
HAL Id: hal-00905187
https://hal.inria.fr/hal-00905187

Submitted on 17 Nov 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimal Time Data Gathering in Wireless Networks
with Multidirectional Antennas

Jean-Claude Bermond, Luisa Gargano, Stéphane Pérennes, Adele Rescigno,
Ugo Vaccaro

To cite this version:
Jean-Claude Bermond, Luisa Gargano, Stéphane Pérennes, Adele Rescigno, Ugo Vaccaro. Optimal
Time Data Gathering in Wireless Networks with Multidirectional Antennas. Theoretical Computer
Science, Elsevier, 2013, 509, pp.122-139. �10.1016/j.tcs.2013.03.017�. �hal-00905187�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49713862?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00905187
https://hal.archives-ouvertes.fr

Optimal Time Data Gathering in Wireless Networks

with Multidirectional Antennas

Jean–Claude Bermond∗

MASCOTTE
joint project CNRS-INRIA-UNSA

06902 Sophia-Antipolis, France

Luisa Gargano
Dipartimento di Informatica

Università di Salerno
84084 Fisciano (SA), Italy

Stephane Perénnes
MASCOTTE

joint project CNRS-INRIA-UNSA
06902 Sophia-Antipolis, France

Adele A. Rescigno
Dipartimento di Informatica

Università di Salerno
84084 Fisciano (SA), Italy

Ugo Vaccaro
Dipartimento di Informatica

Università di Salerno
84084 Fisciano (SA), Italy

Abstract

A Wireless Network consists of a large number of devices, deployed over a geographical
area, and of a base station where data sensed by the devices are collected and accessed by
the end users. In this paper we study algorithmic and complexity issues originating from the
problem of data gathering in wireless networks. We give an algorithm to construct minimum
makespan transmission schedules for data gathering under the following hypotheses: the
communication graph G is a tree network, the transmissions in the network can interfere
with each other up to distance m, where m ≥ 2, and no buffering is allowed at intermediate
nodes. In the interesting case in which all nodes in the network have to deliver an arbitrary
non-zero number of packets, we provide a closed formula for the makespan of the optimal
gathering schedule. Additionally, we consider the problem of determining the computational
complexity of data gathering in general graphs and show that the problem is NP–complete.
On the positive side, we design a simple (1+2/m)-factor approximation algorithm for general
networks.

Keywords: Data gathering, personalized broadcasting, multidirectional antennas, sensor
networks, radio networks, interference.

∗Funded by ANR AGAPE, ANR GRATEL and APRF PACA FEDER RAISOM

1 Introduction

Technological advances in very large scale integration, wireless networking, and in the manu-

facturing of low cost, low power digital signal processors, combined with the practical need for

real time data collection have resulted in an impressive growth of research activities in Wireless

Sensor Networks (WSN). Usually, a WSN consists of a large number of small-sized and low-

powered sensors, deployed over a geographical area, and of a base station where data sensed

by the sensors are collected and accessed by the end users. Typically, all nodes in a WSN are

equipped with sensing and data processing capabilities; the nodes communicate with each other

by means of a wireless multi-hop network.

A basic task in a WSN is the systematic gathering at the base station of the sensed data,

generally for further processing. Due to the current technological limits of WSN, this task must

be performed under quite strict constraints. Sensor nodes have low-power radio transceivers

and operate with non–replenishable batteries. Data transmitted by a sensor reach only the

nodes within the transmission range of the sender. Nodes far from the base station must use

intermediate nodes to relay data transmissions. Data collisions, that happen when two or more

sensors send data to a common neighbor at the same time, may disrupt the data gathering

process. Another important factor to take into account when performing data gathering is the

latency of the information accumulation process. Indeed, the data collected by a node of the

network can frequently change, thus it is essential that they are received by the base station as

soon as it is possible without being delayed by collisions [16]. The same problem was posed by

France Telecom (see [6]) on how to bring internet to places where there is no high speed wired

access. Typically, several houses in a village want to access a gateway connected to the internet

(for example via a satellite antenna). To send or receive data from this gateway, they necessarily

need a multiple hop relay routing.

All these issues raise unique challenging problems towards the design of efficient algorithms

for data gathering in wireless networks. It is the purpose of this paper to address some of them

and propose effective methods for their solutions.

1.1 The Model

We adopt the network model considered in [1, 2, 9, 10, 14]. The network is represented by

a node–weighted graph G = (V, E), where V is the set of nodes and E is the set of edges.

More specifically, each node in V represents a device that can transmit and receive data. There

is a special node s ∈ V called the Base Station (BS), which is the final destination of all data

possessed by the various nodes of the network. Each v ∈ V −{s} has an integer weight w(v) ≥ 0,

that represents the number of data packets it has to transmit to s. Each node is equipped with

a half–duplex transmission interface, that is, the node cannot transmit and receive at the same

time. There is an edge between two nodes u and v if they can communicate. So G = (V, E)

represents the graph of possible communications. In fact one gets a symmetric digraph (the

1

transmissions are directed), which is modeled by an undirected graph. Some authors consider

that two nodes can communicate only if their distance in the Euclidean space is less than some

value. Here we consider general graphs in order to take into account physical or social constraints,

like walls, hills, impediments, etc. Simple graphs modeling urban situations are paths, stars,

and grids. Although they are not representative of real networks, we study in this article trees as

they contain paths and stars as a special cases and they are the first cases where the complexity

of the gathering problem is unknown. Furthermore, many protocols of transmission use a tree

of shortest paths for routing.

Time is slotted so that a one–hop transmission of a packet (one data item) consumes one

time slot; the network is assumed to be synchronous. These hypotheses are strong ones and

suppose a centralized view. The values of the completion time we obtain will give lower bounds

for the corresponding real life values. Said otherwise, if we fix a value on the completion time,

our results will give an upper bound on the number of possible users in the network.

Following [10, 12, 16], we assume that no buffering is done at intermediate nodes and each

node forwards a packet as soon as it receives it. One of the rationales behind this assumption

is that it frees intermediate nodes from the need to maintain costly state information.

Finally we use a binary model of interference based on the distance in the communication

graph. Let d(u, v) denote the distance (that is, the length of a shortest path) between u and v

in G. We suppose that when a node u transmits, all nodes v such that d(u, v) ≤ m are subject

to the interference of u’s transmission and cannot receive any packet from their neighbors. This

model is a simplified version of the reality, where a node is under the interference of all the other

nodes and where models based on SNR (Signal-to-Noise Ratio) are used. However our model

is more accurate compared to the classical binary model (m = 1), where a node cannot receive

a packet only in the case one of its neighbors transmits. We suppose all nodes have the same

interference range m; in fact m is only an upper bound on the possible range of interferences,

since due to obstacles the range can be sometimes lower (however, see also [15] for a critique of

this model).

Under the above model, simultaneous transmissions among pairs of nodes are successful

whenever transmission and interference constraints are respected. Namely, a transmission from

node v to w is called collision–free if, for all simultaneous transmissions from any node x, the

following holds:

d(v, w) = 1, d(x, w) ≥ m + 1.

The gathering process is called collision–free if each scheduled transmission is collision–free.

Therefore, the collision–free data gathering problem can be stated as follows.

Data Gathering. Given a graph G = (V, E), a weight function w : V → N , and a

base station s, for each node v ∈ V −{s} schedule the multi-hop transmission of the

w(v) data packets sensed at node v to the base station s so that the whole process is

2

collision–free and the makespan, i.e., the time when the last packet is received by s,

is minimized.

1.2 Gathering vs. Personalized Broadcasting

Actually, we will describe the gathering schedule by illustrating the schedule for the equivalent

personalized broadcast problem, since this latter formulation allows us to use a simpler notation

and to get easier proofs.

Personalized broadcast: Given a graph G, a weight function w : V → N , and a

BS s, for each node v 6= s schedule the multi-hop transmission from s to v of the w(v)

packets destined to v so that the whole process is collision–free and the makespan,

i.e., the time when the last packet is received at the corresponding destination node,

is minimized.

We notice that any collision–free schedule for the personalized broadcasting problem is equivalent

to a collision–free schedule for data gathering. Indeed, let T be the last time slot used by a

collision–free personalized broadcasting schedule; any transmission from a node v to its neighbor

w occurring at time slot k in the broadcasting schedule corresponds to a transmission from w

to v scheduled at time slot T + 1 − k in the gathering schedule. As the graph is symmetric,

when two transmissions in the broadcasting schedule from x to y and v to w do not interfere

(can be done simultaneously), that means that d(x, w) ≥ m + 1 and d(v, y) ≥ m + 1 and so the

reverse transmissions in the gathering schedule do not interfere. Hence, if one has an (optimal)

broadcasting schedule from s, then one can have an (optimal) solution for gathering at s.

Let S be a personalized broadcasting schedule for the graph G and the Base Station s. We

denote by TS the makespan of S, i.e., the last time slot in which a packet is sent along any edge

of the graph. Moreover, we denote by TS(x) the time slot in which s transmits the last of the

w(x) packets destined to node x during the execution of the schedule S. Clearly, the makespan

of S is

TS = max {dS(s, x) + TS(x) − 1 | x ∈ V, w(x) > 0} , (1)

where dS(s, x) is the number of hops used in S for a packet to reach x.

The makespan of an optimal schedule is T ∗(G, s) = minS TS , where the minimum is taken

over all collision-free personalized broadcasting schedules for the graph G and the BS s. When

s is clear from the context, we simply write T ∗(G) to denote the optimal makespan value.

Note that, by the equivalence between data gathering and personalized broadcasting, in the

following we will use T ∗(G) to denote interchangeably the makespan of the data gathering and

of the personalized broadcasting.

3

1.3 Our Results and Related Work

In this paper we study algorithmic and complexity issues related to the problem of data gath-

ering or personalized broadcasting. Our first main result is presented in Section 2, where we

give algorithms to determine an optimal transmission schedule for data gathering (personalized

broadcasting) in case the communication graph G is a tree network and the interference range

is any integer m ≥ 2. In the interesting case in which the weight function w assumes non-zero

values on V we are also able to determine a closed formula for the makespan of the optimal

gathering schedule. Under the assumption that the weight function w can also assume value

zero at some of the nodes in V , we present a pseudo–polynomial dynamic programming algo-

rithm which outputs an optimal schedule in time O(δW 4δ), where δ is the degree of the BS

and W =
∑

v∈V −{s} w(v) is the total number of items to be transmitted. The papers most

closely related to our results are [2, 10, 12]. Paper [10] firstly introduced the data gathering

problem in a model for sensor networks very similar to the one adopted in this paper. The main

difference with our work is that [10] mainly deals with the case where nodes are equipped with

unidirectional antennas, that is, only the designated neighbor of a transmitting node receives

the signal while its other neighbors can simultaneously and safely receive from different nodes.

Under this assumption, [10] gives optimal gathering schedules for trees. Again under the same

hypothesis, an optimal algorithm for general networks has been presented in [12] in the case each

node has one packet of sensed data to deliver. Paper [2] gives optimal gathering algorithms for

tree networks in the same model considered in the present paper, but the authors consider only

the particular case of interference range m = 1. It is worthwhile to notice that, although our

results hold only for interference range m ≥ 2, our algorithms (and analysis thereof) are much

cleaner and simpler than those for m = 1. In view of our results, it really appears that the case

of interference range m = 1 has a peculiar behavior, justifying the detailed case analysis of [2].

Other related results appear in [1, 3, 4, 5, 7] (see [8] for a survey), where fast gathering with

multidirectional antennas is considered under the assumption of possibly different transmission

and interference ranges. That is, when a node transmits, all the nodes within a fixed distance

dT in the graph can receive, while nodes within distance dI (dI ≥ dT) cannot listen to other

transmissions due to interference (in our paper dI = m and dT = 1). However, unlike the present

paper, all of the above works explicitly allow data buffering at intermediate nodes. In the case

of tree networks a solution is given for m = 1 with buffering in [5]. The values obtained for the

makespan are smaller when buffering is allowed. To see that consider the case m = 1 and the

tree consisting of the source s, with one child s1 and two branches s1, u1, v1 and s1, u2, v2 and

suppose the source has to transmit one message to v1 and one to v2. If no buffering is allowed

the source s will transmit the message to v1 at time 1 and it will arrive at time 3 and due to

interference s can transmit to v2 only at time 4, the message arriving at time 6. If buffering is

allowed the source can transmit at time 1 to s1 the message for v1; s1 will transmit it at time 2

to u1; at time 3 the source sends the message for v2 to s1; at time 4 we have two non-interfering

4

calls (u1, v1) and (s1, u2) and the message for v1 is arrived and finally at time 5 u2 transmits to

v2 and the makespan is 5 < 6.

In Section 4, we consider the problem of assessing the hardness of data gathering in general

graphs and show that the problem is NP–complete. We also give in Section 3 a simple (1+2/m)

factor approximation algorithm for general networks.

2 Scheduling in Trees

In this section we describe scheduling algorithms when the network topology is a tree T = (V, E).

We first give a polynomial time algorithm for obtaining optimal personalized broadcast schedules

in the case of strictly positive node weights. Subsequently, in the general case when some nodes

can have zero weight, we derive an O(δW 4δ) algorithm for obtaining an optimal schedule,

where W is the sum of the weights of the nodes in the network (number of data packets to be

transmitted) and δ is the BS degree.

Let T1, T2, · · · , Tδ be the subtrees of T rooted at the δ children of the BS s.

Definition 1. We use the following notation.

1. At time t: During the t-th time slot (one time slot corresponding to a one hop transmission

of one packet).

2. Transmit to node v at time t: a packet to v is sent along a path (s = x0, x1, · · · , xℓ = v)

from s to v in T starting at time t, that is, the packet is transmitted with a call from xj

to xj+1 at step t + j, for j = 0, · · · , ℓ − 1.

3. Node v is completed (at time t): s has already transmitted all the w(v) packets to v (within

some time t′ < t).

4. Transmit to Ti at time t: a packet is transmitted at time t to a node v in Ti, where v

is chosen as a node having maximum level among all nodes in Ti which are not

completed at time t.

5. Ti is completed: each node v in Ti is completed.

Fact 1. Let s transmit to a node u ∈ V (Ti) at time t and to node v ∈ V (Tj) at time t′ > t. The

calls done during the transmission from s to u and the calls of the transmission from s to v do

not interfere if and only if t′ ≥ t + ∆(u, v), where the inter–call interval ∆(u, v) is defined as

∆(u, v) =

{

min{d(s, u), m} if i 6= j,

min{d(s, u), m + 2} if i = j.
(2)

5

Proof. Let s transmit to u ∈ V (Ti) at time t and to v ∈ V (Tj) at time t′ = t + ℓ, for some

ℓ > 0. Denote by s = u0, u1, · · · , uk = u the path in T from s to u. At time t + ℓ, the packet for

u is transmitted by uℓ at level ℓ to its son uℓ+1 in Ti, for each ℓ < k = d(s, u).

Assume first that ℓ < ∆(u, v). By definition of ∆(u, v), we have that ∆(u, v) ≤ d(s, u) and

the interference range of uℓ includes the son of s in Tj (since this last node is at distance at most

m from uℓ in both cases i = j or i 6= j). Hence, an interference occurs between the call from uℓ

to uℓ+1 and the call from s to the root of Tj . Therefore, we need that t′ = t + ℓ ≥ t + ∆(u, v)

must hold.

On the contrary, assume now that t′ = t + ℓ ≥ t + ∆(u, v). At time t′ the packet for u has

either already reached its destination u or it has reached a node at distance at least m + 2 from

s, if i = j, or at distance at least m from s, if i 6= j; so in both cases it has reached a node at

distance at least m + 1 from the son of s in Tj . Hence there is no interference between the two

calls done at time t′. Since the distance between the endpoints of the calls done at any time

t′′ > t′ does not decrease, subsequent calls done for the transmissions of the packets destined to

u and v do not interfere. ⊓⊔

2.1 Trees with non–zero node weights

In this section we show how to obtain an optimal transmission schedule of the packets to the

nodes in a tree T when w(v) ≥ 1, for each node v in T .

For each subtree Ti of T , for i = 1, . . . , δ, we denote by

• si the root of Ti;

• |Ai| =
∑

v∈Ai
w(v): the total weight of all the nodes in the set Ai = {v ∈ V (Ti) | d(s, v) ≤

m}, that is, of the nodes in Ti that are at level at most m in T ;

• |Bi| =
∑

v∈Bi
w(v): the total weight of all the nodes in Bi = {v ∈ V (Ti) | d(s, v) = m+1},

that is, of the nodes in Ti that are at level m + 1 in T ;

• |Ci| =
∑

v∈Ci
w(v): the total weight of all the nodes in Ci = {v ∈ V (Ti) | d(s, v) ≥ m+2},

that is, of the nodes in Ti that are at level m + 2 or more in T ;

• |Ti|: the total weight of nodes in Ti, that is, |Ti| = |Ai| + |Bi| + |Ci|.

Definition 2. Given 1 ≤ i, j ≤ δ with i 6= j, we say that

Ti � Tj if











|Bi| + |Ci| ≥ |Bj | + |Cj | whenever |Bi| + |Ci| > 0,

|Ai| − w(si) ≥ |Aj | − w(sj) whenever |Bi| + |Ci| = |Bj | + |Cj | = 0, |Ai| > w(si),

w(si) ≥ w(sj) whenever |Ti| = w(si) and |Tj | = w(sj).

Notice that it is possible that both Ti � Tj and Tj � Ti. This holds if: |Bi|+|Ci| = |Bj |+|Cj | > 0,

or |Bi|+|Ci| = |Bj |+|Cj | = 0 and |Ai|−w(si) = |Aj |−w(sj) > 0, or |Ti| = w(si) = w(sj) = |Tj |.

We shall prove that

6

Theorem 1. Let the interference range be m ≥ 2. Let T be a tree with node weight w(v) ≥ 1,

for each v ∈ V . Consider T as rooted at the BS s and (w.l.o.g.) let its subtrees be indexed so

that T1 � T2 � . . . � Tδ. There exists a polynomial time scheduling algorithm S for T such that

TS = T ∗(T) =
∑

u∈V
d(s,u)≤m

w(u)d(s, u) + m
δ
∑

i=1

(|Bi| + |Ci|) + M, (3)

where

M = max{0, (|B1| + |C1|) −
δ
∑

i=2

|Ti|, (|B1| + 2|C1|) +
δ
∑

i=2

w(si) − 2
δ
∑

i=2

|Ti|} (4)

We notice that in the special case δ = 1, Theorem 1 reduces to the known result for the line:

Corollary 1. [10] Let L be a line with nodes {0, 1, . . . , n}. Let the BS be at node 0 and let w(ℓ) ≥

1 be the weight of node ℓ, for ℓ = 1, . . . , n. Then T ∗(L) =
∑m+1

ℓ=1 ℓ ·w(ℓ)+(m+2)
∑

ℓ≥m+2 w(ℓ).

Example. We stress that each of the values of M in (4) is attained by some tree. Fig. 1 shows

an example for each case assuming that the interference range is m = 3. The vertices of the

trees are labeled with their weights and the subtrees are ordered from left to right according to

Definition 2.

a) Consider the tree T in Fig.1 a). T has subtrees T1, T2, T3 with |B1| = 3, |C1| = 1, |T2| +

|T3| = 12 and w(s2) + w(s3) = 2. Therefore, |B1| + |C1| − (|T2| + |T3|) = −8 < 0 and

|B1| + 2|C1| + (w(s2) + w(s3)) − 2(|T2| + |T3|) = −17 < 0. Hence, M = 0 in this case.

b) Consider the tree T in Fig.1 b). T has subtrees T1, T2, T3 with |B1| = 7, |C1| = 3, |T2| +

|T3| = 9 and w(s2) + w(s3) = 2. Therefore, |B1| + |C1| − (|T2| + |T3|) = 1 > 0 and

|B1|+2|C1|+(w(s2)+w(s3))−2(|T2|+ |T3|) = −3 < 0. Hence, M = |B1|+ |C1|−
∑δ

i=2 |Ti|

in this case.

c) Consider the tree T in Fig.1 c). T has subtrees T1, T2, T3, T4 with |B1| = 2, |C1| = 12,

|T2|+ |T3|+ |T4| = 13 and w(s2)+w(s3)+w(s4) = 5. Therefore, |B1|+ |C1|− (|T2|+ |T3|+

|T4|) = 1 > 0 and |B1| + 2|C1| + (w(s2) + w(s3) + w(s4)) − 2(|T2| + |T3| + |T4|) = 5 > 1.

Hence, M = |B1| + 2|C1| +
∑δ

i=2 w(si) − 2
∑δ

i=2 |Ti| in this case.

7

s

1 1 1

1 3 1

11

7

1 2

2

a) b) c)

2

s

2 1 1

1 3 1 2

1 1

2 1

1 2

1

s

1 21

1 1 1

1 1

1 1

10 2

1 1 1

2

1

1

2

Figure 1.

2.1.1 The lower bound

We first show that the value in Theorem 1 is a lower bound on the makespan of any schedule;

next we give an algorithm matching such a bound.

Lemma 1. Let T1 � T2 � . . . � Tδ and M be as defined in (4). If w(v) ≥ 1, for each v ∈ V ,

then

T ∗(T) ≥
∑

u∈V
d(s,u)≤m

w(u)d(s, u) + m
δ
∑

i=1

(|Bi| + |Ci|) + M.

Proof. By Fact 1, we know that

– when the BS s transmits a packet to any node u with d(s, u) ≤ m, then at least d(s, u)

time slots must elapse before s can transmit a new packet.

– when the BS s transmits a packet to any node u with d(s, u) > m, then at least m time

slots must elapse before s can transmit a new packet.

Hence, we have that

T ∗(T) ≥
∑

u∈V
d(s,u)≤m

w(u)d(s, u) + m
δ
∑

i=1

(|Bi| + |Ci|). (5)

We show now that if M > 0 then M additional time slots are necessary.

• Case 1: M = |B1| + |C1| −
∑δ

i=2 |Ti| > 0.

In this case s must transmit at least (|B1| + |C1|) −
∑δ

i=2 |Ti| times to nodes at level at

least m + 1 in T1 without interleaving any of such transmissions with transmissions to

nodes in other subtrees. This implies that, after each of these (|B1| + |C1|) −
∑δ

i=2 |Ti|

8

transmissions, each inter–call interval (see Fact 1) is either m+1 or m+2 (that is, at least

1 more than the value accounted in (5)). Hence, the makespan is lower bounded by

∑

u∈V
d(s,u)≤m

w(u) d(s, u) + m
δ
∑

i=1

(|Bi| + |Ci|) + (|B1| + |C1|) −
δ
∑

i=2

|Ti|.

• Case 2: M = (|B1| + 2|C1|) +
∑δ

i=2 w(si) − 2
∑δ

i=2 |Ti| > 0.

We first notice that in this case |B1| + |C1| −
∑δ

i=2 |Ti| ≤ (|B1| + 2|C1|) +
∑δ

i=2 w(si) −

2
∑δ

i=2 |Ti|, which implies |C1| ≥
∑δ

i=2 |Ti| −
∑δ

i=2 w(si). The BS s has to transmit

– |C1| packets to nodes in T1, each at level at least m + 2;

– |B1| packets to nodes at level m + 1 in T1.

Furthermore, the above transmissions to T1 can be interleaved only with

–
∑δ

i=2 |Ti| −
∑δ

i=2 w(si) transmissions to nodes at distance at least 2 and

–
∑δ

i=2 w(si) transmissions to nodes at level 1

in T2, . . . Tδ. From this and according to Fact 1, we get that in any schedule

– at least |C1| − (
∑δ

i=2 |Ti| −
∑δ

i=2 w(si)) transmissions to T1 require an inter–call

interval equal to m + 2 (instead of m as counted in (5)) and

– at least |B1| transmissions to T1 require an inter–call interval equal to m+1 (instead

of m as counted in (5)).

Of the above,
∑δ

i=2 w(si) time slots could be used for the one–hop transmissions of packets

to the roots of T2, . . . Tδ (interleaving them with the transmissions to T1). Therefore, with

respect to (5), at least

2

[

|C1| −

(

δ
∑

i=2

|Ti| −
δ
∑

i=2

w(si)

)]

+ |B1| −
δ
∑

i=2

w(si)

additional time slots are necessary. Hence, the makespan is lower bounded by

∑

u∈V
d(s,u)≤m

w(u) d(s, u) + m
δ
∑

i=1

(|Bi| + |Ci|) + |B1| + 2|C1| − 2
δ
∑

i=2

|Ti| +
δ
∑

i=2

w(si).

⊓⊔

9

2.1.2 The algorithm

Unless otherwise stated, in the following we assume that the subtrees are indexed according to

the ranking given in Definition 2, that is T1 � · · · � Tδ and we use the notation of Definition 1.

The algorithm is given in Figure 2.

Following is an informal description of the behavior of the algorithm. Consider a generic step i:

If there are at least two different uncompleted subtrees, the BS s transmits to the one of them

bearing in mind the subtree Tprev to which it has transmitted during the previous step i − 1.

In particular, if s has transmitted to a node at distance at least m + 1 in Tprev at step i − 1,

then s transmits to the subtree Tk 6= Tprev that comes first in the ordering of the uncompleted

subtrees of T at the current step (cfr. Definition 2). Furthermore, if s has transmitted to a node

at distance at least m + 2 in Tprev at the previous step and the root of Tk is the only node to be

still completed in Tk, then s transmits to Tk (i.e., to the root sk of Tk) and immediately after

to the root sh of some subtree Th, where h 6= prev (it can be that h = k)1. Finally, if only one

uncompleted subtree remains then s transmits to one of its farthest nodes (cfr. 4. of Definition

1).

1Notice that since, at the current step, Tk is the first subtree in the ordering, with the possible exception of

Tprev, and since the only node to be completed in Tk is its root then, by Definition 2, the root of each other

subtree Th, where h 6= prev, is the only node to be completed in Th.

10

TREE-scheduling (T, s) [T has non-empty subtrees T1, . . . , Tδ and root s]
Phase 1: Set τ = 1; prev = 0;

Set ak = |Ak|, bk = |Bk|, ck = |Ck|, and nk = |Tk|, for k = 1, . . . , δ
Set α = False [α is set to True when a transmission to a node at distance at least m + 2 occurs]
Set D = {1, . . . , δ} [D represents the set of indices of subtrees with nk > 0]
Set i = 0

Phase 2: while |D| ≥ 2
i = i + 1
Execute the following Iteration Step i

Let k ∈ D be s.t. k 6= prev and Tk � Tj , for each j ∈ D and j 6= prev [cfr. Def. 2]
Transmit to Tk at time τ
nk = nk − 1

(2.1) if bk + ck > 0 then
if ck > 0 then α = True and ck = ck − 1
else α = False and bk = bk − 1
prev = k
τ = τ + m

(2.2) else [if bk + ck = 0]
ak = ak − 1
if ak = 0 then D = D − {k}
Let u in Tk be the destination of the transmission by s
τ = τ + d(s, u)

(2.3) [If the previous transmission was to a node at distance at least m + 2 (i.e., α = True),
and if the current transmission is to the son sk of s in Tk then we transmit
again to an uncompleted son of s, if any different from sprev exists]
if α = True and d(s, u) = 1 then

if |D| ≥ 2 then Transmit to Th at time τ , for some h ∈ D and h 6= prev
ah = ah − 1
if ah = 0 then D = D − {h}

τ = τ + 1
prev = 0, α = False

Phase 3: [here |D| = 1]
Let D = {k}

(3.1) while nk > 0
Transmit to Tk at time τ ,
let u be the destination node
nk = nk − 1
τ = τ + min{d(s, u), m + 2}.

Figure 2. The scheduling algorithm on trees.

Example. Consider the tree T in Fig. 3 with BS s. Assume the interference range is m = 2.

The vertices of T are labeled with their weights and the subtrees are ordered from left to right

according to Definition 2. The table in Fig 3 reports the transmissions of s to the subtrees of T

11

according to the algorithm TREE-scheduling(T, s).

Each row of the table shows for each iteration step i: The ordering of the subtrees at the beginning

of step i (if all the transmissions to some subtree have been made then the subtree does not appear

in the ordering); the time τ when s transmits at step i; the index k of the subtree to which s

transmits at time τ ; the algorithm’s point corresponding to the step i; the updated values of prev,

α, aj, bj, cj for j = 1, 2, 3. At the beginning of the algorithm we have a1 = 2, b1 = 2, c1 = 3,

a2 = 3, a2 − w(s2) = 1, b2 = c2 = 0, a3 = 3, a3 − w(s3) = 0, b3 = c3 = 0.

Note that T ∗(T) = 21 as given by Theorem 1. Indeed
∑

u∈V
d(s,u)≤2

w(u)d(s, u) = 6 + 4 = 10;

m
∑3

i=1(|Bi| + |Ci|) = 10 and M = |B1| + 2|C1| +
∑3

i=2 w(si) − 2
∑3

i=2 |Ti| = 1.

s

1 2

1

1

2 1

1

1

3

step subtrees’ algorithm’s τ k prev α a1 b1 c1 a2 b2 c2 a3 b3 c3

i ordering point

0 False 2 2 3 3 0 0 3 0 0

1 T1 ≻ T2 ≻ T3 2.1 1 1 1 True 2 2 2 3 0 0 3 0 0

2 T1 ≻ T2 ≻ T3 2.2 3 2 0 False 2 2 2 2 0 0 3 0 0

3 T1 ≻ T3 ≻ T2 2.1 5 1 1 True 2 2 1 2 0 0 3 0 0

4 T1 ≻ T3 ≻ T2 2.2 7 3 0 False 2 2 1 2 0 0 2 0 0

2.3 8 1

5 T1 ≻ T2 ≻ T3 2.1 9 1 1 True 2 2 0 2 0 0 1 0 0

6 T1 ≻ T2 ≻ T3 2.2 11 2 0 False 2 2 0 1 0 0 1 0 0

2.3 12 0

7 T1 ≻ T3 2.1 13 1 1 False 2 1 0 0 0 0 1 0 0

8 T1 ≻ T3 2.2 15 3 2 1 0 0 0 0 0 0 0

9 T1 3.1 16 1 2 0 0 0 0 0 0 0 0

10 T1 3.1 19 1 1 0 0 0 0 0 0 0 0

11 T1 3.1 21 1 0 0 0 0 0 0 0 0 0

Figure 3 : The TREE-scheduling algorithm running, step by step, on the tree in the picture

We first prove that the scheduling produced by the TREE-scheduling algorithm is collision-

free. Notice that the arguments in the last case of the proof of Lemma 2 do not hold in the

particular case m = 1, therefore our results do not extend to the model considered in [2].

Lemma 2. The scheduling produced by the TREE-scheduling algorithm is collision-free.

12

Proof. Suppose that the BS s transmits at time t a packet to a node u, and at time t′ > t to

a node v. We show that t′ ≥ t + ∆(u, v); this, by Fact 1, implies that the lemma holds.

Consider first Phase 3, that is, when |D| = 1. In this case, there is exactly one subtree, say Tk,

not yet completed, that is, such that nk > 0. If s transmits at time t a packet to a node u in Tk

then s transmits again to some v in Tk at time t + min{d(s, u), m + 2} = t + ∆(u, v).

Consider now Phase 2 (here, |D| ≥ 2).

- If d(s, u) ≤ m then, by subphase (2.2) we know that the next transmission by s is at time

t + d(s, u) = t + ∆(u, v), independently from v.

- If d(s, u) ≥ m + 1 then, by subphase (2.1) we know that s transmits again at time t + m

to a node v in Tj with j 6= k, hence t + m = t + ∆(u, v).

Moreover, s transmits again to a node w in Tk, at a time t′′ such that

t′′ ≥ t + m +

{

∆(v, w) if d(s, v) ≥ 2 or (d(s, v) = 1 and d(s, u) = m + 1)

2 otherwise, e.g. if the condition of subphase (2.3) apply.
(6)

In each case t′′ ≥ t + ∆(u, w)

⊓⊔

It remains to prove that the algorithm is optimal with respect to the makespan, that is,

the last time slot in which the algorithm schedules a call in T matches the lower bound. The

assumption that each node has non-zero weight and the order in which BS s schedules the

transmissions to the various nodes of each subtree imply that: s calls one of its children during

the last time slot in which the algorithm schedules a call in T . For convenience, we formalize

that as a lemma.

Lemma 3. Let t denote the largest integer such that s transmits at time t (to any node) according

to the TREE–scheduling algorithm. The makespan of the TREE–scheduling algorithm is t.

By the above Lemma, we need to show that the largest t such that s transmits at time t is

upper bounded by
∑

u:d(s,u)≤m w(u) d(s, u) + m
∑d

i=1(|Bi| + |Ci|) + M . The following Lemmas

4 and 5 prove the optimality of the algorithm and give an upper bound which meets the lower

bound of Lemma 1 and so we get Theorem 1. We distinguish two cases according to the values of

M = max{0, (|B1|+ |C1|)−
∑δ

i=2 |Ti|, (|B1|+2|C1|)+
∑δ

i=2 w(si)−2
∑δ

i=2 |Ti|} (see Definition

4).

Lemma 4. If M = 0 then the makespan of the TREE–scheduling algorithm is

∑

u∈V
d(s,u)≤m

w(u)d(s, u) + m
δ
∑

i=1

(|Bi| + |Ci|).

13

Proof. By (4), M = 0 corresponds to |B1|+|C1| ≤
∑δ

i=2 |Ti|−max{0, |C1|−
∑δ

i=2(|Ti|−w(si))}.

We show that whenever a packet is transmitted by s at time t ≥ 1 to a node u then the successive

call by s is scheduled at time

t′ = t +

{

m if d(s, u) > m,

d(s, u) if d(s, u) ≤ m.
(7)

This, by Lemma 3, gives the desired result.

Recall that at the beginning of the algorithm TREE-scheduling we set ak = |Ak|, bk = |Bk|, ck =

|Ck|, for k = 1, . . . , δ, and that these values are updated during the execution of the algorithm.

Moreover, we denote by γ = |D|, the cardinality of D, throughout the execution of the algorithm

TREE-scheduling; at the beginning of the algorithm we simply have γ = |D| = δ. Finally, we

denote by ∫k the current number of packets, according to the execution of the algorithm, still to

be sent to sk; initially ∫k = w(sk), for k = 1, . . . , δ.

Assume first that
∑γ

k=1(bk +ck) = 0, that is, all the remaining packets are to be transmitted

to nodes at level at most m. If the time counter τ is t and s is scheduled to transmit to a

node u at time t, then τ is incremented by d(s, u). This proves (7) in this case. This applies in

particular when |B1| + |C1| = 0.

We show now that whenever
∑γ

k=1(bk + ck) > 0 then γ ≥ 2 and (7) holds.

If (when the algorithm starts) |B1| + |C1| ≥ 1, by hypothesis we have that
∑γ

i=2 |Ti| ≥ |B1| +

|C1| ≥ 1 and therefore γ ≥ 2; furthermore, the first packet is transmitted at time τ = 1.

Consider any odd-numbered iteration step ℓ of Phase 2 of the algorithm. Let Tℓ1 , . . . , Tℓγ
be an

ordering of the subtrees such that bℓ1 + cℓ1 ≥ bℓ2 + cℓ2 ≥ · · · ≥ bℓγ
+ cℓγ

at the beginning of step

ℓ (recall that bℓj
+ cℓj

and nℓj
refer to the updated number of transmissions still to be done to

Tℓj
).

Assume that the message sent at step ℓ − 1 was not sent to Tℓ1 and that the condition

bℓ1 + cℓ1 ≤

γ
∑

j=2

nℓj
− max{0, cℓ1 −

γ
∑

j=2

(nℓj
− ∫ℓj

)} (8)

holds at the beginning of step ℓ and that the time at which a packet is transmitted at this step

is t.

We show that at the beginning of step ℓ + 2, t has been updated according to (7) and that

condition (8) still holds thus proving γ ≥ 2.

Case 1: At the beginning of step ℓ, it holds bℓ1 + cℓ1 ≥ 1 and bℓ2 + cℓ2 ≥ 1.

Let the value of the time counter τ be t at the beginning of the iteration step ℓ. Subphase 2.1

is executed at both iteration steps ℓ and ℓ + 1. Namely,

• during step ℓ, the BS s transmits to Tℓ1 at time t,

• during step ℓ + 1, the BS s transmits to Tℓ2 at time t′ = t + m;

14

moreover the time counter τ is set to t′ + m at the end of step ℓ + 1. This proves that (7) holds;

let us now verify (8).

• Suppose either γ = 2 or γ ≥ 3 and bℓ3 + cℓ3 < bℓ1 + cℓ1 . Let a′ℓ, b
′
ℓ and c′ℓ be the updated

values of aℓ, bℓ and cℓ, then at the end of step ℓ + 1 it holds

b′ℓ1 + c′ℓ1 = bℓ1 + cℓ1 − 1 ≥ b′j + c′j , j 6= ℓ1.

One can see (by cases analysis on the value of cℓ1), that both the left and right side terms

of inequality (8) have been decremented by 1, hence (8) holds again at the beginning of

step ℓ + 2. Furthermore the message was not sent at step ℓ + 1 to Tℓ1 .

• Suppose now γ ≥ 3 and bℓ3 + cℓ3 = bℓ1 + cℓ1 . This implies that also bℓ2 + cℓ2 = bℓ1 + cℓ1 .

Then at steps ℓ and ℓ + 1, the BS s transmits to Tℓ1 and Tℓ2 , respectively. At the end

of step ℓ + 1, the first subtree in the reordering (according to the updated sizes of the

subtrees) is Tℓ3 (the message at step ℓ + 1 was not sent to it). Now we show that at the

end of step ℓ + 1, the updated number of unsatisfied requests satisfies

b′ℓ3 + c′ℓ3 ≤
∑

j 6=3 n′
ℓj
− max{0, c′ℓ3 −

∑

j 6=3(n
′
ℓj
− ∫ ′ℓj

)}. Indeed, we have

∑

j 6=3

n′
ℓj

=
∑

j 6=3

(a′ℓj
+b′ℓj

+c′ℓj
) ≥

∑

j 6=3

(1+b′ℓj
+c′ℓj

) ≥ (γ−1)+b′ℓ1+c′ℓ1 ≥ 2+b′ℓ1+c′ℓ1 = 1+b′ℓ3+c′ℓ3

and

∑

j 6=3

(n′
ℓj
− ∫ ′ℓj

) ≥ c′ℓ1 + b′ℓ1 + (a′ℓ1 − ∫ ′ℓ1) ≥ c′ℓ1 + b′ℓ1 = b′ℓ3 + c′ℓ3 − 1 ≥ c′ℓ3 (since b′ℓ3 > 0).

Hence, (8) holds also at the beginning of step ℓ + 2.

Case 2: At the beginning of step ℓ it holds bℓ1 + cℓ1 ≥ 1 and bℓ2 + cℓ2 = · · · = bℓγ
+ cℓγ

= 0.

Let the value of the time counter τ be t at the beginning of the iteration step ℓ.

Consider the step ℓ, the root s transmits to Tℓ1 at time t and the time counter τ is updated to

t + m. Consider now the step ℓ + 1. By (8), there exists at least one ℓj 6= ℓ1 with nℓj
> 0. We

distinguish three cases.

•
∑γ

j=2(nℓj
− ∫ℓj

) ≥ 1.

Step ℓ + 1: the root s transmits to a node u at level h (2 ≤ h ≤ m), in some Tℓj
, with

ℓj 6= ℓ1, at time t + m and the time counter τ is updated to t + m + d(s, u).

• nℓj
= ∫ℓj

, for j = 2, . . . γ, and cℓ1 ≥ 1.

Step ℓ + 1: the root s transmits at both times t + m and t + m + 1 to the roots of 2

subtrees different from Tℓ1 (notice that (8) implies
∑γ

j=2 nℓj
≥ 2) and the time counter τ

is updated to t + m + 2.

15

• nℓj
= ∫ℓj

, for j = 2, . . . γ, and cℓ1 = 0.

Step ℓ + 1: the root s transmits at time t + m to the root of a subtree different from Tℓ1

and the time counter τ is updated to t + m + 1.

In each of the above cases (7) holds. It is easy to see that left side and right side of inequality

(8) are both decreased by the same quantity, therefore, (8) also holds at the beginning of step

ℓ + 2. ⊓⊔

Lemma 5. If the input tree T satisfies M = |B1|+ |C1|−
∑δ

i=2 |Ti|+max{0, |C1|−
∑δ

i=2(|Ti|−

w(si))} > 0 then the makespan is

∑

u∈V
d(s,u)≤m

w(u) d(s, u)+m
δ
∑

i=1

(|Bi|+ |Ci|)+ |B1|+ |C1|−
δ
∑

i=2

|Ti|+max{0, |C1|−
δ
∑

i=2

(|Ti|−w(si))}.

Proof. Again, it is useful to recall that at the beginning of the algorithm TREE-scheduling

we set γ = |D| = δ, ak = |Ak|, bk = |Bk|, ck = |Ck|, ∫k = w(sk), for k = 1, . . . , δ, and that these

values are updated during the execution of the algorithm.

Consider the relation

b1 + c1 >

γ
∑

i=2

ni − max{0, c1 −

γ
∑

i=2

(ni − ∫i)}. (9)

We first show that as long as nj > 0 for some j > 1 then (9) holds at the beginning of any

odd-numbered step of Phase 2 in the algorithm, that is, the first subtree in the � ordering is

always T1.

Relation (9) holds by hypothesis at the beginning of the algorithm, that is, at step 0.

Consider any two consecutive steps, say ℓ and ℓ+1 with ℓ odd. Let the value of the time counter

τ be t at the beginning of step ℓ.

During step ℓ the root s transmits to T1 at time t and the time counter is updated to t + m. At

the beginning of step ℓ + 1, one of the following cases can occur:

1)
∑γ

i=2(ni − ∫i) ≥ 1. The root s transmits to a node u in some Ti with i > 1 at time t + m;

the time counter is incremented by min{d(s, u), m}.

2) nℓj
= ∫ℓj

, for j = 2, . . . γ and c1 ≥ 1. The root s transmits either twice to nodes at level 1

(in subtrees different from T1) at both times t + m and t + m + 1 or it transmits only at

time t + m to the single unsatisfied node (at level 1) remaining in a subtree different from

T1; the time counter is incremented by 2.

3) nℓj
= ∫ℓj

, for j = 2, . . . γ and c1 = 0. The root s transmits to a node at level 1 in a subtree

different from T1 and the time counter is incremented by 1.

16

In each of the above cases the decrement on the right and left terms of the inequality (9) during

the execution of steps ℓ and ℓ + 1 implies that (9) also holds at the beginning of step ℓ + 2 (or

nj = 0 for j > 1).

We now determine the makespan. For that we compute the increment of the counter in

phase 2, that is the value of the time counter after s has transmitted the last packet destined

to a node in some Tj with j 6= 1. We notice that case 1) occurs p1 =
∑δ

i=2(|Ti| − w(si)) times,

therefore, during the corresponding pairs of steps (ℓ and ℓ + 1 in the above notation), the value

of τ is incremented by

mp1 +
δ
∑

i=2

∑

u∈V (Ti)
d(s,u)≥2

min{d(s, u), m} = mp1 + m
δ
∑

i=2

(|Bi| + |Ci|) +
∑

u 6∈V (T1)
2≤d(s,u)≤m

w(u) d(s, u).

Then we note that if case 2) appears p2 times the time counter is increased by (m + 2)p2

and if case 3) appears p3 times the time counter is increased by (m+1)p3. During phase 3, only

packets destined to nodes of T1 remain to be transmitted one after the other. If the remaining

n′
1 packets to be transmitted to nodes in T1 are subdivided into n′

1 = c′1 + b′1 +a′1, the increment

of the time counter is m + 2 for each of the c′1 packets transmitted to the nodes at level m + 2

or more, m + 1 for each of the b′1 packets transmitted to nodes at level m + 1, and d(s, u) for

each u among the a′1 nodes at level m or less. As it is always the case that a′1 = a1 = |A1|, the

increase of the counter will be

(m + 2)p2 + (m + 1)p3 + (m + 2)c′1 + (m + 1)b′1 +
∑

u∈V (T1)
d(s,u)≤m

w(u) d(s, u).

As

∑

u 6∈V (T1)
2≤d(s,u)≤m

w(u) d(s, u) +
δ
∑

i=2

w(si) +
∑

u∈V (T1)
d(s,u)≤m

w(u) d(s, u) =
∑

u∈V
d(s,u)≤m

w(u)d(s, u)

we get that the last transmission (of the packet destined to the root of T1) is scheduled at time

τ =
∑

u∈V
d(s,u)≤m

w(u) d(s, u)+m
δ
∑

i=2

(|Bi|+|Ci|)−
δ
∑

i=2

w(si)+mp1+(m+2)p2+(m+1)p3+(m+2)c′1+(m+1)b′1.

(10)

To evaluate the values of p2, p3, c
′
1, b

′
1 we will distinguish three cases.

a) |C1| ≤ p1 =
∑δ

i=2(|Ti|−w(si)): Under this hypothesis case 2) never occurs so p2 = 0, while

case 3) occurs p3 =
∑δ

i=2 w(si) times, and c′1 = 0, b′1 = |B1| − (p1 − |C1|)−
∑δ

i=2 w(si) =

17

|B1| + |C1| −
∑δ

i=2 |Ti|. Therefore, by (10) we get

τ =
∑

u∈V
d(s,u)≤m

w(u) d(s, u) + m
δ
∑

i=1

(|Bi| + |Ci|) + |B1| + |C1| −
δ
∑

i=2

|Ti|.

b) |C1| > p1 and
∑δ

i=2 w(si) ≤ 2(|C1| − p1): Under this hypothesis case 2) occurs p2 =
⌈

∑δ
i=2 w(si)/2

⌉

times, but case 3) does not occur; c′1 = |C1| − p1 − p2, b′1 = |B1|.

Therefore, by (10) we get

τ =
∑

u∈V
d(s,u)≤m

w(u) d(s, u) + m
δ
∑

i=1

(|Bi| + |Ci|) + |B1| + 2|C1| − 2
δ
∑

i=2

|Ti| +
δ
∑

i=2

w(si).

c) |C1| > p1 and
∑δ

i=2 w(si) > 2(|C1|−p1). Under this hypothesis case 2) occurs p2 = |C1|−p1

times and case 3) occurs p3 =
∑δ

i=2 w(si)−2p2 times. Furthermore c′1 = 0, b′1 = |B1|−p3.

By (10), we get again the same value of τ as in case b).

⊓⊔

2.2 Trees with general weight distribution

In this section we present an algorithm for the general case in which only some of the nodes

need to receive packets from the BS s, that is, we assume w(v) ≥ 0, for each v ∈ V − {s}.

Let T = (V, E) be the tree representing the network, and let s be the root of T . Denote by δ

the degree of s, and by T1, T2, · · · , Tδ the subtrees of T rooted at the children of s. We present

an algorithm which gives an optimal schedule in time O(δW 4δ), where W =
∑

v∈V −{s} w(v) is

the number of items to be transmitted (i.e, the sum of the node weights).

Lemma 6. Consider u, v ∈ V . If u, v ∈ V (Ti), for some 1 ≤ i ≤ δ, and either of the following

conditions holds

a) 2 ≤ d(s, u) ≤ d(s, v) ≤ m

b) d(s, u) ≥ d(s, v) ≥ m + 2

then there exists an optimal schedule where s transmits to node u before transmitting to node v.

Proof. Let S be a schedule where s transmits to node v before than to node u. Consider a

new schedule S′ where s transmits in the same order as in S except for the transmissions to v

and u that are exchanged. We show that TS ≥ TS′ , where TS and TS′ represent the makespan

of S and S′, respectively (cfr (1)).

First let u and v be such that 2 ≤ d(s, u) ≤ d(s, v) ≤ m. Consider the schedule S.

– For any x to which s transmits before v in S, we trivially have TS′(x) = TS(x).

18

– Consider now a node x to which s transmits after u in S: since we suppose d(s, u) ≥ 2,

the transmission following u cannot interfere with the one preceding u (cfr. Fact 1) and

the order of transmission to u and v is not relevant for x. Therefore, also in this case we

have TS′(x) = TS(x).

– If s transmits to x after v but before u (excluding x = v) in S then TS′(x) takes into

account the time d(s, u) spent to transmit to u (cfr. Fact 1) instead of d(s, v) as in S;

therefore we have TS′(x) = TS(x) − (d(s, v) − d(s, u)) ≤ TS(x).

– Furthermore, we have TS′(u) = TS(v), and so d(s, u) + TS′(u) − 1 ≤ d(s, v) + TS(v) − 1

TS′(v) = TS(u) + d(s, u) − d(s, v) and so d(s, v) + TS′(v) − 1 = d(s, u) + TS(u) − 1.

In conclusion,

TS′ = max
x∈V

w(x)>0

{d(s, x) + TS′(x) − 1 } ≤ max
x∈V

w(x)>0

{d(s, x) + TS(x) − 1 } = TS . (11)

Consider now the case d(s, u) ≥ d(s, v) ≥ m + 2 and u, v ∈ V (Ti).

Under this hypothesis, by Fact 1, we immediately get

d(s, x) + TS′(x) − 1 = d(s, x) + TS(x) − 1 for any x 6= u, v
d(s, u) + TS′(u) − 1 = d(s, u) + TS(v) − 1 ≤ d(s, u) + TS(u) − 1
d(s, v) + TS′(v) − 1 = d(s, v) + TS(u) − 1 ≤ d(s, u) + TS(u) − 1

Therefore, as in (11), we have TS′ ≤ TS . ⊓⊔

We want to compute a shortest schedule with relative ordering given by Lemma 6 using

dynamic programming. To this aim we consider the following lists Ci, Bi, and Ai for i = 1, . . . , δ,

where

• Ci = (xi,1, xi,2, · · ·) consists of all the nodes in Ti with w(xi,j) > 0 and d(s, xi,j) ≥

m + 2, each node xi,j being repeated w(xi,j) times; nodes are ordered so that d(s, xi,j) ≤

d(s, xi,j+1) for each j ≥ 1.

• Bi = (zi,1, zi,2, · · ·) consists of all the nodes in Ti with w(zi,j) > 0 and d(s, zi,j) = m + 1,

in any order each node zi,j being repeated w(zi,j) times.

• Ai = (yi,1, yi,2, · · ·) consists of all the nodes in Ti with w(yi,j) > 0 and 2 ≤ d(s, yi,j) ≤ m,

each node yi,j being repeated w(yi,j) times; nodes are ordered so that d(s, yi,j) ≥ d(s, yi,j+1)

for j ≥ 1.

Notice that in each subtree, the nodes at a same level can be ordered in an arbitrary way.

Given integers ci ≤ |Ci|, bi ≤ |Bi|, ai ≤ |Ai|, ri ≤ |w(si)|, for i = 1, . . . δ, we denote by

S(c1, . . . , cδ, b1, . . . , bδ, a1, . . . , aδ, r1, . . . , rδ), (12)

19

an optimal schedule satisfying Lemma 6 when for each subtree Ti, for i = 1, . . . , δ, the only

packets to be transmitted are those destined to:

• the first ci nodes of Ci,

• the first bi nodes of Bi,

• the first ai nodes of Ai, and

• ri times the root si of Ti.

In the following we will use the compact vectorial notation

c = (c1, · · · , cδ), b = (b1, · · · , bδ) a = (a1, · · · , aδ) r = (r1, · · · , rδ).

Therefore, we write S(c,b,a, r) for S(c1, · · · , cδ, b1, · · · , bδ, a1, · · · , aδ, r1, · · · , rδ). Moreover, let

S(c,b,a, r, (j, type))

be an optimal schedule for (12) with the additional restriction that the first transmission in the

schedule is to a node in Tj where type ∈ {r, C, B, A} specifies whether this node is either the

root of Tj , or a node in Cj (by Lemma 6, node xj,cj
), or a node in Bj , or in Aj (by Lemma 6,

node yj,aj
).

The makespan of the schedule S(c,b,a, r) (resp. S(c,b,a, r, (j, type))) will be denoted by

T (c,b,a, r) (resp. T (c,b,a, r, (j, type))). Clearly,

T (c,b,a, r) = min
1≤j≤δ

min
type∈{r,C,B,A}

T (c,b,a, r, (j, type)). (13)

Denote by ei the identity vector ei = (ei,1, · · · , ei,δ) with ei,j =

{

1 if j = i

0 otherwise,
.

The following result is an immediate consequence of Fact 1.

Fact 2. For any j = 1, · · · , δ, it holds

• if type = r, i.e., the first transmission is for the root sj of Tj, then T (c,b,a, r, (j, r)) =

1 + T (c,b,a, r − ej)

• if type = A, i.e., the first transmission is for yj,aj
∈ Aj then T (c,b,a, r, (j, A)) =

d(s, yj,aj
) + T (c,b,a − ej , r).

• if type = B, i.e., the first transmission is for zj,bj , ∈ Bj, then

T (c,b,a, r, (j, B)) = min
k

min
type′







m + max{1, T (c,b − ej ,a, r, (k, type′))} if j 6= k

m + 1 + T (c,b − ej ,a, r, (k, type′)) if j = k

20

• if type = C, i.e., the first transmission is for xj,cj , ∈ Cj, then

T (c,b,a, r, (j, C)) =

min
k

min
type′















































m + T (c − ej ,b,a, r, (k, type′)) if j 6= k and

d(s, xj,cj
) ≤ T (c − ej ,b,a, r, (k, type′)) + m

m + 2 + T (c − ej ,b,a, r, (k, type′)) if j = k and

d(s, xj,cj
) ≤ T (c − ej ,b,a, r, (k, type′)) + m + 2

d(s, xj,cj
) otherwise

An optimal schedule for T is S(T) = S(cT ,bT ,aT , rT), where (cT ,bT ,aT , rT) includes

all the packets in T . In order to obtain the optimal solution we compute the various par-

tial solutions for S(c,b,a, r, (j, type)); starting from S(0,0,0,0, (j, type)) whose makespan is

T (0,0,0,0, (j, type)) = 0, for each j and type, where 0 = (0, . . . , 0) is the null vector.

We know that ck + bk + ak + rk ≤
∑

v∈V w(v) = W , for k = 1, · · · , δ; moreover, the pair

(j, type) can assume at most 4δ values. Therefore, the number of different values we need to

compute is O(δW 4δ).

Theorem 2. It is possible to obtain an optimal schedule in time O(δW 4δ).

3 General Topologies

We present an algorithm for Personalized Broadcasting in general graphs and prove that it

achieves an approximation ratio of 1+ 2
m

, where m is the interference range. We then show that

if one requires that the personalized broadcasting has to be done using a routing tree, then the

problem is NP–complete. We stress that this practical requirement is widely adopted, indeed

it avoids that intermediate nodes have to forward data in a way that depends on source and

destination information.

3.1 The approximation algorithm

Consider an arbitrary topology graph G = (V, E) with BS s and node weight w(v) ≥ 0, v ∈

V −{s}. Let SP be a set of shortest paths from s to each node in V −{s}. We route transmissions

along the paths in SP .

21

Graph-SPscheduling (G, SP, s)
Set t = 1; h = maxu∈V d(s, u)
Set wℓ =

∑

v∈V,d(s,v)=ℓ w(v), for ℓ = 1, . . . , h

while
∑

ℓ wℓ > 0
Let L = max{ℓ|wℓ > 0}
Establish an (arbitrary) ordering on the wL packets to be transmitted to nodes at distance L from s
For j = 1 to wL

s transmits at time t the j–th data packet in the above ordering
t = t + min{L, m + 2}

wL = 0

Figure 3. The general graphs scheduling algorithm.

Lemma 7. The makespan of the scheduling produced by Graph-SPscheduling(G, SP, s) is

max















∑

v∈V
d(s,v)≤m+1

w(v)d(s, v) + (m + 2)
∑

v∈V
d(s,v)≥m+2

w(v), max
ℓ≥m+2















ℓ − m − 2 + (m + 2)
∑

v∈V
d(s,v)≥ℓ

w(v)





























.

(14)

Proof. According to the Graph-SPscheduling algorithm, the first packet is sent at time 1.

For any ℓ, with 1 ≤ ℓ ≤ h, the last of the packets to nodes at distance ℓ or more from s is

transmitted at time

1 − min{ℓ, m + 2} +
∑

v∈V
d(s,v)≥ℓ

w(v)min{d(s, v), m + 2}.

Since ℓ − 1 more time slots are necessary for this last packet to reach its destination, we have

that the largest time at which a node at distance ℓ or more from s receives its packet is

Tℓ = ℓ − min{ℓ, m + 2} +
∑

v∈V
d(s,v)≥ℓ

w(v)min{d(s, v), m + 2}. (15)

The makespan of Graph-SPscheduling, is max1≤ℓ≤h Tℓ, which gives the desired result by noticing

that

Tℓ =



















∑

v∈V
ℓ≤d(s,v)≤m+1

w(v)d(s, v) + (m + 2)
∑

v∈V
d(s,v)≥m+2

w(v) if ℓ ≤ m + 1

ℓ − m − 2 + (m + 2)
∑

v∈V
d(s,v)≥ℓ

w(v) if ℓ ≥ m + 2

⊓⊔

The analysis of the algorithm would be very simple if we had to deal only with trees (indeed

schedules with optimal makespan for trees are given in Sections 2). However, even if we restrict

22

ourselves to packet transmissions on a (shortest path) tree, we still need to deal with possible

collisions due to the edges in E − E(SP).

Lemma 8. There is no interference between any two calls done by the GRAPH-scheduling

algorithm.

Proof. In order to see that our algorithm does not suffer from interferences, let us first notice

that if (x, y) ∈ E then |d(s, x) − d(s, y)| ≤ 1, that is, the levels of nodes x and y in SP differ

by at most 1. Moreover, if s transmits to u at time t and then to v at time t′ > t then the

Graph-SPscheduling algorithm imposes that t′ = t+min{d(s, u), m+2}. Furthermore, the path

followed by the packet for u (resp. for v) is the path from s to u (resp. for v) in the shortest

path tree T .

This implies that, if d(s, u) ≤ m + 2, then the packet for u arrives before that the packet for v

leaves s; hence, no interference can occur.

Let d(s, u) > m+2. At time t′ = t+m+2+h, the packet for u is either arrived or transmitted

from a node x at level m+2+h to a node y at level m+3+h and the packet for v is transmitted

from a node x′ at level h to a node y′ at level h + 1 both in the shortest path routing tree T. As

d(s, x) ≤ d(s, x′) + d(x, x′) we get that d(x, x′) ≥ m + 2 and so there is no interference between

the two calls done at time t’. ⊓⊔

We derive now the approximation factor of the algorithm.

Theorem 3. Let G = (V, E) be a graph with BS s ∈ V and w(u) ≥ 0, for each u ∈ V − {s},

and let the interference range be m. The makespan T of the schedule produced by Graph-

SPscheduling(G, SP, s) satisfies
T

T ∗(G)
≤ 1 +

2

m
,

where T ∗(G) is the makespan of an optimal schedule for G.

Proof. The following lower bound on the makespan of any schedule was introduced in [1].

T ∗(G) ≥ max















∑

v∈V
d(s,v)≤m

w(v)d(s, v) + m
∑

v∈V
d(s,v)≥m+1

w(v), max
ℓ≥m+1















ℓ − m + m
∑

v∈V
d(s,v)≥ℓ

w(v)





























. (16)

We bound T
T ∗(G) by evaluating the ratio of the makespan of (14) to (16).

To this aim, we notice that for any positive integers a, b, c, d it holds max{a,c}
max{b,d} ≤ max

{

a
b
, c

d

}

;

hence, we can separately bound the two ratios

R1 =

∑

v∈V
d(s,v)≤m+1

w(v)d(s, v) + (m + 2)
∑

v∈V
d(s,v)≥m+2

w(v)
∑

v∈V
d(s,v)≤m

w(v)d(s, v) + m
∑

v∈V
d(s,v)≥m+1

w(v)

23

and

R2 =

maxℓ≥m+2

{

ℓ − m − 2 + (m + 2)
∑

v∈V
d(s,v)≥ℓ

w(v)

}

maxℓ≥m+1

{

ℓ − m + m
∑

v∈V
d(s,v)≥ℓ

w(v)

}

.

and show that both of them are upper bounded by the desired value 1 + 2
m

.

We have

R1 ≤

∑

v∈V
d(s,v)≤m

w(v)d(s, v) + (m + 2)
∑

v∈V
d(s,v)≥m+1

w(v)
∑

v∈V
d(s,v)≤m

w(v)d(s, v) + m
∑

v∈V
d(s,v)≥m+1

w(v)

= 1 +
2
∑

v∈V
d(s,v)≥m+1

w(v)
∑

v∈V
d(s,v)≤m

w(v)d(s, v) + m
∑

v∈V
d(s,v)≥m+1

w(v)
≤ 1 +

2

m

where the last inequality follows since
∑

v∈V
d(s,v)≤m

w(v)d(s, v) ≥ 0.

Moreover,

R2 =

maxℓ≥m+2

{

ℓ − m − 2 + (m + 2)
∑

v∈V
d(s,v)≥ℓ

w(v)

}

maxℓ≥m+1

{

ℓ − m + m
∑

v∈V
d(s,v)≥ℓ

w(v)

} ≤

maxℓ≥m+1

{

ℓ − m + (m + 2)
∑

v∈V
d(s,v)≥ℓ

w(v)

}

maxℓ≥m+1

{

ℓ − m + m
∑

v∈V
d(s,v)≥ℓ

w(v)

}

≤ max
ℓ≥m+1







ℓ − m + (m + 2)
∑

v∈V
d(s,v)≥ℓ

w(v)

ℓ − m + m
∑

v∈V
d(s,v)≥ℓ

w(v)







(By iteratively applying max{a,c}
max{b,d} ≤ max

{

a
b
, c

d

}

)

= max
ℓ≥m+1







1 +
2
∑

v∈V
d(s,v)≥ℓ

w(v)

ℓ − m + m
∑

v∈V
d(s,v)≥ℓ

w(v)







≤ max
ℓ≥m+1

{

1 +
2

m

}

= 1 +
2

m

⊓⊔

4 Complexity Results

In this section we show that the Data Gathering Problem is NP-complete if the process must

be performed along the edges of a routing tree.

Our proof assumes m ≥ 2. The case m = 1 is claimed to be NP-complete in [9]; however

the proof is incorrect. Firstly, it uses invalid results concerning trees. Indeed the authors claim

that in the case m = 1, a tree with n vertices and weight 1 in each node has makespan equal

to 3n − 2. As a counterexample, consider the tree formed by δ paths of length 2 sharing the

node s, so with n = 2δ + 1 nodes. The makespan in this case is 2δ = n − 1 (see [2] for exact

values for trees). As a matter of fact, the value in [9] is true only for paths with BS at one end.

Additionally, one can easily see that the reduction employed in [9] is, in general, not computable

in polynomial time.

To prove our NP-completeness result, let us consider the decision version of our problem.

24

MTDG (Minimum Time Data Gathering)

Instance: A graph G = (V, E), an interference range m ≥ 2, a BS s ∈ V , integer

weights w(v) ≥ 0 for v ∈ V − {s}, and an integer bound K.

Question: Is there a routing tree in G and a multi-hop transmission schedule on

it of the w(v) packets sensed at v, for each v ∈ V , to the base station s so that the

whole process is collision–free, and the makespan is T ≤ K?

As in the previous sections, we actually consider the equivalent diffusion problem

MTPB (Minimum Time Personalized Broadcasting)

Instance: A graph G = (V, E), an interference range m, a special node s ∈ V ,

integer weights w(v) ≥ 0 for v ∈ V − {s}, and an integer bound K.

Question: Is there a routing tree in G and a multi-hop schedule on it of the w(v)

packets from s to node v, for each v ∈ V , so that the process is collision–free and

the makespan is T ≤ K?

We show now that MTPB is NP-complete. It is clearly in NP. We prove the NP-hardness of

MTPB by a reduction from the well known Partition Problem [13].

PARTITION

Instance: n + 1 integers a1, a2, · · · , an, B such that
∑n

i=1 ai = 2B.

Question: Is there a subset S ⊂ {1, 2, · · · , n} such that
∑

i∈S ai = B?

Given a PARTITION instance, we construct a MTPB instance as follows:

• The graph (c.f.r. Figure 4) is G = (V, E) with node set

V =
{

s} ∪ {u0
j , v

0
j | 1 ≤ j ≤ m + n + 1

}

∪
{

ui
j , v

i
j | 1 ≤ i ≤ n, 0 ≤ j ≤ m

}

∪
{

xi | 1 ≤ i ≤ n
}

,

edge set

E = {(s, u0
1), (s, v

0
1)} ∪ {(u0

j , u
0
j+1), (v0

j , v
0
j+1) | 1 ≤ j ≤ m + n}

∪ {(u0
m+n+1, u

1
0), (v

0
m+n+1, v

1
0)}

∪ {(ui
j , u

i
j+1), (vi

j , v
i
j+1) | 1 ≤ i ≤ n, 0 ≤ j ≤ m − 1}

∪ {(ui
1, u

i+1
0), (vi

1, v
i+1
0) | 1 ≤ i ≤ n − 1}

∪ {(ui
m, xi), (vi

m, xi) | 1 ≤ i ≤ n};

and node weights

w(u0
j) = w(v0

j) = 0, for j = 1 . . . , m + 1,

w(u0
j) = w(v0

j) = 1, for j = m + 2 . . . , m + n + 1,

w(ui
j) = w(vi

j) = 0, for i = 1 . . . , n and j = 0 . . . , m,

w(xi) = ai, for i = 1 . . . , n.

25

• The interference parameter is a fixed integer m ≥ 2;

• The bound is K = 2m(B + n) + 2.

The structure of the MTPB instance is shown in Figure 4. We notice that the graph G can

be constructed in polynomial-time. We show now that the PARTITION instance admits

an answer “Yes” if and only if there exists a schedule for the MTPB instance such that the

makespan is T ≤ K.

v
0
m+n+1

v
0
m+2u

0
m+2

v
0
1

s

u
0
1

u
0
m+n+1

v
2
0

u
2
0

v
1
0

u
1
0

u
1
1

u
1
2 x

1
u

1
m

v
1
m

v
1
2

v
1
1

v
n

0
u

n

0

u
2
1

u
2
2 x

2
u

2
m

v
2
m

v
2
2

v
2
1

u
n−1
1

u
n−1
2 x

n−1
u

n−1
m

v
n−1
m

v
n−1
2

v
n−1
1

u
n

1

u
n

2 x
n

u
n

m
v

n

m
v

n

2
v

n

1

u
n−1
0 v

n−1
0

Figure 4. MTPB instance associated to a PARTITION instance.

Lemma 9. If the PARTITION instance has a solution S such that
∑

i∈S ai = B then the

makespan is T ≤ K where K = 2m(B + n) + 2.

Proof. Denote by S = {1, 2, · · · , n} − S the complement of S. Consider the tree T =

(V (T), E(T)) of G rooted at s which consists of all the edges of G which belong to:

(1) the paths (s, u0
1, . . . , u

0
m+n+1, u

1
0, u

1
1, . . . , u

i
0, u

i
1, u

i
2, . . . , u

i
m, xi) in G from s to xi via u0

1, for

each i ∈ S,

(2) the paths (s, v0
1, . . . , v

0
m+n+1, v

1
0, v

1
1, . . . , v

j
0, v

j
1, v

j
2, . . . , v

j
m, xj) in G from s to xj via v0

1, for

each j ∈ S.

Notice that even though T is not a spanning tree of G, it spans all the nodes of non–zero weight

in G.

26

Call T1 the subtree of T rooted at u0
1, and T2 the subtree of T rooted at v0

1. The hypothesis
∑

i∈S ai = B =
∑

i∈S ai implies that B + n packets are to be transmitted by s both in T1 and

in T2. Consider now the following schedule of the packets in T :

• alternately, s transmits a packet to T1 and one to T2,

(s transmits no packet to a node at level ℓ in Ti before transmitting all the packets to

nodes at level ℓ + 1 or more in Ti, i = 1, 2).

• if s transmits a packet at time t then the next packet is sent at time t + m.

In the above schedule, recalling that w(xi) = ai, for 1 ≤ i ≤ n, and d(s, xi) = 2m + n + 2i + 1 ≤

2m + 3n + 1, we get that s transmits all packets of nodes xi by time 1 + m(2B − 1); each of

these packets reaches its destination by time m(2B − 1)+2m+3n+1 ≤ K (recall that m ≥ 2).

Furthermore, since w(u0
j) = w(v0

j) = 1, for m+2 ≤ j ≤ m+n+1, and d(s, u0
m+2) = d(s, v0

m+2) =

m + 2, we get that s transmits to all these nodes by time (2B + 2n − 1)m + 1; each of these

packets reaches its destination by time 2m(B + n) + 2 = K.

Finally, we have only to prove that no interference occurs during the above scheduling. We

first observe that two nodes in different subtrees of T are connected in G also by a path not

passing through s, however such a path contains at least m − 1 nodes in V − V (T) (which do

not participate to the process). Indeed, an internal node (i.e., a transmitting node) in a subtree

of T has a distance at least m from any node which belongs to the other subtree of T . Using

this and Fact 1, we know that for any two nodes u and v the calls done during the transmission

from s to u and the calls of the transmission from s to v never interfere. ⊓⊔

Lemma 10. If there is a schedule for the MTPB instance with makespan T ≤ K then the

PARTITION instance has a solution S such that
∑

i∈S ai = B.

Proof. Suppose that there is a schedule for the MTPB instance such that the makespan is

T ≤ K. We are ready to show that the PARTITION instance has a solution. Any schedule for

the MTPB instance gives a path, say P (xi), from s to xi, for each 1 ≤ i ≤ n, since xi has at

least one packet to receive from s and the assumption that the routing is performed on a tree

implies that all the ai packets destined to xi go through the same path. Furthermore, the use

of a routing tree implies that the paths of the packets destined to nodes which lay on P (xi) are

fixed (to the corresponding subpath of P (xi)). Define now

S = {i | s transmits the ai packets of xi through u0
1},

S = {j | s transmits the aj packets of xj through v0
1}.

We claim that S is a solution to the PARTITION instance. Assume by contradiction that
∑

i∈S ai 6=
∑

j∈S aj . Without loss of generality, let
∑

i∈S ai ≥
∑

j∈S aj + 2 (note that
∑n

i=1 ai is

even). It is obvious that the tree used by the transmissions of the packets from s has two subtrees:

27

the one rooted at u0
1 whose nodes have to receive

∑

i∈S ai + n packets and the one rooted at

v0
1 whose nodes have to receive

∑

j∈S aj + n packets. Hence, there are at least (
∑

i∈S ai + n) −

(
∑

j∈S aj + n) ≥ 2 packets that need to be sent successively by s to nodes of a same subtree.

Considering that all the nodes with positive weight are at distance ≥ m+2 from s, by Fact 1 we

have that if s transmits at time t a packet to a node in T1 (resp. T2) then (1) s cannot transmit

another packet to some node in T2 (resp. T1) before time t + m. (2) s cannot transmit another

packet to some node in T1 (resp. T2) before time t + m + 2. Finally, the last packet sent by s

needs at least m + 2 time slots in order to reach its destination, since the nodes with positive

weight are at distance at least m + 2 from s. In conclusion, we have

T (G) ≥ m





∑

i∈S

ai +
∑

j∈S

aj + 2n − 1



+ 2





∑

i∈S

ai −
∑

j∈S

aj − 1



+ (m + 2)

≥ m

(

n
∑

i=1

ai + 2n

)

+ 2 + 2 > K

⊓⊔

Hence we get

Theorem 4. The MTPB problem is NP-complete.

5 Open Problems

Several interesting questions remain open.

– Determine the complexity of gathering in trees, with arbitrary weight distribution, in the

case the degree of the root is a function of the number of nodes in the network.

Indeed, the proposed O(δW 4δ) algorithm leaves open the problem of the existence of

a polynomial algorithm when the BS degree δ depends on the size of the tree even if

w(v) ∈ {0, 1}, for each node v in the tree.

– Determine the complexity of gathering in general graphs, without any restriction on the

kind of routing used.

– Determine the complexity of gathering in general graphs, for m = 1, if the process must

be performed along the edges of a routing tree.

– Determine the complexity of gathering in general graphs in case that all weights are 1, for

m ≥ 2. Indeed, our NP–hardness result holds only in the case some weights can be 0.

References

[1] J-C. Bermond, J. Galtier, R. Klasing, N. Morales, S. Pérennes, “Hardness and approximation of
gathering in static radio networks”, Parallel Processing Letters, 16 (2), (2006) 165–183.

28

[2] J-C. Bermond, L. Gargano, A. Rescigno, ”Gathering with minimum completion time in sensor tree
networks”, Journal of Interconnection Networks, 11 (1-2), (2010) 1–33.

[3] J-C. Bermond, R. Correa, M.-L. Yu, “Optimal Gathering Protocols on Paths under Interference
Constraints”, Discrete Mathematics, 309(18), (2009), 5574–5587.

[4] J-C. Bermond, J. Peters, “Efficient gathering in radio grids with interference”, Proc. AlgoTel’05,
Presqu’̂ıle de Giens, (2005) 103–106.

[5] J-C. Bermond, M.-L. Yu, “Optimal gathering algorithms in multi-hop radio tree networks with
interferences”, Ad Hoc and Sensor Wireless Networks, 9(1–2), (2010), 109–128.

[6] P. Bertin, J-F. Bresse, B. Le Sage. Accès haut débit en zone rurale: une solution “ad hoc”. France
Telecom R&D, 22:16–18, 2005.

[7] V. Bonifaci, P. Korteweg, A. Marchetti-Spaccamela, L. Stougie, “An Approximation Algorithm for
the Wireless Gathering Problem”, Operations Research Letters 36 (5), (2008) 605–608.

[8] V. Bonifaci, R. Klasing, P. Korteweg, A. Marchetti-Spaccamela, L. Stougie, “Data Gathering in
Wireless Networks”, Graphs and Algorithms in Communication Networks, A.Koster and X. Munoz
editors, Springer Monograph, (2010) 357–377.

[9] H. Choi, J. Wang, E.A. Hughes, “Scheduling for information gathering on sensor network”, Wireless
Network, 15, (2009) 127–140.

[10] C. Florens, M. Franceschetti, R.J. McEliece, “Lower Bounds on Data Collection Time in Sensory
Networks”, IEEE J. on Selected Areas in Communication 22 (6), (2004) 1110–1120.

[11] L. Gargano, “Time Optimal Gathering in Sensor Networks”, Proc. SIROCCO 2007 (LNCS 4474),
(2007) 7-10.

[12] L. Gargano, A.A. Rescigno, “Optimally Fast Data Gathering in Sensor Networks”, Discrete Applied
Mathematics 157, (2009) 1858–1872.

[13] M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-
Completeness, W. H. Freeman (1979)

[14] L. Gasieniec, I Potapov, “Gossiping with Unit Messages in Known Radio Networks”, IFIP TCS,
(2002) 193–205.

[15] S. Schmid, R. Wattenhofer, “Algorithmic models for sensor networks”, IPDPS 2006, (2006).

[16] X. Zhu, B. Tang, H. Gupta, “Delay efficient data gathering in sensor networks”, Proc. of MSN 2005
(LNCS 3794), (2005) 380–389.

29

