hardware
component we want to evaluate and we execute it in parallel
on all the deployed VMs. The duration of each test is set to
200 seconds and we measure the instant power consumption
of each node with a resolution of 2 seconds. As each test
generates a constant load on the VM during the execution time
and all compute nodes have similar configurations, we plot the
average power consumption for a representative node among
the platform’s physical machines. We consider the idle power
as the baseline against which we study the impact of the the
various workloads.

1) Impact of the number of VMs on the node power
consumption: The first set of experiments is performed on
a single type of virtual machines, that is theSmall Instance
defined in Section V-B. We first deploy a virtual cluster of
14 VMs, one for each compute node in the cloud. Then
we increase the size of the virtual cluster, maintaining an
uniform number of VMs per physical compute node and a fixed
load per VM. Figure 1 shows the average power consumed
by a compute node during each of thestress tests. Each
figure depicts the results obtained for both cloud frameworks,
featuring the number of VMs simultaneously running on the
node on the X axis and measured average power on the Y axis.
Additionally, each graph includes the minimum idle power
consumption of the node, amounting to 92.2 Watts.

Figure 1(a) depicts the power consumption of the compute
node as the number of VMs deployed per node increases.
Consequently, the CPU load also raises, as each additional
VM requires 2 fully loaded CPU cores for itsstress workload.
As a result, the power consumption of the node follows the
same trend, increasing as more VMs are added to the system.
Whereas the total number of used CPUs reaches up to 6
times the initial load, the corresponding power consumption
increases at a slower pace. Thus, the node achieves 100%
CPU usage for its 12 cores with only double the amount
of power needed for 2 CPU cores. Furthermore, the dynamic
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(c) Hard disk stress.

Fig. 2. Average power consumption vs. number of cores per VM when running stress in each cloud setting.

power consumed to fully load the CPU represents only 43%
of the node’s idle power. This is an essential aspect that
has to be taken into account when designing techniques to
optimize power consumption, indicating that VM consolidation
and shutting down nodes may entail significant energy savings,
that can surpass the performance degradation incurred by
the migrated VMs. The obtained results are similar for both
clouds, exhibiting a slightly better power usage for CloudStack.
As both frameworks rely on the same hypervisor type and
VM configuration, the difference can be explained by taking
into account the total number of processes executed by the
operating system and cloud software. For instance, both clouds
collect monitoring information from all their running VMs and
compute nodes, thus introducing additional network trafficand
CPU load, which in turn lead to different power usage patterns.

As far as the memory-intensive tests are concerned, the
average power usage increases in a much steeper fashion with
the number of deployed VMs. While the memory-intensive
workload also generates a certain CPU load, the results in
Figure 1(b) show that memory usage has to be carefully
taken into account when optimizing energy consumption of
a cloud platform. Furthermore, in most cases OpenNebula
exhibits a more significant power expense than CloudStack,
on account of CloudStack’s unpredictable allocation algorithm,
which might lead to unbalanced compute nodes.

Figure 1(c) depicts the way IO-intensive workloads impact
the power consumption of VMs. As opposed to the previous
experiments, hard disk-bound operations do not lead to an ever
increasing power usage as we add VMs to a physical node.
Instead, the average power consumed by more than 3 VMs per
node is nearly constant, on account of all VMs that run on the
same physical machine sharing the underlying hard disk. As a
result, deploying additional VMs on the same node will only
divide the existing bandwidth, thus requiring the same amount
of energy. As the cloud frameworks implementation does not
interfere with the hard disk usage, both clouds deliver similar
power consumption values.

2) Impact of the VM size on the node power consumption:
The set of experiments introduced in this section focuses on
the correlation between the average power usage of a node
and the properties of a single VM running on top of it. In
this scenario, we deploy a fixed number of 14 VMs on the
14 available compute nodes and we vary the VM type. Figure
2 presents the same threestress benchmarks, each of them
depicting the average power consumption for each VM type.

Figure 2(a) shows the CPU power consumption for a pure
CPU-bound workload. Its X axis provides the set of VM
types introduced in Section V-B. As expected, theSmall VM
instance, having only 2 virtual CPUs, achieves the lowest
power consumption. As the size of the VM is extended to the
maximum number of CPUs available on the physical node,
we proportionally increase the workload, so as to ensure all
the virtual CPUs are fully loaded. TheSmall VM achieves
only about 15% power usage improvement for each cloud
compared to itsXLarge counterpart. Thus, similarly to the
previous experiment, the power savings associated with smaller
VMs are less significant than the processing power delivered
by the larger VM instances. Note that OpenNebula exhibits a
linear power-usage increase with the number of used CPUs, as
its VM allocation policy favors the deployment of new VMs on
unused nodes. In the case of CloudStack, the wide variationsin
Figure 2(a) clearly indicate that it allowed for multiple VMs
to be executed on the same node and hence to generate an
atypical power-consumption pattern.

Figure 2(b) depicts the way memory-bound workloads
impact the average power reported by the node in the case
of high-capacity VMs. The results are similar to the previous
experiment, showing that OpenNebula requires a more impor-
tant amount of energy to sustain the memory-intensive tasks,
whereas CloudStack yields constant values. The hard disk
charging experiment in Figure 2(c) points out a particularly
energy-consuming bahavior of CloudStack. Even though both
clouds report nearly constant values (due to the fact that
all tasks within the VM access the same underlying disk),
CloudStack exhibits again a higher power usage.

3) Power unbalance: In the previous experiments we dis-
cussed the average power consumption of a cloud compute
node when varying the number or performance of hosted
VMs. To conduct the evaluation, we uniformly increased the
size of the deployed virtual cluster, aiming at maintaininga
constant load on each compute node. We then selected one of
the compute nodes for which we showed the average power
consumption. Nevertheless, not all nodes provide identical
results. A key aspect in optimizing energy consumption in a
cloud infrastructure is to identify the sources of variability in
the behavior of the cluster nodes and to understand how a
fixed workload is balanced among the compute nodes. To this
end, we analyze the power unbalance of the entire cloud, by
studying the variation of the average power usage across nodes.
Figure 3 shows the cumulative distribution function (CDF) of
the average dynamic power measured for all physical nodes in
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Fig. 3. Power unbalance across nodes for the CPU stress test.

each cloud, when the VMs execute the CPUstress benchmark.
When the number of VMs deployed in the cloud increases to
the maximum supported capacity, the corresponding dynamic
power consumption increases for all the nodes involved in the
deployment. These results are consistent with the ones reported
in our first experiment, the CDF for the largest virtual cluster,
that is 84 VMs, corresponding to the highest dynamic power
in Figures 3(a) and 3(b).

Figure 3(a) shows the CDF for the OpenNebula cloud,
featuring very steep lines for each virtual cluster size. Thus,
the results indicate that for more then 75% of the nodes, the
variation in the measured average power is negligible. Since all
VMs have a fixed load, this result is a direct consequence of
the fact that OpenNebula favors a load balancing algorithm
to ensure an uniform distribution of VMs in the cloud. In
contrast, the CloudStack measurements in Figure 3(b) pointto
a different behavior. Low values of the CDF correspond to the
frontend node of each cloud, as typically it is not loaded once
the VMs are running. However, the increase rate of each line
is less significant than the OpenNebula conterparts, denoting a
high discrepancy between the number of VMs assigned to the
various compute nodes. The explanation lies in the VM alloca-
tion strategy implemented in CloudStack, which assigns VMs
randomly to the compute nodes that have enough available
resources. As a result, despite the more efficient power usage
exhibited by CloudStack in Figure 1(a), it is worth noticingthe
overall behavior of the OpenNebula cloud is more predictable.
Thus, an energy consumption model for OpenNebula may offer
accurate predictions to allow energy-aware schedulers to select
a “greener” cloud for their workloads.

B. MapReduce applications

This section highlights the impact of the virtual cluster
configuration on the energy and performance delivered by
the two cloud environments for each class of MapReduce
applications as we increase the capacity of the deployed virtual

cluster, both in terms of number of VMs and VM capabilities.

a) Performance analysis: Figure 4 presents the execu-
tion time of each application on the right side Y axis, when
increasing the number of VMs processing the same workload.
The results show the job completion time decreases as the
virtual cluster is expanded, for the two IO-bound applications.
The Pi application exhibits a different behavior when we
increase the number of CPUs and adjust the number of Hadoop
mappers accordingly. A larger number of available mappers is
equivalent to more processing power that increases the accu-
racy of the result (i.e., the number of decimals computed for
Pi). In this case, the runtime is not a measure of the application
performance, but it rather emphasizes the scalability of the
VM cluster. In the case of OpenNebula, the runtime forPi is
constant regardless of the number of VMs, as a consequence
of the round-robin allocation strategy, allowing the framework
to achieve similar performance for all its VMs. On the other
hand, CloudStack has a different VM management strategy,
which often leads to less than optimal VM distribution across
compute nodes and consequently, to higher execution times.

A complementary experiment presents the same MapRe-
duce applications executed in a fixed-sized virtual cluster
comprising 14VMs. We modify the VM type and measure the
runtime in Figure 5. As expected, thePi application yields
similar runtimes to the previous test. The same discrepancy
can be observed between OpenNebula and CloudStack, in
particular for medium-sized VMs, triggered by the CloudStack
allocation policy, which authorizes overcommited compute
nodes. For instance, a compute node may host two 8-core VMs,
even though the number of physical cores only amounts to 12.

As far as theGrep and Sort applications are concerned,
the runtime drops as we deploy more 2-core VMs (as shown
in Figure 4) or increasingly larger VMs (Figure 5). In the
first experiment we conducted,Grep results indicate the best
performance is achieved for the highest number of VMs, as a
consequence of splitting the initial load to a larger numberof
workers. In the second experiment depicted in Figure 5(b), the
number of availablemappers increases with the available CPUs
in larger VMs. Interestingly however, such a configuration
outperforms the one involving a large number of small VM
instances, as the execution times significantly drop when we
employ more than 4 CPUs. The reason behind this behavior
lies in the IO-bound nature ofGrep. As several VMs hosted
on the same compute node will access the same underlying
network and disk, they will share the available bandwidth
and thus carry out their tasks in a larger amount of time.
Alternatively, large VMs hosted on separate nodes take full
advantage of the compute node capabilities, avoiding resource
contention and thus achieving better performance. Anotherside
effect of improving VM capabilities is that the speedup flattens
for medium and large VMs. Mainly due to attaining the IO
traffic limit of the physical machine, this result is a key aspect
to adapting the VM capabilities to the workload requirements.
It suggests that near-optimal performance can be achieved with
relatively small-sized VMs, paving the way for consolidation
and energy efficiency at the platform level.

The Sort application produces similar results asGrep,
yielding a substantial performance gain when the virtual cluster
size or CPU capacity per VM are augmented to process the
same amount of data.Sort is a representative data-intensive
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(a) Distributed Pi (CPU-intensive).
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(b) Distributed Grep (CPU- and IO-intensive).
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(c) Distributed Sort (IO-intensive).

Fig. 4. Execution runtime and total energy consumed by each cloud environment.
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(a) Distributed Pi (CPU-intensive).
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(b) Distributed Grep (CPU- and IO-intensive).
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(c) Distributed Sort (IO-intensive).

Fig. 5. Total energy consumed by the cloud environment.

application, for which most of the execution time accounts
for data reading and writing. UnlikeGrep, which spends a
significant percentage of its runtime for processing data,Sort
is mostly impacted by the disk and network capabilities. For
this reason, Figure 4(c) and Figure 5(c) respectively, display
less steep runtime gain when than the equivalentGrep results.

From the cloud platform point of view, OpenNebula en-
sures a limited performance gain for theGrep application
over CloudStack. This advantage is only noticeable for a large
number of VMs, due to OpenNebula’s allocation strategy that
prevents compute nodes overloading and thus reduces disk
and network contention. Conversely, the cloud choice does not
impact the results involving various VM types in Figure 5(b),
as in this case only one VM is typically deployed per compute
node. TheSort application shows a clear advantage of Cloud-
Stack over OpenNebula, in particular in the second experiment,
as presented in Figure 5(c).

b) Energy consumption: We examine the energy con-
sumption of each application by measuring the total energy
utilized by the cloud during the application execution. Figure 4
shows the total energy usage of the cloud frameworks when
the size of the deployed virtual cluster is increasing.

We conducted thePi-related set of experiments to study the
effects of a gradually increasing CPU-intensive workload on
the energy consumption. As shown in the previous section, for
both experiments the runtime is constant and thus the utilized
energy is mostly dependent of the system load. Surprisingly,
Figure 4(a) only reveals a minor energy-consumption rise
as the cluster size grows, despite the high CPU load the

application entails. This observation is consistent with the CPU
stress experiment, highlighting the impact of the idle power
consumption of the nodes, which accounts for a substantial
share of the total energy. In this scenario, both clouds exhibit
similar energy profiles. We obtained different results when
varying the VM configuration, as presented in Figure 5(a). The
energy usage in CloudStack follows the increasing trend of
the obtained execution times. The OpenNebula results exhibit
a large variation, which may be due to unexpected Hadoop
nodes failures, which triggered the re-execution of a series of
map tasks. This is a common event in Hadoop clusters, which
does not prevent the job from successfully finishing, but may
result in longer execution times and an increased CPU load.

Figures 4(b) and 5(b) depict the energy usage of the
cloud platforms when executingGrep. Contrary to the results
measured forPi, the energy consumption of the entire cloud
decreases as we add more VMs, behavior that can be explained
by the fact that theGrep application divides its initial data
among the availablemappers. Thus, increasing the cluster
capacity comes with the benefit of a radically improved
runtime. As the energy-usage results show, the runtime of the
application is a factor that generates essential energy savings
able to largely outweigh the additional energy expense caused
by extended cluster sizes. The results depicted in Figures 5(c)
and 4(c) show a decreasing trend of the energy usage as we
increase the number of VMs, similar to the results obtained for
Grep. In theSort case however, the speedup and the associated
energy savings are not that significant. This is mainly due to
the huge amount of dataSort processes, amounting to 100 GB
of input and output data replicated 3 times.



VII. D ISCUSSION

Our experiments point out a series of valuable insights
on the cloud computing potential to save energy. First of all,
our results showed that energy consumption depends both on
the workload type and on the virtual cluster configuration.
Thus, while small VMs consume less energy, the benchmark
tests we conducted suggest that their power usage does not
increase proportionally with the VM capacity. Furthermore,
larger virtual clusters (both in terms of number of VMs or
VM capabilities) achieve significant performance gains in both
CPU- and IO-bound applications. Although not intuitive, an
essential lesson can be learned from analyzing our MapReduce
results: application execution time is a strong factor that
impacts the total energy usage of the cluster. Consequently,
even if large or high-capacity clusters require more power to
operate, employing them for cloud applications can lead to
significant energy savings. On the other hand, it is worth notic-
ing that increasing the cluster capacity is equivalent to better
runtimes only to a certain extent. For instance, using more than
6 virtual cores for theGrep application does not result in any
performance gain. Thus, choosing the largest available VM
instance does not guarantee an optimal performance. On the
contrary, our findings indicate that medium-sized VM instances
achieve the same results as the larger instances, whereas
employing large VMs may hinder consolidation attempts and
prevent higher-level tools from optimizing total energy usage.
Thus, cloud users should carefully tune their VM attributesto
the workload in order to achieve runtime performance while
maintaining a low energy-consumption level.

Concerning the two cloud frameworks we investigated, the
experimental results indicate that OpenNebula yields better
results for CPU-intensive workloads, both performance and
energy-wise. For IO-bound applications, such asSort or the
memory-intensive benchmarks, CloudStack delivers signifi-
cantly better execution time and energy gains. Additionally, in
some cases when both clouds report similar runtimes, Cloud-
Stack proves to be more energy efficient than OpenNebula.
Moreover, both clouds seem to benefit from using larger VM
instances than deploying a considerable amount of small VMs
to reach the same processing capacity. These observations may
prove useful to higher-level services, such as Platform-as-a-
Service clouds, which can rely on a federation of IaaS clouds
for executing their jobs. In such a scenario, it is importantto
better understand the strengths of various cloud infrastructures
and to schedule jobs on the most suitable platform according
to the workload. Furthermore, our experiments revealed a
significant degree of performance variability in both cloud
systems we investigated. Variability is one of the critical
aspects in the adoption of cloud computing, which can render
the evolution of applications unpredictable in public clouds
(i.e., Amazon EC2). Our results suggest that the variability
increases with the VM instance capacity, as well as with the
complexity of the executed job. Consequently, private clouds
also require a thorough knowledge of the sources of such
variability in order to improve the overall energy efficiency.

VIII. C ONCLUSIONS

The wide adoption of cloud computing and the ever in-
creasing resource demands have lead to a growing interest
in optimizing energy consumption in such large-scale infras-
tructures. In this paper we address the problem of energy

consumption at the level of IaaS clouds, focusing on the impact
of various types of workloads and cluster configurations on the
overall energy usage. We conducted a series of experiments on
the Grid’5000 testbed, relying on two open-source cloud envi-
ronments, namely OpenNebula and CloudStack. We presented
a comprehensive analysis of the power usage of compute nodes
under component-oriented workloads. Furthermore, to study
how scaling the deployed VM cluster may lead to energy gains,
we extended our experiments to several classes of MapReduce
applications. The obtained results show how different workload
types and configuration decisions affect the energy profile of
each cloud. By considering the energy consumption of the
entire cloud, our evaluations provide valuable insights oncloud
computing potential to save energy. For instance, while data-
intensive applications benefit from increasing the size of the
virtual cluster where they are executed, both performance gains
and energy savings can be generated by switching to smaller-
scale clusters made up of more powerful VMs. Future research
directions involve building tools to estimate the most energy-
efficient deployment configuration for cloud applications and
addressing variability issues.
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