
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

2008

Query Mesh: An Efficient Multi-Route Approach to Query Query Mesh: An Efficient Multi-Route Approach to Query

Optimization Optimization

Rimma V. Nehme

Karen Works

Elke A. Rundensteiner

Elisa Bertino
Purdue University, bertino@cs.purdue.edu

Report Number:
08-009

Nehme, Rimma V.; Works, Karen; Rundensteiner, Elke A.; and Bertino, Elisa, "Query Mesh: An Efficient
Multi-Route Approach to Query Optimization" (2008). Department of Computer Science Technical
Reports. Paper 1698.
https://docs.lib.purdue.edu/cstech/1698

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

Query Mesh: An Efficient
Multi-Route Approach to Query

Optimization

Rimma Nehme
Karen Works

Elke Rundensteiner
Elisa Bertino

CSD TR #08-009
March 2008

Query Mesh: An Efficient Multi-Route Approach to
Query Optimization

Rimma V. Nehme#1, Karen Works∗2, Elke A. Rundensteiner∗3, Elisa Bertino#4

#Purdue University, West Lafayette, IN 47906 USA
1rnehme@cs.purdue.edu, 4bertino@cs.purdue.edu
∗Worcester Polytechnic Institute, Worcester, MA 01608 USA

2kworks@cs.wpi.edu, 3rundenst@cs.wpi.edu

Abstract— In most database systems, traditional and stream
systems alike, the optimizer picks asingle query plan for all
data based on the overall statistics of the data. It has however
been repeatedly observed that real-life datasets are non-uniform.
Selecting a single execution plan may result in a query execution
that is ineffective for possibly large portions of the actual data.
In this paper, we present a practical alternative to the current
state-of-the-art query optimization techniques, termed amulti-
route query meshmodel (or short QM). The main idea of QM
is to compute multiple routes (query plans), each designed for
a particular subset of data with distinct statistical properties.
Based on the execution routes and the data characteristics,a
classifier model is induced. The classifier is used for efficient
partitioning of the new data to assign the best route for query
processing. We formulate theQM search space and analyze its
complexity. To find optimal query meshes, we design theOpt-QM
algorithm. Faced with a dilemma – whether to determine distinct
data subsets or to compute a set of execution routes first, we
design several heuristics that can effectively find good quality
query meshes very efficiently. For runtime query processing,
we employ a Self-Routing Fabric (SRF) infrastructure which
supports shared operator processing and has near-zero routing
overhead. Results of our experimental study with real-lifeand
synthetic data indicate that QM-based approach consistently
provides better query execution performance for skewed datasets
compared to the state-of-the-art alternatives, namely both the
traditional systems that employ a single pre-computed plan
execution and also the systems that determine different routes
on-the-fly.

I. I NTRODUCTION

A. Single versus Multiple Execution Plans
Most modern query optimizers determine asingle “best”

plan at compile time for executing a given query [1]. The
execution cost for alternative plans is estimated and the one
with the overall cheapest cost is chosen. The cost typicallyis
estimated based on the average statistics of the data as a whole
as the objective is to findone plan for all data. However,
significant statistical variations of different subsets ofdata
may result in poor query execution performance [2]. The
main drawback is the very coarse optimization granularity:a
single execution plan is chosen for all data. Such “monolithic”
approach can miss important opportunities for effective query
optimization [3], [2], [4].
Network Traffic Data : In Internet and telecommunication
networks, traffic non-uniformity is inherent [5]. Some destina-
tion(s) may be more popular than others, e.g., certain web sites
get higher visitation rates. Different network traffic may also

have different characteristics. For example, multimedia packets
may be discarded by some routers due to congestion and due to
multimedia applications being tolerant to missing data. Voice
packets, however, transmitted via reliable protocols, will be
guaranteed to travel through all routers. For queries monitoring
network traffic, query processing could potentially benefitby
tailoring plans for different network traffic types.
Stock Market Data: Stock market data is known to be not
uniform [6]. The prices of stocks quickly reflect information
concerning current events and the expectations in the future.
Some categories of stocks may go up, others may go down as
a result of the same event. Thus, query plans for a financial
monitoring application could be customized for different stock
types, based on either the region or the industry or both.

We can observe from the examples above that real-life data
tends to benot uniform. Clearly, a single execution plan often
is not likely to be able to serve well many of these rather
diverse subsets of data, leading to seriously inefficient query
processing for some or possibly huge fractions of data [2].

An extreme solution to tackle this problem is the Eddy
system [7] and its CBR extension [3]. Here, individual tuples
are routed through operators one-by-one, and query plans are
modified on-the-fly at the tuple-granularity level by changing
the order of query operators to which tuples are routed.
Conceptually, every tuple may be processed via a unique
query plan, resulting in amultiple planssolution. However,
such extremely fine-grainedand eager re-optimization may
incur impractically large costs [8], [9]. Further, Eddy does
not exploit the observation that tuples with identical content
or similar statistical properties are likely to be best served by
the same query plan, thus missing the opportunity to share the
processing and reduce the execution overhead [3], [10].
B. Spectrum of Query Optimization Techniques

Query optimization techniques can be classified along two
dimensions: the timing of optimization decision and the gran-
ularity of optimization (Figure 11). Some database systems
determine query plans2 in advance (at compile time), while
others forego pre-computed plans and “route” tuples on-the-
fly (at runtime). We observe that runtime versus compile-time

1Figure 1 is not an exhaustive survey of all query optimization techniques. It merely
illustrates where our proposed solution fits among the existing approaches.

2We use terms “plans” and “routes” interchangeably in our work.

Optimization Granularity

Plan-level Tuple-levelGroup-level

O
pt

im
iz

at
io

n
T

im
e

C
o

m
p

ile
-t

im
e

R
u

n
ti

m
e

one route
per tuple

 one route per
group of tuples

one route
for all tuples

Route-less Systems

Route-oriented Systems

 Mesh

Eddies

Parametric
Query

Optimization

Traditional
Query

Optimization

Query

Adaptive
Ordering of
Pipelined
Operators CBR

Selectivity-based
Partitioning

Conditional Plans

Fig. 1. Overview of the spectrum of different query optimization techniques.

query optimization solutions have a close resemblance to net-
work communication methods which can be: (1)connection-
oriented, also known as circuit-switched, where a connection
with the receiver is established in advance before passing any
data, or (2)connection-less, also known as packet-switched,
where data is sent without establishing an a priori connection,
and the next hop of a packet is determined by a router
during the transmission at runtime [11]. The parallel between
route optimization in networking and query optimization in
databases is evident. Query operators can be viewed as a
“network of routers” and the query plan as a “route” through
all operators in the “network”. In databases, the goal is to find
the “cheapest” route through the “network” of query operators.

Given this parallel, we classify the state-of-the-art query
optimization techniques according to optimization time dimen-
sion asroute-orientedandroute-lesssolutions. By “oriented”,
we mean that routes are established in-advance. Database
systems, including all commercial DBMSs [12], [13], [14]
that tend to establish a query plan before runtime execu-
tion, employ theroute-orientedparadigm. Recent systems,
like Eddies [7], which determine for each tuple at runtime
which operator should process it next, fall under theroute-
less category [7], [15], [16]. Advantages of route-oriented
query processing include: (1) faster routing, since routesare
computed in advance, (2) savings on the route computation,
since routes are computed only once, and (3) savings in
tuples’ sizes, since all tuples are processed using the same
route, and hence individual tuples do not need to carry their
“itineraries” (i.e., lineage) as it is done in Eddies. In practice,
however, almost all route-oriented solutions pre-computea
single route [17], [18]. The main disadvantage of suchsingle
route-orientedsolutions, as was mentioned in Section I-A, is
their optimization coarseness. On the other hand, route-less
solutions tend to be “multi-route” by default, hence we term
themmulti route-lesssolutions [7], [16]. Their advantages are
that they employ multiple routes for processing of different
data subsets, thus improving query execution performance.
Since such solutions make decisions at runtime, they can
also adapt quickly to changes in the environment. However,
the disadvantages here include: (1) high per-tuple state, (2)

r2

r3

Classifier Execution Routes

Data
Stream

Query Mesh

c2

c1

c3

c4

r1
op1

opn...

op2

opn...

opn

op1...

Query
Results

Query operator

Test condition

Fig. 2. Conceptual view of query mesh.

unavoidable per-tuple processing overhead, and (3) variable
sometimes unpredictable tuple latencies, due to differentindi-
vidual tuple routes being determined at runtime.

In summary, optimizing too frequently as in the multi route-
less solutions may result in wasted resources, but optimizing
too coarsely as in the single route-oriented solutions may miss
critical opportunities to improve query execution performance.
We thus propose a practical middle ground between these
two extremes in the form of amulti route-orientedquery
optimization solution calledQuery Mesh(or QM, for short).

C. Our Proposed Solution: Query Mesh

The main idea ofQM is to compute multiple routes,
each optimized for different subsets of data, and then infer
a classifier model based on the computed set of execution
routes and the data subsets’ characteristics. At runtime, the
new data is effectively classified (i.e., partitioned) using the
classifier into distinct subsets, and each subset is processed
using a route customized for its respective local statistics.
The different routes in query mesh are executed concurrently.
We compare our proposed solution against the state-of-the art
query optimization techniques in detail in Section VII.

A query mesh solutionQM is composed of theclassifier
and themultiple routes3 (see Figure 2). While many classifi-
cation models could be plugged into query mesh, e.g., neural
networks, naive bayes classifier, etc. [19] in this paper, we
employ adecision tree(DT) classifier. In our experiments, we
have observed that usingDT classifier approach can “zero-in”
on the sought-after route very quickly with a small number of
comparisons.

Finding an optimal query mesh solution for a given query
is an expensive process due to the combinatorial explosion
in the size of the optimization space (Section III-E). We
formulate the complexity of the query mesh search space and
the algorithmOpt-QM which can find optimal query meshes
(Section III-B). Opt-QM, however, may be not feasible in
practice due to its exhaustive nature in enumerating the search
space. As viable alternatives, we propose efficient search
heuristics to find good quality query meshes very quickly. To
further optimize these heuristic-based searches, we describe
several approaches to find a good startQM solution which
can help in finding a high-qualityQM faster (Section IV).

For the efficientQM-based query execution, we design an
infrastructure, called theSelf-Routing Fabric(SRF), which
provides a near-zero route execution overhead.SRFeliminates

3We also refer to the set of execution routes in aQM solution as amulti-route
configuration.

the expensive central dataflow router, such as the Eddy oper-
ator [7]. The query operators route data tuples in a distributed
fashion, thus eliminating the “backflow” problem associated
with having a central router operator [8]. The routing is based
on the route specifications, encoded inside meta-data tuples,
which are interleaved with the data. To keep memory and CPU
overhead minimal, the routing decisions are applied at the
granularity of groups of tuples, which we denote as “routable
clusters” or short “rusters” rather than individual tuples. The
ruster approach minimizes the overhead and guarantees that
only the tuples that share the same best route are batched
together for shared processing.

D. Our Contributions
The contributions of our work are summarized as follows:

1) We introduce a multi-route query optimization approach,
calledQuery Mesh(shortQM). QM is a general model
composed of the learning classifier and the multi-route
structure, where each route is customized for different
subsets of data.

2) QM employs machine learning metric to generate an ef-
ficient classifier used for data partitioning and assigning
the most suitable routes with minimum overhead.

3) We present theOpt-QM algorithm for optimal query
mesh solution search and analyze its complexity.

4) Due to the complexity of optimalQM search, we devise
a repertoire of alternative cost-based search heuristics
that efficiently find high-quality query meshes.

5) We describe aSelf-Routing Fabric(SRF) infrastructure
which efficiently implements concurrent multi-route ex-
ecution. The novelty ofSRFis its support of multi-route
routing by the operators without constructing physical
execution plans, i.e., operator pipelines.

6) We thoroughly evaluate theQM approach through exper-
iments comparing it to the state-of-the-art solutions, in-
cluding the single route-oriented and the multi-route-less
approaches. Our results show that for skewed datasets,
QM gives substantial performance improvements over
the alternatives with minimal overhead.

The rest of this paper is organized as follows. Section II
provides the preliminaries and overviews theQM architecture.
Sections III and IV discussQM-based optimization. Section
V describesQM-based query execution. Section VI presents
our experimental evaluation. Section VII discusses the related
work, while Section VIII concludes the paper.

II. T HE QUERY MESH: MAIN IDEA

A. The Query Mesh Problem
For a given query, we determine a multi-route configuration

that can give the best overall query execution performance.In
addition to multiple concurrent routes employed for execution,
a QM solution also includes the classifier component which
at runtime assigns the routes for processing to the incoming
data tuples. Clearly the classifier cost must be considered
during query optimization, as classification is now a part of
the overall query execution process. In order to determine the
best query mesh, the query optimizer uses atraining dataset

Query Mesh
Search

Self-Routing Fabric (SRF)

opi

opj

opk

0

1

2

3

opl

4

...
...Data

Streams
...

Route Execution

tuple cluster

r-token

ruster

offline

Online
Classifier

online

Query

Query Mesh
Classifier

Query Mesh
Routes

Query Mesh Optimizer

statistics

Query Mesh Executor

OI-array Op-modules

Fig. 3. Query mesh framework.

that accurately represents the distribution of the data expected
to come in the future – a common approach in many database
systems [3], [20] and in prediction models in data mining alike
[21]. For streaming databases, relying on samples of data is
unavoidable, since it is impossible to “see” all of the streaming
data a priori. The query mesh optimization problem can be
stated as follows.
Query Mesh Optimization Problem: For a given queryQ
and a representative datasetT , find a query mesh solution
QM consisting of multi-route configurationR and classifier
C that results in the lowest execution cost for tuples inT .

Several practical considerations make this problem chal-
lenging: (1) Finding such optimal solution is complex, because
there is a combinatorial explosion of route configurations for
all possible subsets of training data to consider. (2) Selecting
a good training dataset is challenging, as its size and quality
directly affect theQM search space. With smaller training
data, we may be able to enumerate all possibleQM solutions,
but the training set may represent the real data with low
accuracy. Whereas with a larger dataset, we may be able
to more accurately represent the actual data, yet at the cost
of an extremely large search space, making it impossible
to enumerate all solutions. (3) Moreover, the structure of
the classifier and the number and the choice of particular
execution routes are strongly dependent on each other. A
change in one component may cause a modification to the
other, subsequently affecting the cost of the overallQM
solution. This introduces a dilemma – how should a query
mesh be computed? Both scenarios below can be exploited:
first, training data gets partitioned based on the similarity
of attribute values – one criterion among several possible
alternatives for partitioning of data, and then the routes are
computed for the different data partitions. Alternatively, some
effective routes are computed first, using the training data
statistics, and then the data partitions and the classifier model
are induced based on the computed routes. Clearly, query mesh
design is a complex problem.

B. Our Assumptions
In this paper, we consider select-project-join queries, how-

ever, ideas presented are general. We focus on dynamic

data stream management systems (DSMS), yet the underlying
execution system could either be a static DBMS or a dynamic
DSMS. We consider optimization of a single query and assume
stable conditions. The problem of adaptive processing when
either the environment or the data characteristics change
during query execution is outside the scope of this paper.

C. Query Mesh Framework Overview
The QM framework consists of two primary components:

query mesh optimizerandquery mesh executor(see Figure 3).
For a given query, using training data and statistics, theQM-
based optimizer computes aQM solution offline. The query
mesh executor takes theQM solution (the classifier and the
multiple routes) generated by the optimizer and instantiates
the QM physical runtime infrastructure. We describe each of
these components in detail next.

III. QUERY MESH OPTIMIZER

A. Data Sampling
The selection of the training data, i.e., which sampling tech-

nique should be employed to accurately depict the distribution
of the data, is a research topic in its own right. For the purpose
of this work, we have explored several techniques from statis-
tics, including random sampling with cross-validation [21] and
bootstrapping [22]. Using these methods, we can estimate how
well the selected training dataset is going to represent future
as-yet-unseen data, and re-sample the data until the desired
accuracy is achieved [21]. In practice, the training dataset
may also be collected using statistics from previous (historical)
execution runs of the query or by employing a similar approach
to plan staging[23], where optimization and execution are
interleaved. The first stage of query processing may use a
traditional single plan for execution while simultaneously
collecting data statistics and training data. Using the samples
from the first stage as the training set, the query mesh can be
computed by the optimizer and then used for the execution in
the next (QM-based) stage.

B. Query Mesh Search Space
Given a query and training data, we now study how many

possible multi-route configurations exist. These configurations
would have to be evaluated in order to find the optimalQM
solution, thus they comprise theQM optimization space.

The training dataset size has a direct impact on the size of
the query mesh search space. Hence, the training dataset must
be selected wisely to be compact yet sufficiently representative
of the real data. To reduce the size of the search space,
we can perform a “compression” on the set of sampled data
tuples by clustering the tuples based on the similarity of data
values. Any clustering algorithm from the literature can be
applied here4 [24], [25]. After clustering, each tuple cluster
serves as an abstraction for a subset of the sample dataset.
Then acentroid tuple [26] is chosen to represent each tuple
cluster. For simplicity of discussion, in the rest of the paper,
we will refer to such centroid tuple as atraining tuple t

and a dataset that consists of such centroid tuples, i.e., the

4In our implementation, we usek-means clustering – one of the most commonly used
algorithms.

tuples summarizing their respective tuple clusters, as atraining
datasetT .

Since routes are computed based on the training dataset
T , the spectrum of possible multi-route configurations ranges
from an individual route per each training tuplein T to a
single route for all tuplesin T . Let n denote the cardinality of
the training tuple setT , i.e.,n = |T |. The upper-bound for all
possible multi-route configurations corresponds to the num-
ber of distinct possible ways of assigningn distinguishable
tuples to one or more routes. The number that describes this
value is theBell number(Bn), which represents the number
of different partitions of a set of n elements [27]. In our
work, a multi-route configuration, which represents the set
of execution routes, is apartition of the training tuple setT
defined as a set of non-empty, pair-wise disjoint subsets ofT

whose union isT (see Figure 4). For example,B3 = 5 because
the 3-element set{1, 2, 3} can be partitioned in 5 distinct
ways:{{1},{2},{3}}, {{1},{2,3}}, {{2},{1,3}}, {{3},{1,2}}
and {{1,2,3}}5. The Bell numberdescribes the size of the
query mesh search space, i.e., the total number of all possible
partitions for an arbitrary training datasetT . Mathematically,
the Bell number is represented as the sum ofStirling numbers
of the second kind [27]:

Bn =

n
∑

k=1

S(n, k) =

n
∑

k=1

1

k!

k
∑

j=1

(−1)
k−j

(

n

k

)

jn

. (1)

The Stirling numberS(n, k) is the number of ways to partition
a set of cardinalityn into exactlyk nonempty subsets. Figure
4 depicts the lattice-shaped query mesh search space for a set
of training tuples of sizen = 4 and the two examples of two
different partitions with 2 and 4 routes respectively. The total
number of different partitions here equals 15 (B4 = 15).

1234

1/2/3/4

1/23/4 14/2/3 1/24/3 13/2/4 12/3/4 1/2/34

14/23 1/234 124/3 13/24 123/4 134/2 12/34

Each training tuple
with an individual route

One route for all training data

A partition of a set
with 4 routes:

Representation of partitions
via Euler diagrams

A partition of a set
with 2 routes:

r2

r1 r2

r2

r1

r2

r3

r4

Fig. 4. Lattice-shaped query mesh search space.

C. Query Mesh Optimizer Sub-problems
In this section, we first characterize the two sub-problems

of query mesh selection. We then proceed with the cost model
and the search algorithms used by theQM-based optimizer.
Classifier Selection Sub-problem: One of the sub-
components ofQM is the classifier, which is computed
based on the existing routes and the training data attribute
values. There is a wide range of classifiers available in
the literature [19], each with its strengths and weaknesses.
Determining a suitable classifier for a given problem is still
more an art than a science. This is due to the fact that

5For brevity, we denote{{1},{2,3}} as “1/23”.

classifier performance and quality depend greatly on the
characteristics of the data to be classified [21].

In our work, we employ adecision tree(DT) for the
classifier component of query meshes.DT is attractive for
the following reasons [28]: (1) Complex decisions can be
approximated by the conjunction of simpler local decisions
at various levels of the tree. (2) In contrast to other classifiers,
where each data tuple is tested against all classes, thereby
reducing efficiency, in aDT classifier, a data tuple is tested
against only certain subsets of test conditions, thus eliminating
unnecessary computations. As we require, ourDT -based
classifier thus is very efficient, because most tuple features
are deterministic and often common to a group of tuples.

The algorithm for the decision tree induction has the fol-
lowing steps. The tree is constructed in a top-down recursive
divide-and-conquer manner. At the start, all training tuples are
at the root. Training tuples are partitioned recursively bythe
tree induction algorithm based on selected test attributes. Test
attributes are selected on the basis of a common in machine
learning statistical measure, calledinformation gain[19]. The
information gainI (Y,X) for a given data tuple attributeX with
respect to the target routeY6 is the reduction in uncertainty
about the value ofY when we know the value ofX. The
uncertainty about the value ofY is measured by itsentropy
H(Y). The uncertainty about the value ofY when we know
the value ofX is given by theconditional entropyof Y given
X, H(Y|X).

I(Y, X) = H(Y) − H(Y |X). (2)

When Y and X are discrete variables that take values in
{y1...yk} and {x1...xl}, then the entropy ofY is given by:

H(Y) = −

i=k
∑

i=1

P (Y = yi) log2(P (Y = yi)). (3)

The conditional entropy ofY given X is:

H(Y |X) = −

j=l
∑

j=1

P (X = xj)H(Y |X = xj). (4)

If the predictive variableX is not discrete but continuous then
in order to compute its information gain with respect to the
route identifier attributeY we consider all possible attributes,
Xθ, that arise fromX when we choose a thresholdθ on X .
θ takes values from all the values ofX . Then the information
gain is simply:

I(Y, X) = argmax
Xθ

I(Y, Xθ). (5)

For more details on the above metrics, we refer the reader to
[19]. Conditions for stopping tree growth are: (1) all training
tuples for a given node belong to the same route, (2) there are
no remaining attributes for further partitioning, thenmajority
voting[29] is employed for classifying the leaf, or (3) there are
no training tuple samples left. The leaf nodes of the decision

6The targets in the context of our work are the execution routes. The value of the
target attributeY represents a route label (illustrated Figure 5).

0

1

2

3

4

5

6

<4,2,5,6>

<4,2,6,5>

<6,4,5,2>

<6,5,2,4>

Data
Stream

Route
Labels

Self-Routing Fabric (SRF)

A = a2

A = a1

A = a3

B = b1

B = b1

B = b2

B = b3

B = b2

B = b3

Classifier

Example
execution

Query
results

Fig. 5. Example ofQM-based execution.

tree contain the labels of the routes to be used for processing
of the tuples that reach those leaf nodes after classification.
Route Selection Sub-problem: The second sub-component
of QM solution is the set of execution routes, i.e., the multi-
route configuration. LetO = {op1,..., opn} be the set of
operators in a query, whereopi ∈ O (1 ≤ i ≤ n) is σ, π

or ./ operator. A routeri denotes an operator ordering,ri =
<op1,..., opn>. The computation of a single best route for set
of data is viewed as a “black box” inQM framework. That
is, the optimizer invokes an existing procedure to compute a
route for a given data subset based on its statistics using any
of the state-of-the-art techniques [30]. For example, similar
to [31], the best sequence of operators can be determined by
ordering operators in an increasing order of operatorrank,
where the rank of an operatoropi is defined asrank(opi)
= c(opi)

1−s(opi)
, where c(opi) is the cost of operatoropi and

s(opi) is its selectivity. Alternatively, the optimizer can use
common dynamic programming [32] or transformation-based
[18] solutions.

Putting all of the above together, Figure 5 illustrates an
example of a query mesh solution, where an example of
classification with subsequent route execution for a data subset
is depicted by a thick black arrow.

D. Query Mesh Cost Model

Next, we describe the cost model used by theQM-based
optimizer to compare query mesh solutions when searching
for the bestQM. The cost of aQM consists of three main
components described below:
(1) Cost of routes: Each execution routeri composed of
operators has a per-tuple costc(ri) to process a tuple using that
route. c(ri) represents the expected time to process a single
tuple to completion, meaning either to output the tuple as a
result or to drop it usingri. The cost ofri is commonly
calculated using two quantities: (i)cost of operator, which
represents a per-tuple cost ofopi, and (ii) selectivity of
operator, which is defined as the fraction of tuples that are
expected to satisfyopi.
(2) Cost of classification: Since each arriving tuple must be
processed by the classifier first, the classification cost must be
included in the overall execution cost. The classification cost
of decision tree (DT) classifier is the cost of traversing the
decision tree to reach a leaf node, denoted asc(DT |ri), i.e.,
the cost of aDT traversal from the root to the leaf node with
a label for the routeri. The cost is a function of the number

of nodes in the path, combined with the cost of computation
at each test node of the classifier.
(3) Multiple routes overhead: Maintaining multiple execution
routes introduces system overhead such as memory, process-
ing and scheduling costs. For simplicity of presentation, we
abstract all overhead associated with maintaining a route into
a single parameter, denoted byc(rovh).

The total cost of the query meshcost(QM)thus is:

cost(QM) =

k=|P |
∑

p=1

fp ∗
[

c(DT |rp) + c(rp|p)
]

+ k ∗ c(rovh).

wherep represents a different subset in a partitionP , k is the
number of routes in theQM, k = |P | ≤ |T |, fp is the expected
fraction of tuples from the training datasetT to be processed
by a particular routerp, and c(rp|p) is the cost of the route
for the subsetp.

E. Optimal Query Mesh Search Algorithm
As a baseline, we now introduceOpt-QM algorithm which

is guaranteed to find the optimal query mesh solution (Figure
6). Opt-QM traverses all the points in the lattice-shaped search
space (Figure 4) starting from the extreme where training
tuples representing all possible data subsets have individual
routes, to the other extreme where all data is processed using
a single route.Opt-QM applies a two-step process. First,
Opt-QM computes thepower set P(T)for the given training
datasetT . The power set ofT is the set of all subsets of
T . Given the power setT , the algorithm estimates the route
execution cost for each subset inP(T) using its statistics.
Second, the algorithm puts together partitions composed out
of these subsets and aggregates their costs to derive the overall
cost ofQM. The query mesh with the smallest cost out of all
possible solutions is returned as a result. By using the two-
step approach above, the computations can be re-used and the
results memoized.
Complexity Analysis: The complexity of Opt-QM is
O(Bn*E), where Bn is the Bell number (see Section III-
B) and represents the upper-bound of all possible partitions
and E is the time complexity of the algorithm used to find
the execution route. The complexityE depends on the actual
algorithm employed by the optimizer for route computation,
e.g., E = O(n2n) for dynamic programming [33], orE =
O(n2) for rank-based ordering algorithm [31], [34]. Clearly
with large training datasets,Opt-QM algorithm is not scalable
in practice. The problem of finding optimal routes alone is
already known to beNP-hard [31]. By adding a multi-route
factor, we increase the complexity of the problem further.
Consequently, both the exponential running time and the space
requirements provide a strong motivation to design efficient
search heuristics.

IV. QUERY MESH SEARCH HEURISTICS

A. Main Idea
We propose a series of cost-based heuristics that guarantee

to find a good QM solution in reasonable time without
exhaustive enumeration of the search space. The heuristics
have the following three main steps:

Algorithm Opt-QM
Input: T = training dataset

1: form a power setP (T) based on the set of tuplesT
2: for each setS ∈ P (T)
3: computestats(S)
4: computebest route(S) usingstats(S)
5: repeat
6: put together apartition(T) out of several sets (from steps 1-4) and construct a

query meshQM solution (classifier and routes)
7: if (cost(QM) is the smallest so far)then
8: bestQM= QM
9: else

10: discardQM
11: end if

12: until (all possible partitionsBn have been enumerated)

Fig. 6. OptimalQM search algorithm

1) A start QM solution is chosen and its costcost(QM)is
computed. The startingQM is set as the best solution
considered so far, i.e.,bestQM= QM.

2) A search strategyis iteratively applied to traverse the
query mesh search space to find another solutionQM’.

3) The costcost(QM’) is computed and compared to the
cost of thebestQMfound so far. IfQM’ has a smaller
cost, thebestQM is replaced withQM’. Steps 2-3 are
repeated until astop conditionis reached.

Next, we propose different strategies to address the follow-
ing questions: (1) How to pick a promisingstart solution QM?
(2) How toimprovethe start solution by employing an effective
search strategy? (3) Finally, when should the search for the
bestQM terminate, i.e., what should be thestop condition?

B. Selecting a Start Solution
Selecting a goodstart solutionis essential forQM quality

when using a search heuristic. A search algorithm typically
performs walks in the solution space via a series of moves. The
number of moves is limited. Hence, if a poor start solution is
chosen, the search algorithm might not be able to reach a good
quality QM. In this section, we propose several approaches.
Content-Driven: The content-driven approach first groups
training tuples based on the similarity of their content7. The
query mesh optimizer may partition continuous domain data
based on the pre-defined thresholds (e.g., in the form of simple
ranges) that define how “close” the training tuples are to one
another based on their content. Such scheme is similar in spirit
to the content-based partitioning technique in CBR [3]. The
motivation is that similar content means similar selectivities
and thus the same preferred route. Then the best route is
computed for each group. Based on the tuple groups and
their routes, a decision tree is computed to complete theQM
solution.
Route-Driven: The route-driven method first computes the
routes for each of the training tuples separately. Thereafter
the tuples aregrouped-bytheir respective routes, thus form-
ing groups composed ofroute-equivalenttuples. Lastly, the
decision tree induction is performed over the route-equivalent
groups of tuples. This method is the reverse of theContent-
Driven approach. The motivation behind this approach is that

7Since the training tuples already represent the summaries of their respective clusters
of real data tuples, this step resembles hierarchical clustering.

tuples with different content may still share the same best
route.
Other: Other approaches includeRandom-Pick, where the start
solution is a query mesh with the smallestcost(QM) out of
x randomly selected solutions. Other possible start solutions
may includeExtreme-N-Routes, where every training tuple
representing a cluster of real sampled tuples has its own unique
route (the bottom of the lattice in Figure 4), orExtreme-1-
Route, where all training tuples, thus all data, have the same
route (the top of the lattice in Figure 4). The latter corresponds
to a single plan execution strategy, just like in traditional query
optimization systems.

C. Selecting a Search Strategy
For a query meshsearch strategy, we adopt and adapt two

well-known randomized search algorithms: Iterative Improve-
ment and Simulated Annealing. Both guarantee to find a good
QM solution in reasonable amount of time [35], and thus are
viable alternatives to the exhaustive query mesh search.
Iterative Improvement QM (II-QM): Figure 7 depicts the
iterative improvementQM algorithm pseudo-code. The inner
loop of II-QM is called a local optimization. A local opti-
mization starts at a random state and improves the solution
by repeatedly accepting random downhill moves (i.e.,QMs
with decreasing costs) until it reaches a local minimum.II-
QM repeats these local optimizations until a stop condition is
met. Then it returns the local minimum with the lowest cost
found. As time approaches∞, the probability thatII-QM will
visit the global minimum approaches 1 [35]. However, given
a finite amount of time, the algorithm’s performance depends
on the start solution, the cost model and the connectivity of
the search space determined by the neighbors of each state.

Algorithm II-QM
Input: bestQM- start solution query mesh

1: while (not stop condition) do
2: QM = start solution (e.g., chosen at random, or using heuristics from Section

IV-B)
3: while (not local minimum(QM)) do
4: QM’ = random solution inNEIGHBORS(QM)
5: if (cost(QM’) < cost(QM)) then
6: QM = QM’
7: end if
8: end while
9: if (cost(QM) < cost(bestQM)) then

10: bestQM= QM
11: end if
12: end while

13: returnbestQM;

Fig. 7. Iterative improvementQM search strategy

Simulated Annealing QM(SA-QM): In simulated annealing
(SA-QM), initially the “temperature”τ parameter is set to high.
Thus a great deal of random movement in the search space
is tolerated. Later the “temperature” parameter is lowered,
and thus less and less random movement is allowed, until
the solution settles into a final “frozen” state. This allows
the heuristic to sample the solution space widely when the
“temperature” is high, and then gradually move towards simple
steepest ascent/descent as the “temperature” cools. Thus the
search can move out of local optima during the high tem-
perature phase. TheSA-QM algorithm accepts a worsening

move with a certain probability. This probability declinesas
τ declines, by analogy the randomness in the movements
decreases as the temperature falls. Whenτ is small enough the
algorithm accepts only the improving moves. Figure 8 sketches
the pseudo-code forSAquery mesh search.

Algorithm SA-QM
Input: bestQM- start solution query mesh

1: Start-up:
2: QM = bestQM

Choose an initial (high) temperatureτ > 0
Choose a value forρ, the rate of cooling parameter

3: Choose a random neighbour ofQM and call itQM’
Calculate the cost difference in the query meshes:

4: δ = cost(QM’) - cost(QM)
//Decide to accept the new query mesh or not

5: if (δ ≤ 0) then
6: QM = QM’ //QM’ is better than or same as QM
7: else
8: QM = QM’ with probability e

−δ
τ

9: end if
10: if (stop conditionis met) then
11: exit with QM as final solution
12: else
13: reduce temperature by settingτ=ρ*τ , and go to Step 3
14: end if

Fig. 8. Simulated annealingQM search strategy

D. Selecting a Stop Condition
The stop conditionlargely depends on the search strategy

employed. The query mesh search may stop when eitherk

iterations have gone by (e.g., inII-QM), or the solution did not
improve in the last several rounds (e.g., inSA-QM) indicating
that the search process has reached a plateau. Alternatively, the
search can be time-bounded or resource-bounded, e.g., when
memory or CPU utilization limits are set.

V. QUERY MESH EXECUTOR

A. Query Mesh Execution Infrastructure Overview
The query mesh executor takes theQM solution computed

by the optimizer and instantiates theQM runtime infrastruc-
ture. The runtime system consists of theonline classifier
operatorand the query operators which are instantiated inside
theSelf-Routing Fabric(SRF) infrastructure (Figure 3). When
new tuples arrive, they first get processed by the online
classifier operator to determine the routes that would be used
for their processing. Thereafter, the tuples are forwardedinto
the SRF for the actual query evaluation according to their
routes.
B. Forming Routable Tuple Clusters

Arriving tuples are classified into “routable clusters” –
groups of tuples with similar routes, using aclassification
window WTC , whereWTC is a tumbling window [36]. We
use a tumbling window, because it partitions a stream into non-
overlapping consecutive windows, so that a tuple is classified
only once. If tuples within a time window are known to be
correlated, then classification overhead can be minimized by
classifying one tuple per window and then sending the rest of
the tuples on the same route as the classified tuple. We denote
a set of tuples that due to classification are assigned to the
same route aroutable cluster, or short “ruster”.

Definition 5.1: (Ruster) LetSi be a data stream. A routable
clusterRC is a window-bounded set of data tuples{s1...sk}
⊆ Si[WTC

i] assigned to the same routeri by the classifier.

Tuples in the ruster have timestamps in the time interval
[RC.ts - WTC

i , RC.ts], where RC.ts is the time of tuple
classification andWTC

i is the size of the classification window.
The pre-computed route for aruster is stored in aroute

token(or shortr-token). R-tokensare metadata tuples, similar
in spirit to streamingpunctuations[37], embedded inside
data streams, thus partitioning the data tuples intorusters.
The distinct characteristics ofr-tokens include: (i) r-tokens
are “self-describing” as they carryrouting instructionsfor
streaming data to convey to query operators, (ii)r-tokens
precede the data tuples they are applicable to, and (iii) routes
in the r-tokensare specified in the form of anoperator stack
based on the design of theSRF, which we describe next.

C. Self-Routing Fabric and Route Encoding
SRFhas the following two components (see Figure 3):

• Operator Index Array (OI-array): OI-array stores the
pointers to the operators’ input queues. Each indexi cor-
responds to a unique operatoropi. Index “0” is reserved
for the SRFglobal output queue, where the result tuples
are placed to be sent to the applications.

• Operator Modules(Op-modules): Operator modules are
the actual operators processing the tuples. We focus on
select, project and join queries in this paper.Selection
and projection operators are simple: when an operator
receives an inputruster, it filters the tuples based on
the selection predicate or projects out unwanted tuple
attributes. For joins, we have designedone-way-join-
probeoperators, similar in spirit toSteMoperators [16],
which essentially correspond to a half of a traditional join
operator. Such operators are formed over a base stream,
supporting theinsert (build), search(probe), anddelete
(eviction) operations for window purging. SuchSteM-
like operators eliminate the burden of state management,
when different routes are executed concurrently. For more
details, we refer the reader to [16].

Example: Consider anSRF with the operator index ar-
ray as follows:OI-array[1] = opi, OI-array[2] = opj , OI-
array[3] = opk, and OI-array[4] = opl. Then a router =
<opj ,opk,opi,opl> will be encoded in anr-token as a stack
<2,3,1,4>, where ‘2’ is the first operator in the route and
‘4’ is the last. The items in the stack represent the indexes
of the operators in theSRF. A ruster is always routed to the
operator that is currently the top node in the routing stack.
After an operator is done processing theruster, the operator
“pops” its index from the top of the routing stack in ther-
token, and then puts the ruster into the next (now the top)
operator’s queue. Ifall tuples from aruster are dropped by
an operatoropi, then theruster is not processed any further
and itsr-token is discarded. When ther-token operator stack
is empty, theruster tuples are forwarded to the global output
queue reserved by the index “0” and thus to the application(s).

The novelty of theSRFinfrastructure is in that it completely
eliminates a central router operator, thus removing a “back-
flow” bottleneck problem present in the multi-route systems
[8]. Another key advantage (although not explored in this

paper) is that theSRF infrastructure makesQM adaptivity a
very inexpensive process, since routes operator pipelinesare
not physically created like in traditional query executionplans.
If a QM solution needs to change, the only thing that needs
to be modified is theDT classifier without affecting the rest
of the execution infrastructure.

VI. EXPERIMENTAL STUDY

We have implemented ourQM approach in the DSMS
CAPE [38] written in Java with Java 1.6.0.0 runtime, run-
ning on Windows Vista with Intel(R) Core(TM) Duo CPU
@1.86GHz processor and 2GB of RAM. The objective of
our experimental study is twofold: (1) to compare ourQM
model with traditional single-plan and multiple (route-less)
plan approaches in terms of output rate and overhead, and
(2) to examine theQM optimization costs and its possible
tuning choices. In our experiments, we used both synthetic
and real-life datasets described below:
Stocks-News-Blogs-Currency dataset: We have implemented
a Web application that continuously collects NYSE stock
prices, currency exchange rates (provided via webservice by
Yahoo Finance), news and blogs from different geographic
regions and on different subjects (provided via RSS feeds).
Lab dataset: This dataset contains readings from sensors in the
Intel Research, Berkeley Lab. The original dataset [3] consists
of a single stream sensor readings. We have partitioned this
dataset by sensor locations into several streams. The sensor
readings are sent to CAPE in generation order, as they would
if the tuples were collected from the sensors in real-time.
Synthetic dataset: We have also implemented a synthetic
stream generator to produce tuples with a variety of parameters
including skewness, selectivity, etc. The generator takesas
parameters the number of streams to generate, the number of
columns in the schema of the streams and the number of tuples
in each stream. A desired number of content-based partitions
for a tuple attribute, their skewness, selectivity and correlation
to other column(s) can additionally be specified.

Our experiments useN -way equi-join queries which
join incoming tuples from N streams S1...SN of the
form: SELECT * FROM S1, S2, S3,...SN WHERE S1.col1 = S2.col1

and ... SN−1.col2 = SN.col1. N-way join query is one of the
core queries in database systems and can be used to discover
correlations across different sources. The sliding windows in
the queries are based on the timestamps present in the data
(as opposed to the clock times when tuples arrived to the
system). In this way, we ensured that the query answers are
the same regardless of the rate at which the dataset is streamed
to the system or the order of tuple processing. Due to lack of
space, the majority of results presented in this section involve
synthetic dataset. However, similar trends were observed with
real-life data as well. The query is an equi-join of 10 streams,
i.e., S0 ./ S1...S9 ./ S10. Unless otherwise stated, the default
values used in the experiments are the ones listed in Table I.

The QM execution framework is compared against alterna-
tive execution models, namely the single route-oriented (SRO),
the multi-route-less (MRL) and the content-based routing

TABLE I

DEFAULTS USED IN THE EXPERIMENTS.

Parameter Value Description
Arrival
Distribution

Poisson Data arrival distribution

µ 500 msec Mean inter-arrival rate
|Tdq| 1,000 # of tuples dequeued by an operator at a

time for processing
p 3-10 # of skewed partitions per stream
|T | 100 tuples Size of training tuple set (sample size =

1,000 tuples)
H SA Default heuristic used to find query meshes
Start
Solution

Route-Driven Query mesh start solution strategy

W T C 1,000 tuples Classification window size
Ruster size 100 tuples Averageruster size

(CBR) [3] solutions8. All four systems were implemented
inside CAPE. We have used a multi-way join operator (short
MJoin) [39] as a representative of SRO. MJoin is a gener-
alization of symmetric binary join algorithms, providing the
best plan for each stream, and thus it became our choice for
a single route-oriented solution. In SRO, data from a stream
follows the same best route computed based on the overall
statistics. For MRL, we used Eddy execution framework with
lottery routing policy [7]. Lottery routing is one of the better
routing policies as it favors not only fast operators but also
operators with low selectivity. CBR was implemented as an
extension to the Eddy system based on the original paper [3].
We use a Round-Robin scheduler in all four systems, which
cycles over the list of active operators and schedules the first
operator ready to execute. When scheduled, an operator runs
for a fixed amount of time bounded by|Tdq|, the number of
tuples that an operator may dequeue from its input queue in
each execution epoch. Round-Robin was chosen as it has a
desirable property of avoiding starvation – no operator with
tuples in its input queue goes unscheduled for an unbounded
amount of time.

A. Experimental Results

Total Number of Tuples Produced: Figure 9(a) shows the
total number of result tuples produced by the four execution
models over time. We ran the query processor using different
solutions for over an hour and show the average output for
the first 60 minutes. We observe that over time the total
number of tuples outputted byQM is significantly larger than
by alternative solutions. In SRO, single plan optimization
coarseness leads to producing a lot of intermediate results
filling up the queues and hindering the performance of the
system. Whereas the multi-routeless system suffers from the
“backflow” overhead, where tuples get continuously routed
back to the central router operator that has to re-examine the
tuples and forward them to the next operator for processing.
CBR suffers from the same overhead as the MRL, plus the
overhead of continuous re-learning. However, through better
routing policy it can achieve better performance than MRL.
Figure 9(b) shows the total number of tuples produced using
the real-life datasets. Although not by as much as in the
synthetic dataset experiment, still the trend is similar – query
mesh outperforms the other three alternatives.

8In the rest of this section, we will refer to these alternative solutions using their
abbreviated names, SRO, MRL and CBR, respectively.

Average Output Rate: Figure 9(c) illustrates the comparison
of the average output rates during different time intervalsfor
the four execution models. We have computed this statis-
tic as follows: we partitioned the execution time into non-
overlapping time intervals, each 10 minutes long. For each
time interval, the average output rate was computed, and then
we took the average of the output rates for all execution
intervals. The output rate isR = N / T, whereR is the output
rate, N is the total number of result tuples produced during
the interval andT is the length of the time interval (in min).
Each bar plotted in Figure 9(c) represents the average output
rate value over a particular time interval, and the last bar is
the overall average. To prevent the average value from being
skewed, we have removed the warm-up time interval (the first
10 minutes). Figure 9(c) shows a solid trend thatQM’s output
rate on average can be up-to 60-100% higher than that of SRO,
up-to 10-40% higher than that of MRL and 8-28% than that of
CBR. This trend was confirmed by multiple runs of the same
query on different datasets.
Memory Utilization : Figure 9(d) shows the memory overhead
by the three execution models. Memory cost (measured in MB)
was periodically computed as follows:UM = TM - FM, where
UM is the amount of memory used,TM is the total amount of
memory in the system andFM is the amount of free memory in
the Java Virtual Machine, respectively. Figure 9(d) shows that
SRO model has the least memory overhead. This is expected,
as all tuples follow the same route, so there is no extra multi-
route overhead. The memory overhead in MRL and CBR is
associated with the bitmask attached to each tuple to serve as
its lineage, plus the delay in processing (due to the backflow
back to Eddy’s queue) which may contribute to the increase in
memory requirements and a few additional data structures in
CBR. The memory overhead inQM is due to the presence of
the routing tokens to store therusters’ routes. The smaller the
parameter limiting the number of tuples perruster, the larger
the number ofr-tokens in the streams. But as can be seen,
the percent of overhead inQM is still not noticeably larger
compared to the SRO (between 5-16%) and is significantly
smaller than that of MRL and CBR (between 10-38%).

Next we describe a set of experiments measuringQM-
specific costs.
Overhead of Runtime Classification: We have evaluated the
overhead of the online classifier relative to the overall query
execution cost. Figure 9(e) shows the classifier overhead for
4-way, 6-way, 8-way and 10-way join queries. As can be seen,
online classification has a very low relative overhead ranging
from 2% for a 10-join query up to 4% for a 4-join query.
We have observed that the classifier tends to be small in
height (maximum 2-3 levels high) andDT traversal is thus
quick and cheap. Additional system overhead of the online
classifier corresponds to scheduling an additional operator
by the scheduler. Since the processing of the tuples by the
classifier is fast, the operator, when scheduled, completesits
work very quickly giving majority of the execution time to
other operators.
Effect of Classification Window: Figure 9(f) shows the effect

 0

 200000

 400000

 600000

 800000

 1e+006

 1.2e+006

 1.4e+006

 1.6e+006

 1.8e+006

 2e+006

 0 10 20 30 40 50 60

cu
m

ul
at

iv
e

of

 tu
pl

es

Time (min)

SRO
MRL
CBR
QM

 0
 100000
 200000
 300000
 400000
 500000
 600000
 700000
 800000
 900000
 1e+006

 0 2 4 6 8 10 12

cu
m

. #
 o

f t
up

le
s

Time (min)

SRO
MRL
CBR
QM

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 0 1 2 3 4 5

cu
m

. #
 o

f t
up

le
s

Time (min)

Stocks dataset

Sensor dataset
SRO
MRL
CBR
QM

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 0 1 2 3 4 5

cu
m

. #
 o

f t
up

le
s

Time (min)

Stocks dataset

Sensor dataset
SRO
MRL
CBR
QM

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

10-20 20-30 30-40 40-50 50-60 Average

av
e

tu

pl
es

/s
ec

Time intervals (min)

SRO
MRL
CBR
QM

(a) Total tuples produced (b) Total tuples produced using real-life datasets (c) Average output rate

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 10 20 30 40 50 60

M
B

Time (min)

SRO
MRL
CBR
QM

 0

 20

 40

 60

 80

 100

 120

4 joins 6 joins 8 joins 10 joins

%
 o

f t
ot

al

4% 3% 2% 2%

Operator Cost
Classifier Cost

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

|W|=.5K |W|=1K |W|=2K |W|=5K |W|=8K |W|=10K

av
e.

 tu
pl

es
/s

ec

Classification window size

Average Output Rate

(d) Memory cost (e) Overhead of runtime classification inQM (f) Effect of classification window inQM

Fig. 9. Experimental results.

of the size of the classification window on the output rate of
theQM. The classification window size parameter is one of the
tuning choices in theQM system, since every arriving tuple
has to be classified first, before the actual query processing. If
the classification window is set to be too small, many tuples
would be waiting in the input queue of the online classifier
to be classified to be sent to query operators. However, if the
parameter is set to be too large, it will increase the time of the
classifier execution relative to the actual query executioncost.
It would also increase the number of tuples that get forwarded
to other operators. Since query operators have a bound on how
many tuples they can process per execution epoch, those tuples
may be waiting in the operator queues for a long time before
they would be processed.

Effect of Ruster Size: Figure 10(a) shows the effect of the
ruster size parameter on theQM performance. This parameter
controls the number of tuples in aruster, i.e., minimum
number of tuples that follow anr-token. It is also one of
the tunable parameters inQM execution. Not surprisingly,
we observe that with smallerrusters we tend to add more
overhead and reduce the output rate. This is due to the larger
number ofr-tokenspresent in the streams that take up more
memory and CPU resources. Note also that this parameter
affects how many of the actual tuples get processed by query
operators, when operators get scheduled. The number ofr-
tokenscontributes to the total number of tuples that an operator
can dequeue (controlled by|Tdq|). Moreover, aruster size
is also bounded by the size of theWTC and depends on
the arriving content distribution of data. After classification,
if there are somerusters that have a smaller size than the
maximum ruster size parameter, the operator still sends off
these “incomplete”rustersfor processing without waiting for
the next execution epoch.

Effect of Training Set Size: In this experiment, we study
the effect of the training set size on the cost of the query
mesh optimizer and the resulting quality of query meshes. For
this purpose, we have varied the training set size from 8 to
1,000 tuples. The sampling method stayed unchanged, only
the upper-bound for the training set size was varied. Figure
10(b) (the bottom chart) shows the optimizer search time with
various training set sizes usingSA and II search heuristics9.
Figure 10(b) (the top chart) shows the total number of result
tuples produced – our method of measuringQM performance.
The results support our hypothesis that (1) larger trainingsets
increase theQM optimization cost, and (2) if compact, yet
accurate, training sets are chosen the quality ofQM does not
suffer, keeping the optimization time very practical. As can be
seen, the distribution is accurately depicted by|T| = 100 and
its performance is no worse than for|T| = 1000.
Effect of Start Solution: Here, we evaluated the effect of the
start solution(Section IV-B) on the quality of resultingQM
with heuristic-based searches. We chose tuple output rate as
our measure to estimate the quality of query meshes. Figure
10(c) shows the performance for different query meshes,
computed when the optimizer employed differentstart solution
approaches. As can be seen, allQMs are pretty close in quality
(except for theExtreme-1which is a single plan start solution
strategy). But stillRoute-Drivenapproach results in a slightly
betterQM that is 6% better thanExtreme-N QM, 10% better
than Content-Driven QM, 12% better thanRandom QMand
19% better thanExtreme-1 QM. It is no surprise thatExtreme-
N’s quality is close toRoute-Driven’s QM, as the former is a
special case of the latter approach.
Experimental Conclusions: The main findings of our exper-

9Optimization cost for|T| = 1000 is not shown for the relative visibility of the costs
for 8 ≤ |T| ≤ 100.

 0

 200000

 400000

 600000

 800000

 1e+006

 1.2e+006

 1.4e+006

 1.6e+006

 1.8e+006

 2e+006

 0 10 20 30 40 50 60

cu
m

ul
at

iv
e

of

 tu
pl

es

Time (min)

|Ruster|=5
|Ruster|=20
|Ruster|=50

|Ruster|=100

 0

 200000

 400000

 600000

 800000

 1e+006

 1.2e+006

 1.4e+006

 0 10 20 30 40 50 60

cu
m

. #
 o

f t
up

le
s

Time (min)

Total tuples produced|T|=8
|T|=20
|T|=50

|T|=100
|T|=1000

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

|T|=8 |T|=20 |T|=50 |T|=100

tim
e

(s
ec

)

Training sets

Optimizer costSA
II

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

|T|=8 |T|=20 |T|=50 |T|=100

tim
e

(s
ec

)

Training sets

Optimizer costSA
II

 0

 200000

 400000

 600000

 800000

 1e+006

 1.2e+006

 1.4e+006

 1.6e+006

 1.8e+006

 2e+006

 0 10 20 30 40 50 60

cu
m

ul
at

iv
e

of

 tu
pl

es

Time (min)

Extreme-1
Extreme-N

Random
Content-Driven

Route-Driven

(a) Effect of ruster size variations (b) Effect of training set (c) Effect of start solution

Fig. 10. Experimental results (cont.).

imental study can be summarized as follows:

1) QM can give up-to 60-100% higher output rate than
SRO, up-to 10%-40% higher than MRL and 8%-28%
higher than CBR approaches for skewed datasets.

2) Memory overhead of query mesh is lower, 10-38% less,
than for MRL and CBR solutions and only 5-16% higher
than for SRO solution.

3) The runtime overhead of classification is very small (2-
4%) relative cost to the overall query processing cost.
The decision tree probe is fast, and on average only 2-3
test checks are needed to traverse aDT.

4) Route-drivenstart solution strategy results in higher
quality QMs.

VII. R ELATED WORK

Query optimization is a well-studied area, with most efforts,
however, primarily concentrating on optimizing asingleplan
for all data [31], [40], [41], [42], [39].

Our proposed query mesh model is related to the concept of
horizontal partitioning[43]. Conceptually, the main idea is to
partition data so that different partitions can be processed using
different plans. For example, selectivity-based partitioning
scheme [4] adopts a divide-and-union approach. A relation
is partitioned according to selectivities, and subsequently the
query is rewritten as a union of constituent queries over
the computed partitions. The approach presented in [4] is
orthogonal toQM, as it primarily focuses on the partitioning
algorithm rather than a complete systematic approach to multi-
route query optimization and query processing – the focus of
our work. In fact, the selectivity-based partitioning algorithm
can be employed byQM-based optimizer to find a good start
solution in the query mesh search described in Section IV-B.

Conditional plans[44] generalize serial plans by allowing
different predicate evaluation orders to be used for different
tuples based on the values of attributes and the cost of
their acquisition. Since the main goal is to minimize the
communication and acquisition costs in order to minimize the
sensor battery consumption, conditional plans primarily focus
on selecting a single and very cheap to acquire partitioning
attribute. Such attribute is not necessarily the “best” splitting
attribute in a more general query optimization context. In
that respect, query mesh is a more general model selecting
the best splitting attributes (in the classifier) based on data
distribution-based measure from machine learning to assign
data to routes so that tuples would be discarded as early

as possible. A conditional plan is typically computed on a
powerful computer (a basestation) and then appropriate plan
is sent to the different sensor nodes in the network. Thus,
conceptually, still a single plan strategy is employed locally at
each sensor node for execution, which is different fromQM-
based execution approach.

Several techniques from adaptive query processing [23],
[36], [45] are related to query mesh. Most adaptive query
processing works, however, still focus on adapting a single
query plan.Eddies[7], which can potentially adapt at the tuple
granularity, is observed to mostly be using a single plan for
nearly all tuples as was also indicated in [3]. [8] adds batching
to the Eddies routing to reduce the tuple-level routing overhead
which is close in spirit to ourruster concept. What differs
Eddy batching from ours is that in the former, the batching
is very naive: everyk tuples, i.e., continuous chunk of tuples
that happened to arrive together in time are batched and routed
together. InQM, the tuples are grouped together into the same
ruster based on the classification, i.e., the data values and the
similarity of statistics and are thus guaranteed to share the
same best route.

Related toQM is the content-based routing (CBR) extension
of Eddies [3]. CBR focuses on continuously profiling operators
and identifying “classifier attributes” to partition the underly-
ing data into tuple classes that may be routed differently by
Eddy. The key distinguishing characteristic betweenQM and
CBR is that CBR considers only single-attribute classifiers.
We take a more general approach inQM and build a clas-
sifier model that implicitly takes multiple attributes, values’
correlations and statistics into account to identify distinct data
subsets with respect to execution routes. Although the authors
state in [3] that CBR approach does not require “previous
knowledge” of the data, thegain ratio metric in CBR is based
on a historic profile of an operator which is similar to our
approach. Finally, CBR inherits several problems associated
with Eddies, such as continuous and often unnecessary re-
optimization and re-learning overhead. The classifier attributes
are re-computed continuously, even though the best classifier
attribute for an operator does not change very often [3].
Extending CBR to non-Eddy-based systems, i.e., systems that
pre-compute plans prior to execution, is non-trivial, as CBR
does not compute full routes and instead makes its decisions
locally and continuously for each operator.QM contribution
has a higher significance for two reasons: (1)QM has a much

wider scope of applicability as it addresses multi-route query
processing in plan-based systems - the standard in database
systems, and (2) experimentally,QM approach has shown to
outperform Eddies and CBR by a substantial margin.

QM has some characteristics that are close in spirit to
Parametric Query Optimization(PQO) [46], where a set of
plans appropriate for different situations is found and the
decision of which one to use is deferred until runtime. This
work differs substantially from ours in three essential ways:
First, in PQO, the execution plan is computed forall data, thus
not exploiting the partitioning of data into distinct data subsets,
which we have seen to be prevalent and widely exploitable.
Second, in PQO, the choice of an execution plan is typically
query parameter-driven rather than data characteristics-driven.
Third, PQO does not exploit machine learning to identify the
relationships between the data properties and the execution
routes as our approach.

VIII. C ONCLUSION

In this paper, we have proposed a multi-route query op-
timization and execution model, calledQuery Mesh(QM).
QM is general and applicable to static DBMSs as well as
streaming engines, offering numerous advantages. First,QM
employs efficient machine learning techniques to learn the
relationship between the data and the resulting routes to find
the best processing strategy for different subsets of data.
Second, we present a completeQM-based approach for query
optimization and query processing applicable to arbitrarydata
and queries. Third,QM-based query processing uses very
efficient multi-route execution infrastructure, which facilitates
shared processing and has near-zero route execution overhead.

Our most important contribution was to show thatQM
implemented in a real database system can achieve significant
performance improvements over other alternative solutions.
Our experimental results demonstrateQM potential as a
paradigm for efficient query optimization.

Although routes inQM are fully computed, the physical
operator pipelines are not constructed, which makes theQM
infrastructure very amenable to adaptivity – the subject ofour
future work. The problem of adaptiveQM is orthogonal to
the issues addressed in this paper. Here, we have provided
the foundation of theQM problem and the algorithms to find
a goodQM solution efficiently, without which the adaptive
aspect cannot be addressed.

REFERENCES

[1] R. Ramakrishnan and J. Gehrke,Database Management Systems.
McGraw-Hill Higher Education, 2000.

[2] S. Christodoulakis, “Implications of certain assumptions in database
performance evaluation,”TODS, vol. 9, no. 2, pp. 163–186, 1984.

[3] P. Bizarro and et.al., “Content-based routing: Different plans for different
data.” in VLDB, 2005, pp. 757–768.

[4] N. Polyzotis, “Selectivity-based partitioning: a divide-and-union
paradigm for effective query opt.” inCIKM, 2005, pp. 720–727.

[5] N. Mir, “Analysis of nonuniform traffic in a switching network,” in
IC3N. IEEE Computer Society, 1998, p. 668.

[6] L. Harris, “Stock price clustering and discreteness,”Review of Financial
Studies, vol. 4, no. 3, pp. 389–415, 1991.

[7] R. Avnur and J. M. Hellerstein, “Eddies: Continuously adaptive query
processing,” inSIGMOD, 2000, pp. 261–272.

[8] A. Deshpande, “An initial study of overheads of eddies,”SIGMOD Rec.,
vol. 33, no. 1, pp. 44–49, 2004.

[9] S. Madden, M. Shah, and et. al., “Continuously adaptive continuous
queries over streams.” inSIGMOD, 2002.

[10] Z. G. Ives, A. Halevy, and et. al., “Adapting to source properties in
processing data integration queries.” inSIGMOD, 2004, pp. 395–406.

[11] J. F. Kurose and K. Ross,Computer Networking: A Top-Down Approach.
Addison-Wesley, 2002.

[12] “Microsoft sql server. http://www.microsoft.com/sql/default.mspx.”
[13] DB2, “http://www.ibm.com/software/data/db2/.”
[14] Oracle, “http://www.oracle.com/index.html.”
[15] A. Deshpande, J. Hellerstein, and et. al., “Lifting theburden of history

from adaptive query processing.” inVLDB, 2004, pp. 948–959.
[16] V. Raman, A. Deshpande, and et.al., “Using state modules for adaptive

query processing.” inICDE, 2003, pp. 353–365.
[17] M. Astrahan, M. Blasgen, and et. al., “System r: relational approach to

database management,”TODS, vol. 1, no. 2, pp. 97–137, 1976.
[18] G. Graefe and W. McKenna, “The volcano optimizer generator: Exten-

sibility and efficient search,” inICDE, 1993, pp. 209–218.
[19] T. M. Mitchell, Machine Learning. New York: McGraw-Hill, 1997.
[20] R. Lipton and et. al., “Efficient sampling strategies for relational database

operations,”Theor. Comput. Sci., vol. 116, no. 1, pp. 195–226, 1993.
[21] D. J. Hand, P. Smyth, and H. Mannila,Principles of data mining.

Cambridge, MA, USA: MIT Press, 2001.
[22] B. Efron and R. Tibshirani,Introduction to Bootstrap. London:

Chapman & Hall/CRC, 1994.
[23] A. Deshpande, Z. Ives, and et. al., “Adaptive query processing,” in

Foundations and Trends in Databases, 2007.
[24] J. A. Hartigan,Clustering Algorithms. New York, NY, USA: John

Wiley & Sons, Inc., 1975.
[25] S. G. et.al., “Clustering data streams,” inFOCS, 2000, p. 359.
[26] A. K. Jain, A. Topchy, M. H. C. Law, and J. M. Buhmann, “Landscape

of clustering algorithms,” inICPR, 2004, pp. 260–263.
[27] M. Klazar, “Bell numbers, their relatives, and algebraic differential

equations,”J. Comb. Theory Ser. A, vol. 102, no. 1, pp. 63–87, 2003.
[28] P. Swain and H. Hauska, “The decision tree classifier design and

potential,” in IEEE Trans.Geosci., 1977, pp. 142–147.
[29] S.-B. Oh, “On the relationship between majority vote accuracy and

dependency,”Pattern Recogn. Lett., vol. 24, no. 1-3, pp. 359–363, 2003.
[30] S. Chaudhuri, “An overview of query optimization in relational systems,”

in SIGMOD, 1998, pp. 34–43.
[31] S. Babu, R. Motwani, and et.al., “Adaptive ordering of pipelined stream

filters,” in SIGMOD, 2004, pp. 407–418.
[32] P. G. Selinger and et.al., “Access path selection in a rel. database

management system,” inSIGMOD. ACM, 1979, pp. 23–34.
[33] K. Ono and G. M. Lohman, “Measuring the complexity of join enumer-

ation in query optimization,” inVLDB, 1990, pp. 314–325.
[34] J. M. Hellerstein, “Predicate migration: optimizing queries with expen-

sive predicates,” inSIGMOD, 1993, pp. 267–276.
[35] Y. E. Ioannidis and Y. Kang, “Randomized algorithms foroptimizing

large join queries,” inSIGMOD, 1990, pp. 312–321.
[36] D. Carney and et. al., “Monitoring streams - a new class of data

management applications.” inVLDB, 2002, pp. 215–226.
[37] P. A. Tucker, D. Maier, and et. al., “Exploiting punctuation semantics

in continuous data streams,”TKDE, vol. 15, no. 3, 2003.
[38] E. A. Rundensteiner and et. al., “Cape: Continuous query engine with

heterogeneous-grained adaptivity.” inVLDB, 2004, pp. 1353–1356.
[39] S. Viglas and et.al., “Maximizing the output rate of multi-way join

queries over streaming inf. sources.” inVLDB, 2003, pp. 285–296.
[40] Y. E. Ioannidis and et.al., “Left-deep vs. bushy trees:An analysis of

strategy spaces and its implications for query optimization,” in SIGMOD,
1991, pp. 168–177.

[41] R. Krishnamurthy and et.al., “Optimization of non-recursive queries,” in
VLDB, 1986, pp. 128–137.

[42] A. Swami and et.al., “A polynomial time algorithm for optimizing join
queries,” inICDE, 1993, pp. 345–354.

[43] P. D. Bra and et.al., “Horizontal decompositions and their impact on
query solving,”SIGMOD Rec., vol. 13, no. 1, pp. 46–50, 1982.

[44] A. Deshpande and et. al., “Exploiting correlated attributes in acquisi-
tional query processing.” inICDE, 2005, pp. 143–154.

[45] S. Babu, P. Bizarro, and D. DeWitt, “Proactive re-optimization,” in
SIGMOD, 2005, pp. 107–118.

[46] Y. E. Ioannidis, R. T. Ng, K. Shim, and T. K. Sellis, “Parametric query
optimization,” in VLDB, 1992, pp. 103–114.

	Query Mesh: An Efficient Multi-Route Approach to Query Optimization
	Report Number:
	

	tmp.1307986960.pdf.Vths4

