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Abstract—In most database systems, traditional and stream have different characteristics. For example, multimedickets
systems alike, the optimizer picks asingle query plan for all  may be discarded by some routers due to congestion and due to
data based on the overall statistics of the data. It has howev . .imedia applications being tolerant to missing dataic&o

been repeatedly observed that real-life datasets are nonniform. kets. h t itted Vi liabl i Is|
Selecting a single execution plan may result in a query exetian packets, however, transmilted via reliable protocols

that is ineffective for possibly large portions of the actuadata. guaranteed to travel through all routers. For queries roani

In this paper, we present a practical alternative to the curent network traffic, query processing could potentially beniejit
state-of-the-art query optimization techniques, termed amulti-  tajloring plans for different network traffic types.

route query meshmodel (or short QM). The main idea of QM gyock Market Data: Stock market data is known to be not
is to compute multiple routes (query plans), each designedf . - . . .

a particular subset of data with distinct statistical properties. uniform ,[6]' The prices of stocks quickly ref!ect mforma‘uo
Based on the execution routes and the data characteristicg CONCerning current events and the expectations in thedutur
classifier model is induced. The classifier is used for efficient Some categories of stocks may go up, others may go down as
partitioning of the new data to assign the best route for quey a result of the same event. Thus, query plans for a financial

processing. We formulate theQM search space and analyze its yonjtoring application could be customized for differetatck

complexity. To find optimal query meshes, we design th®pt-QM . . ;
algorithm. Faced with a dilemma — whether to determine distinct types, based on either the region or the industry or bqth.
data subsets or to compute a set of execution routes first, we Ve can observe from the examples above that real-life data

design several heuristics that can effectively find good quity tends to benot uniform Clearly, a single execution plan often
query meshes very efficiently. For runtime query processing is not likely to be able to serve well many of these rather
we employ a Self-Routing Fabric (SRF) infrastructure which  giyerse subsets of data, leading to seriously inefficiemrgu

supports shared operator processing and has near-zero roing . . .
overhead. Results of our experimental study with real-lifeand processing for some or possibly huge fractions of data [2].

synthetic data indicate that QM-based approach consistently AN extreme solution to tackle this problem is the Eddy
provides better query execution performance for skewed datsets System [7] and its CBR extension [3]. Here, individual tigple
compared to the state-of-the-art alternatives, namely bdt the are routed through operators one-by-one, and query plans ar
traditional systems that employ a single pre-computed plan modified on-the-fly at the tuple-granularity level by chari
gﬁ%f_'g; and also the systems that determine different rdes the order of query operators to which tuples are routed.
' I. INTRODUCTION Conceptually, every tuple may be processed via a unique
A. Single versus Multiple Execution Plans query plan, resulting in anultiple planssolution. However,
Most modern query optimizers determinesingle “best” such extremely fine-grainedind eager re-optimization may
plan at compile time for executing a given query [1]. Thécur impractically large costs [8], [9]. Further, Eddy doe
execution cost for alternative plans is estimated and the omot exploit the observation that tuples with identical eorit
with the overall cheapest cost is chosen. The cost typidsllyor similar statistical properties are likely to be best serby
estimated based on the average statistics of the data asla wHe same query plan, thus missing the opportunity to share th
as the objective is to findne plan for all data. However, processing and reduce the execution overhead [3], [10].
significant statistical variations of different subsets dzfta B. Spectrum of Query Optimization Techniques
may result in poor query execution performance [2]. The Query optimization techniques can be classified along two
main drawback is the very coarse optimization granulagty: dimensions: the timing of optimization decision and thengra
single execution plan is chosen for all daguch “monolithic” ularity of optimization (Figure 1. Some database systems
approach can miss important opportunities for effectivergqu determine query pladsin advance (at compile time), while
optimization [3], [2], [4]. others forego pre-computed plans and “route” tuples on-the
Network Traffic Data: In Internet and telecommunicationfly (at runtime). We observe that runtime versus compilestim
networks, traffic non-uniformity is inherent [5]. Some deat . _ _ S
. . . “Figure 1 is not an exhaustive survey of all query optimizatiechniques. It merely
thﬂ(S) may be more popular than others, €.g., certain web Slijlystrates where our proposed solution fits among the iexjsipproaches.
get higher visitation rates. Different network traffic madg@a  2we use terms “plans” and “routes” interchangeably in ourkwor
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@ Condiichal Plans ; unavoidable per-tuple processing overhead, and (3) Jariab
o [ 1 H H H 735 :
£ o Route-oriented Systems s_ometlmeS unpredlcta_ble tuple Ia_tenmes, du_e to diffdretit
O [ N — vidual tuple routes being determined at runtime.
Optimization | Partitioning | In summary, optimizing too frequently as in the multi route-
Plan-level ~ Group-level  Tuple-level less solutions may result in wasted resources, but optigizi
Optimization Granularity too coarsely as in the single route-oriented solutions misg m

Fig. 1. Overview of the spectrum of different query optintiza techniques. critical opportunities to improve query execution perfame.

query optimization solutions have a close resemblancetio né/€ thus propose a practical middle ground between these
work communication methods which can be: ¢bnnection- W0 extremes in the form of anulti route-orientedquery
oriented also known as circuit-switched, where a connectig?Ptimization solution calleuery Mesh(or QM, for short).

with the receiver is gstablished in advance before pa_ssiyg &. Our Proposed Solution: Query Mesh

data, or (2)connection-lessalso known as packet-switched,

. . o o .’ The main idea ofQM is to compute multiple routes,
where data is sent without establishing an a priori conoacti Q P P

each optimized for different subsets of data, and then infer

tgr - :
. s ) classifier model based on the computed set of execution
during the transmission at runtime [11]. The parallel betwe b

route optimization in networking and querv ooftimization inroutes and the data subsets’ characteristics. At runtihe, t
P 9 query op new data is effectively classified (i.e., partitioned) gsthe

?r?et?bgrslfzflrso i\ggstin;h(;}tl:]zry ogorerafg:]sazag “?Oe t\(/al'?\t,\rlﬁg aEIa%sifier into distinct subsets, and each subset is predess
W u query p u ug sing a route customized for its respective local stasistic

al ciperators I? the “network”. In Eiatabase"s, the goal isrtd fi The different routes in query mesh are executed concuyrentl

the .cheap(_est route through the_ network” of query opersto We compare our proposed solution against the state-ofrthe a
Given this parallel, we classify the state-of-the-art quer,,ery optimization techniques in detail in Section VII.

optimization techniques according to optimization timeein- A query mesh solutiorOM is composed of thelassifier

sion asroute-orientedandroute-lesssolutions. By “oriented”, . themultiple routed (see Figure 2). While many classifi-

we mean that routes are established in-advance. Datab@gﬁon models could be plugged into query mesh, e.g., neural

systems, including all commercial DBMSs [12], [13], [14]yeqworks, naive bayes classifier, etc. [19] in this paper, we

that tend to establish a query plan before runtime execys oy adecision treg DT) classifier. In our experiments, we
tion, employ theroute-orientedparadigm. Recent Systemsy 56 ghserved that usirT classifier approach can “zero-in”

like Eddies [7], which determine for each tuple at runtimg, yhe sought-after route very quickly with a small number of
which operator should process it next, fall under thate- comparisons.

less category [7], [15], [16]. Advantages of route-oriented Finding an optimal query mesh solution for a given query

query processing include: (1) faster routing, since rom_is an expensive process due to the combinatorial explosion
cpmputed in advance, (2) savings on the route Comp,Utat'(?rH"the size of the optimization space (Section III-E). We
since “’%“es are computed only once, and (3_) SavVINgs (fmylate the complexity of the query mesh search space and
tuples’ sizes, since all tuples are processed using the s algorithmOpt-QM which can find optimal query meshes
r_o_ute, a_nd hgnce_individual t_uples do '_“Ot ne_ed to carry th?gection [1I-B). Opt-QM, however, may be not feasible in
“iineraries” (1.e., lineage) as Itis done in _Edd|es. In qree, practice due to its exhaustive nature in enumerating theelsea
hpwever, almost all route-orle.znte.d solutions pre-cqmrmtespace_ As viable alternatives, we propose efficient search
smglerqute [17], [1,8]' The main d|sa(_jvanta.ge of s_umhgle _heuristics to find good quality query meshes very quickly. To
rou.te—orn.anteds_olutmns, as was mentioned in Section I-A, Jurther optimize these heuristic-based searches, we itdescr
their optimization coarseness. On the other hand, rom"%everal approaches to find a good s@M solution which
solutions tend to be “multi-route” by default, hence we terp, help in finding a high-qualitM faster (Section IV).
themmulti route-lesssolutions [7], [16]. Their advantages are For the efficientQM-based query execution, we design an
that they employ multiple routes for processing of diﬁereqnfrastructure, called the&elf-Routing Fabric(éRB, which

d‘f’“a subsets, thu_s improving query executioq perform"’mfﬁOVidesanear—zero route execution overh&R-eliminates
Since such solutions make decisions at runtime, they can

also adapt (]UICk|y to chgnges in the e_nwronment. HoweveraWe also refer to the set of execution routes iMQM solution as amulti-route
the disadvantages here include: (1) high per-tuple st&e, onfiguration



Query Mesh Optimizer Query Mesh Executor

the expensive central dataflow router, such as the Eddy oper-
ator [7]. The query operators route data tuples in a digiibu
fashion, thus eliminating the “backflow” problem assodiate : offline
with having a central router operator [8]. The routing isdxhs
on the route specifications, encoded inside meta-datastuple

Route Execution

uery Query Mesh [€=-=r——-— Self-Routing Fabric (SRF)

Search

Qu:e:ry Mesh

clusters or short “rusters rather than individual tuples. The
ruster approach minimizes the overhead and guarantees that
only the tuples that share the same best route are batchega

which are interleaved with the data. To keep memory and CPU Routes |
overhead minimal, the routing decisions are applied at the QuerMesh 1 ﬂﬂ
granularity of groups of tuples, which we denote agutable C|a§3iﬁe, Crtoken| ol 2 | IIII@
IS
N

SRR

Online

V] e

together for shared processing. Streams_._——{ _Classifier _— L]
i . : ) ruster Ol-array ~ Op-modules
D. Our Contributions online
The contributions of our work are summarized as follows: : T .
1) We introduce a multi-route query optimization approach, Fig. 3. Query mesh framework.

calledQuery Mesh(shortQM). QM is a general model that accurately represents the distribution of the dataebegl
composed of the learning classifier and the multi-route come in the future — a common approach in many database
structure, where each route is customized for differeaystems [3], [20] and in prediction models in data miningeali
subsets of data. [21]. For streaming databases, relying on samples of data is

2) QM employs machine learning metric to generate an afnavoidable, since it is impossible to “see” all of the stnézy
ficient classifier used for data partitioning and assignirdata a priori. The query mesh optimization problem can be
the most suitable routes with minimum overhead.  stated as follows.

3) We present théDpt-QM algorithm for optimal query Query Mesh Optimization Problem: For a given query@
mesh solution search and analyze its complexity. and a representative datasét, find a query mesh solution

4) Due to the complexity of optim&@M search, we devise QM consisting of multi-route configuratioR and classifier
a repertoire of alternative cost-based search heuristi€sthat results in the lowest execution cost for tupledin
that efficiently find high-quality query meshes. Several practical considerations make this problem chal-

5) We describe &elf-Routing FabriqdSRF infrastructure lenging: (1) Finding such optimal solution is complex, hesa
which efficiently implements concurrent multi-route exthere is a combinatorial explosion of route configuraticms f
ecution. The novelty oSRFis its support of multi-route all possible subsets of training data to consider. (2) Sielgc
routing by the operators without constructing physica good training dataset is challenging, as its size and tyuali
execution plans, i.e., operator pipelines. directly affect theQM search space. With smaller training

6) We thoroughly evaluate th@M approach through exper-data, we may be able to enumerate all possiiié solutions,
iments comparing it to the state-of-the-art solutions, ifbut the training set may represent the real data with low
cluding the single route-oriented and the multi-routeslesccuracy. Whereas with a larger dataset, we may be able
approaches. Our results show that for skewed datasétsmore accurately represent the actual data, yet at the cost
QM gives substantial performance improvements ovef an extremely large search space, making it impossible
the alternatives with minimal overhead. to enumerate all solutions. (3) Moreover, the structure of

The rest of this paper is Organized as follows. Section l]lpe classifier and the number and the choice of particular
provides the preliminaries and overviews M architecture. €xecution routes are strongly dependent on each other. A
Sections Il and IV discusM-based optimization. Sectionchange in one component may cause a modification to the
V describesQM-based query execution. Section VI presengther, subsequently affecting the cost of the ove@W

our experimental evaluation. Section VII discusses thateel solution. This introduces a dilemma — how should a query
work, while Section VIII concludes the paper. mesh be computed? Both scenarios below can be exploited:

Il. THE QUERY MESH. MAIN |DEA first, tr_amlng data gets partlfuon_ed based on the S|mya_r|t
of attribute values — one criterion among several possible

A. The Query Mesh Problem : L
For aineny Lery. we determine a multi-route confi uratioalternanves for partitioning of data, and then the routes a
given query, . 9 (pomputed for the different data partitions. Alternativedlgme
that can give the best overall query execution performaimce.

- . X effective routes are computed first, using the training data
addition to multiple concurrent routes employed for exixryt P g 9

. : o . statistics, and then the data partitions and the classiftetein
a QM solution also includes the classifier component Whlc?'l P

. . . . -are induced based on the computed routes. Clearly, quety mes
at runtime assigns the routes for processing to the incoming .-
d5|gn is a complex problem.

data tuples. Clearly the classifier cost must be considere
during query optimization, as classification is now a part . Our Assumptions

the overall query execution process. In order to deternfiee t In this paper, we consider select-project-join queriesy-ho
best query mesh, the query optimizer usesaiing dataset ever, ideas presented are general. We focus on dynamic



data stream management systems (DSMS), yet the underlyingles summarizing their respective tuple clusters, igining
execution system could either be a static DBMS or a dynandatasetT'.

DSMS. We consider optimization of a single query and assumeSince routes are computed based on the training dataset
stable conditions. The problem of adaptive processing wheéh the spectrum of possible multi-route configurations range
either the environment or the data characteristics chanfgem an individual route per each training tuplm 7' to a
during query execution is outside the scope of this paper. single route for all tuplesn 7. Let n denote the cardinality of

C. Query Mesh Framework Overview the training tuple set’, i.e.,n = |T'|. The upper-bound for all

The QM framework consists of two primary components‘f’OSSible multi-route configurations corresponds to the num
query mesh optimizeandquery mesh executdsee Figure 3). ber of distinct possible ways of assignimgdistinguishable
For a given query, using training data and statistics,Qhé tuples to one or more routes. The number that describes this
based optimizer computes@M solution offline. The query Value is theBell number(B,,), which represents the number
mesh executor takes tH@M solution (the classifier and the©f different partitions of a set ofn elements [27]. In our
multiple routes) generated by the optimizer and instaggiafVork, a multi-route configuration, which represents the set

the QM physical runtime infrastructure. We describe each §f €xecution routes, is partition of the training tuple sef’
these components in detail next. defined as a set of non-empty, pair-wise disjoint subsefg of

ll. QUERY MESHOPTIMIZER whose union i’ (see Figure 4). For examplB; = 5 because

A. Data Sampling the 3-element sefl, 2, 3} can be partitioned in 5 distinct

The selection of the training data, i.e., which samplin@{ecwagS:{{12}5{2%'{3%}' {{TI}'{ZB}I;}' 2{1{2}'%'3}}’?1{{3},{1,21‘}}h
nique should be employed to accurately depict the disfdbut 3" {{1,2,3;}". The Bell numberdescribes the size of the
of the data, is a research topic in its own right. For the paepodU€ry mesh search space, i.e., the total number of all fessib
of this work, we have explored several techniques fromsstatPartitions for an _arb|trary training datasét M_a'_themaﬂcally,
tics, including random sampling with cross-validation][2hd tr}ehBeII num(k;ekr_ |sdre2p7r§sented as the suntifing numbers
bootstrapping [22]. Using these methods, we can estimate h8' € second xin [ ]7'1 |
well the selected training dataset is going to represenréut 5 _ S(n.k) = 4 ki (”) n|
as-yet-unseen data, and re-sample the data until the desire " ; (n. k) ; k! ;( ) k)’ @
accuracy is achieved [21]. In practice, the training ddta - S .
may also be collected using statistics from previous (Hiisad) Sthe Stirling numbeiS(n, k) is the number of ways to partition

execution runs of the auery or by emoploving a similar a pInoaa set of cardinality: into exactlyk nonempty subsets. Figure

. query y empioying 1P 2 depicts the lattice-shaped query mesh search space for a se
to plan staging[23], where optimization and execution are . training tuples of sizer = 4 and the two examples of two
interleaved. The first stage of query processing may use

. . : . . difterent partitions with 2 and 4 routes respectively. Tomk
traditional single plan for execution while S|multane(yuslnumber of different partitions here equals 18;(= 15)
collecting data statistics and training data. Using thedam o P q ! '
from the first stage as the training set, the query mesh can be "va tuer digrams One roue for all raining data

computed by the optimizer and then used for the execution in
the next QM-based) stage. el

B. Query Mesh Search Space ~
Given a query and training data, we now study how many  “inzroues
possible multi-route configurations exist. These configons 3
would have to be evaluated in order to find the optir@al
solution, thus they comprise tH@M optimization space.
The training dataset size has a direct impact on the size of  a pariton ofa set
the query mesh search space. Hence, the training dataset mus """ _
be selected wisely to be compact yet sufficiently represigata Fig. 4. - Lattice-shaped query mesh search space.
of the real data. To reduce the size of the search spafe, Query Mesh Optimizer Sub-problems
we can perform a¢ompressiohon the set of sampled data " this section, we first characterize the two sub-problems
tuples by clustering the tuples based on the similarity aadz°f query mesh selection. We then proceed with the cost model
values. Any clustering algorithm from the literature can band the search algorithms used by @k!-based optimizer.
applied her [24], [25]. After clustering, each tuple clusterClassifier Selection Sub-problem One of the sub-
serves as an abstraction for a subset of the sample data&@ponents ofQM is the classifier, which is computed
Then acentroid tuple [26] is chosen to represent each tup@ased on the existing routes and the training data attribute
cluster. For simplicity of discussion, in the rest of the @ap values. There is a wide range of classifiers available in
we will refer to such centroid tuple as taaining tuple ¢ the literature [19], each with its strengths and weaknesses

and a dataset that consists of such centroid tuples, i.e., Betermining a suitable classifier for a given problem isl stil
more an art than a science. This is due to the fact that

4In our implementation, we use-means clustering — one of the most commonly used
algorithms. SFor brevity, we denotg {1},{2,3}} as “1/23".

1121314 = __

Each training tuple
with an individual route



classifier performance and quality depend greatly on the Classifier Self-Routing Fabric (SRF)
characteristics of the data to be classified [21]. — ggslftys
In our work, we employ adecision tree(DT) for the
classifier component of query meshd3T is attractive for
the following reasons [28]: (1) Complex decisions can be
approximated by the conjunction of simpler local decisions
at various levels of the tree. (2) In contrast to other cfessi
where each data tuple is tested against all classes, thereby ot :
reducing efficiency, in T classifier, a data tuple is tested © Roue execution
against only certain subsets of test conditions, thus ehiimg Fig. 5. Example olQM-based execution.
unnecessary computations. As we require, df-based
classifier thus is very efficient, because most tuple featur&ee contain the labels of the routes to be used for proagssin
are deterministic and often common to a group of tup|es_ of the tuples that reach those leaf nodes after classifitatio
The algorithm for the decision tree induction has the foRoute Selection Sub-problem The second sub-component
lowing steps. The tree is constructed in a top-down recersiof QM solution is the set of execution routes, i.e., the multi-
divide-and-conquer manner. At the start, all training ésphre route configuration. LetO = {op1,..., op,} be the set of
at the root. Training tuples are partitioned recursivelythy operators in a query, wherg; € O (1 < i < n)iso, 7
tree induction algorithm based on selected test attribJest Or > operator. A route; denotes an operator ordering, =
attributes are selected on the basis of a common in machifep: ..., op,>. The computation of a single best route for set
learning statistical measure, calledormation gain[19]. The of data is viewed as a "black box” i@M framework. That
information gainl (Y,X) for a given data tuple attribut¢ with is, the optimizer invokes an existing procedure to compute a
respect to the target routé® is the reduction in uncertainty route for a given data subset based on its statistics using an
about the value ofY when we know the value oK. The of the state-of-the-art techniques [30]. For example, lsimi
uncertainty about the value of is measured by itentropy to [31], the best sequence of operators can be determined by
H(Y). The uncertainty about the value ¥f when we know ordering operators in an increasing order of operagok,
the value ofX is given by theconditional entropyof Y given Where the rank of an operatep; is defined asrank(op;)
X, H(Y|X). = 12(;(’;21,), where c(op;) is the cost of operatopp; and
s(op;) is its selectivity. Alternatively, the optimizer can use
I(Y,X)=H(Y) - HY|X). (2)  common dynamic programming [32] or transformation-based
When Y and X are discrete variables that take values i['{LS] sc?lutlons. ) ,
{y1..4%} and {a1..a1}, then the entropy ot is given by: Putting all of the above together, Figure 5 illustrates an
_ example of a query mesh solution, where an example of

i=k ge . . .
classification with subsequent route execution for a ddtaedu
H(Y)=- ; P(Y = y;)logy(P(Y = y:)). () s depicted by a thick black arrow.

Example

The conditional entropy of given X is: D. Query Mesh Cost Model
j=l Next, we describe the cost model used by @®#l-based
HY|X)= —ZP(X =z;)HY|X = z;). (4) optimizer to compare query mesh solutions when searching
j=1 for the bestQM. The cost of aQM consists of three main

If the predictive variableX is not discrete but continuous thenComponents described below.

in order to compute its information gain with respect to thg') Cost ?]f routes Ealch execution route; corlnpos.ed ?\f
route identifier attributd” we consider all possible attributes,()per"jltors as a per-tuple codt; ) to process a tuple using that

X,, that arise fromX when we choose a threshofdon X. route. c(r;) represents the expected time to process a single

0 takes values from all the values &f. Then the information tple to complet|0_n, meaning either 10 °”th“ the tuple as a
gain is simply: result or to drop it using-;. The cost ofr; is commonly

calculated using two quantities: (§ost of operator which
I(Y, X) :argH}%XI(Y’ Xo)- () represents a per-tuple cost op;, and (ii) selectivity of

. _ operator, which is defined as the fraction of tuples that are
For more details on the above metrics, we refer the reader {%

[19]. Conditions for stopping tree growth are: (1) all triaig expected to satisfyp;.

. 2) Cost of classification Since each arriving tuple must be
tuples for a given node belong to the same route, (2) there ar o A
. . e L processed by the classifier first, the classification cost ineis
no remaining attributes for further partitioning, themajority

voting[29] is employed for classifying the leaf, or (3) there ar|encluded in the overall execution cost. The classificatiostc

o training tuple samoles left. The leaf nodes of the denisi(())f decision tree PT) classifier is the cost of traversing the
g tup P ' decision tree to reach a leaf node, denoted(d3T|r;), i.e.,

6 ) i the cost of aDT traversal from the root to the leaf node with
The targets in the context of our work are the execution sutde value of the . X
target attributeY” represents a route label (illustrated Figure 5). a label for the route;. The cost is a function of the number



of nodes in the path, combined with the cost of computatidigorithm Opt-QM

ifi Input: T = training dataset
at each test node of the classifier. 1: form apower setP(T') based on the set of tupleg

(3) Multiple routes overhead Maintaining multiple execution 2: for each sets € P(T)

. o_ computestats@S)
routes mtroduce_s system overhgad §uph as memory, proceﬁg computehest route§) usingstats()
ing and scheduling costs. For simplicity of presentatior, W 5: repeat

abstract all overhead associated with maintaining a route i 6: put together gartition(7") out of several sets (from steps 1-4) and construct a
query meshQM solution (classifier and routes)

a single parameter, denoted by, ). 70 if (cost(QM)is the smallest so fathen
e 8: bestQM= QM
The total cost of the query mestost(QM)thus is: 9 else
k=|P| 10: discardQM

cost(QM) = * ¢(DT|r ) + c(r +k* c(ropp). Y endif
(Q ) pgl fp [ ( | p) ( p|p)] ( Ovh) 12: until (all possible partitionsB,, have been enumerated)
wherep represents a different subset in a partitnk is the Fig. 6. OptimalQM search algorithm
number of routes in th®M, k = |P| < |T, f, is the expected o ) )
fraction of tuples from the training datasBtto be processed 1) A start QM solutionis chosen and its cosbst(QM)is

by a particular route,, andc(r,|p) is the cost of the route computed. The startin@M is set as the best solution
for the subsep. considered so far, i.ehestQM= QM.

2) A search strategys iteratively applied to traverse the

E. Optimal Query Mesh Search Algorithm . ) guery mesh search space to find another solufidfi.
As a baseline, we now introdu@pt-QM algorithm which 3) The costcost(QM’) is computed and compared to the

is guaranteed to find the optimal query mesh solution (Figure * yst of thebestQMfound so far. IfQM’ has a smaller
6). Opt-QMtraverses all the points in the lattice-shaped search ¢ thebestQMis replaced withQM'. Steps 2-3 are

space (Figure 4) starting from the extreme where training repeated until stop conditionis reached.
tuples representing all possible data subsets have indilid

. . _Next, we propose different strategies to address the fellow
routes, to the other extreme where all data is processed us.llrr]1 uestions: (1) How to pick a promisirsgart solution QNP
a single route.Opt-QM applies a two-step process. First 94 : P P IR

Opt-QM computes theower set P(Tor the given training (2) How toimprovethe start solution by employing an effective

datasetT. The power set off is the set of all subsets Ofsearch stratedy (3) Finally, when should the search for the

T. Given the power sef’, the algorithm estimates the routebGStQ'vI terminate, i.e., what should be tiséop conditiof?

execution cost for each subset R(T) using its statistics. B. Selecting a Start Solution

Second, the algorithm puts together partitions composéd ouSelecting a goodtart solutionis essential folQM quality

of these subsets and aggregates their costs to derive thelovevhen using a search heuristic. A search algorithm typically
cost of QM. The query mesh with the smallest cost out of afperforms walks in the solution space via a series of moves. Th
possible solutions is returned as a result. By using the twoamber of moves is limited. Hence, if a poor start solution is
step approach above, the computations can be re-used ancthiusen, the search algorithm might not be able to reach a good

results memoized. quality QM. In this section, we propose several approaches.
Complexity Analysis. The complexity of Opt-QM is Content-Driven The content-driven approach first groups
O(B,*E), where B,, is the Bell number(see Section llI- training tuples based on the similarity of their conferithe

B) and represents the upper-bound of all possible parsitioguery mesh optimizer may partition continuous domain data
and E is the time complexity of the algorithm used to findbased on the pre-defined thresholds (e.g., in the form ofleimp
the execution route. The complexify depends on the actualranges) that define how “close” the training tuples are to one
algorithm employed by the optimizer for route computatioranother based on their content. Such scheme is similariiit spi
e.g., £ = O(n2m™) for dynamic programming [33], oZ = to the content-based partitioning technique in CBR [3]. The
O(n?) for rank-based ordering algorithm [31], [34]. Clearlymotivation is that similar content means similar seletitgi
with large training dataset§)pt-QM algorithm is not scalable and thus the same preferred route. Then the best route is
in practice. The problem of finding optimal routes alone isomputed for each group. Based on the tuple groups and
already known to beéNP-hard [31]. By adding a multi-route their routes, a decision tree is computed to completeQie
factor, we increase the complexity of the problem furthesolution.

Consequently, both the exponential running time and theesp&oute-Driven The route-driven method first computes the
requirements provide a strong motivation to design efficieroutes for each of the training tuples separately. Thezeaft

search heuristics. the tuples aregrouped-bytheir respective routes, thus form-
IV. QUERY MESH SEARCH HEURISTICS ing groups composed abute-equivalentuples. Lastly, the
A Main Idea decision tree induction is performed over the route-edeiva

. - roups of tuples. This method is the reverse of Gantent-
We propose a series of cost-based heuristics that guarar%ee P P

to find a goodQM solution in reasonable time without fiven approach. The motivation behind this approach is that

exhaustive enu_meratlon of _the search Space. The heu”S“G’%ince the training tuples already represent the summafitdeei respective clusters
have the following three main steps: of real data tuples, this step resembles hierarchical aingt.



tuples with different content may still share the same bestove with a certain probability. This probability declinas

route.

7 declines, by analogy the randomness in the movements

Other. Other approaches includgandom-Pickwhere the start decreases as the temperature falls. Whénsmall enough the

solution is a query mesh with the smallesis{QM) out of

algorithm accepts only the improving moves. Figure 8 sketch

2 randomly selected solutions. Other possible start saiatiothe pseudo-code fd8Aquery mesh search.

may include Extreme-N-Routeswhere every training tuple
representing a cluster of real sampled tuples has its owgqueni
route (the bottom of the lattice in Figure 4), @ixtreme-1- 1:
Route where all training tuples, thus all data, have the sameé:
route (the top of the lattice in Figure 4). The latter coresgts
to a single plan execution strategy, just like in traditiconaery
optimization systems.

C. Selecting a Search Strategy

For a query meskearch strategywe adopt and adapt two
well-known randomized search algorithms: Iterative Inyero
ment and Simulated Annealing. Both guarantee to find a goo
QM solution in reasonable amount of time [35], and thus a
viable alternatives to the exhaustive query mesh search. 12
Iterative Improvement QM (II-QM ): Figure 7 depicts the %2;
iterative improvemen@QM algorithm pseudo-code. The inner

3
4
5
6:
7
8:
8

Algorithm SA-QM

Input:

bestQM- start solution query mesh
Start-up
QM = bestQM
Choose an initial (high) temperature > 0
Choose a value fop, the rate of cooling parameter

: Choose a random neighbour @M and call itQM’

Calculate the cost difference in the query meshes:

1§ = cos{QM’) - cos(QM)

/IDecide to accept the new query mesh or not

:if (5 < 0) then

QM = QM' //IQM’ is better than or same as QM

. else

-
QM = QM’ with probability e 7
end if

. if (stop conditionis met)then

exit with QM as final solution
else

reduce temperature by setting-p* 7, and go to Step 3
end if

Fig. 8. Simulated annealin@M search strategy

loop of 1I-QM is called a local optimization. A local opti- - Selecting a Stop Condition

mization starts at a r_andom state and improves th_e solutionry o stop conditionlargely depends on the search strategy
by repeatedly accepting random downhill moves (iI@Ms  ohioved. The query mesh search may stop when either
with decreasing costs) until it reaches a local minimuM. o ations have gone by (e.g.,iIRQM), or the solution did not
QM repeats these local optimizations until a stop condition i’ﬁ1prove in the last several rounds (e.g.9A-QM indicating
met. Then it returns the local minimum with the lowest cosh o+ the search process has reached a plateau. Alteryathe!

found. As time approaches, the probability thatl-QM will - go3rch can be time-bounded or resource-bounded, e.g., when
visit the global minimum approaches 1 [35]. However, 9VeRemory or CPU utilization limits are set.

a finite amount of time, the algorithm’s performance depends
on the start solution, the cost model and the connectivity
the search space determined by the neighbors of each sta

Algorithm [I-QM

Input: bestQM- start solution query mesh
1: while (not stop conditioh do

f V. QUERY MESHEXECUTOR
8e' Query Mesh Execution Infrastructure Overview

The query mesh executor takes &1 solution computed
by the optimizer and instantiates ti@M runtime infrastruc-
ture. The runtime system consists of tlaline classifier
operatorand the query operators which are instantiated inside

2: QM = start solution (e.g., chosen at random, or using heusigtam Section . : . .
. IV-B) the Self-Routing Fabri¢SRF infrastructure (Figure 3). When

: hile (not local_mini M) d ; : ;
o e A E GHBORSOM) new tuples arrive, they first get processed by the online
5: if (cos{QM’) < cos{QM)) then classifier operator to determine the routes that would bd use
S ot M for their processing. Thereafter, the tuples are forwaridém
8:  end while the SRF for the actual query evaluation according to their
9: if (cos{QM) < cos{(bestQM) then routes
10: bestQM= QM '
11 endif B. Forming Routable Tuple Clusters
12: end while L. ip . “ ”
13: retumbestQM Arriving tuples are classified into “routable clusters” —

Fig. 7. lterative improvemer®M search strategy groups of tuples with similar routes, using cassification

window W7, whereW7¢ is atumbling window [36]. We
Simulated Annealing QM(SA-QM): In simulated annealing use a tumbling window, because it partitions a stream inte no
(SA-QM), initially the “temperature’ parameter is set to high. overlapping consecutive windows, so that a tuple is claskifi
Thus a great deal of random movement in the search spacdy once. If tuples within a time window are known to be
is tolerated. Later the “temperature” parameter is lowgrecbrrelated, then classification overhead can be minimized b
and thus less and less random movement is allowed, umiéssifying one tuple per window and then sending the rest of
the solution settles into a final “frozen” state. This allowshe tuples on the same route as the classified tuple. We denote
the heuristic to sample the solution space widely when tlaeset of tuples that due to classification are assigned to the
“temperature” is high, and then gradually move towards ggmpsame route aioutable clusteror short ‘fuster’.

steepest ascent/descent as the “temperature” cools. feus t Definition 5.1: (Rustel) Let.S; be a data stream. A routable
search can move out of local optima during the high tenstuster RC' is a window-bounded set of data tuples ...sy }
perature phase. Th8A-QM algorithm accepts a worseningC S;[W;I“] assigned to the same route by the classifier.




Tuples in the ruster have timestamps in the time intervphper) is that th&SRF infrastructure make®QM adaptivity a
[RC.ts - WIY, RC.ts], where RC.ts is the time of tuple very inexpensive process, since routes operator pipetnes
classification andV"'“ is the size of the classification windownot physically created like in traditional query executjans.
The pre-computed route for muster is stored in aroute If a QM solution needs to change, the only thing that needs
token(or shortr-toker). R-tokensare metadata tuples, similarto be modified is theDT classifier without affecting the rest
in spirit to streamingpunctuations[37], embedded inside of the execution infrastructure.
data streams, thus partitioning the data tuples misters
The distinct characteristics aftokensinclude: (i) r-tokens . .
are “self-describing” as they carmputing instructionsfor ~ We have implemented ou@M approach in the DSMS
streaming data to convey to query operators, (itpkens CAPE [38] written in Java with Java 1.6.0.0 runtime, run-
precede the data tuples they are applicable to, and (jigeeouning on Windows Vista with Intel(R) Core(TM) Duo CPU
in the r-tokensare specified in the form of aoperator stack @1.86GHz processor and 2GB of RAM. The objective of
based on the design of t&RF, which we describe next. ~ OUr experimental study is twofold: (1) to compare dOM
. . . model with traditional single-plan and multiple (routesdg
C. Self-Routing Fabr!c and Route Encoding ) plan approaches in terms of output rate and overhead, and
SRFhas the following two components (see Figure 3): (2) to examine theQM optimization costs and its possible
« Operator Index Array (Ol-array): Ol-array stores the tuning choices. In our experiments, we used both synthetic
pointers to the operators’ input queues. Each indear- and real-life datasets described below:
responds to a unique operatp;. Index “0” is reserved Stocks-News-Blogs-Currency dataséve have implemented
for the SRFglobal output queue, where the result tuples Web application that continuously collects NYSE stock
are placed to be sent to the applications. prices, currency exchange rates (provided via webserwce b
« Operator Modules(Op-moduley. Operator modules are Yahoo Finance), news and blogs from different geographic
the actual operators processing the tuples. We focus @gions and on different subjects (provided via RSS feeds).
select, project and join queries in this papBelection |ab datasetThis dataset contains readings from sensors in the
and projection operators are simple: when an operatdhtel Research, Berkeley Lab. The original dataset [3] isis
receives an inputuster, it filters the tuples based onof a single stream sensor readings. We have partitioned this
the selection predicate or projects out unwanted tupditaset by sensor locations into several streams. The rsenso
attributes. For joins, we have designede-way-join- readings are sent to CAPE in generation order, as they would
probe operators, similar in spirit t&teMoperators [16], if the tuples were collected from the sensors in real-time.
which essentially Correspond to a half of a traditional jOiSynthetiC dataset We have also imp|emented a Synthetic
operator. Such operators are formed over a base stregffeam generator to produce tuples with a variety of pararset
supporting theinsert (build), search(probe), anddelete including skewness, selectivity, etc. The generator ta®s
(eviction) operations for window purging. SucBteM  parameters the number of streams to generate, the number of
like operators eliminate the burden of state managemegélumns in the schema of the streams and the number of tuples
when different routes are executed concurrently. For mog each stream. A desired number of content-based pasition

VI. EXPERIMENTAL STUDY

details, we refer the reader to [16]. for a tuple attribute, their skewness, selectivity and elation
Example: Consider anSRF with the operator index ar- to other column(s) can additionally be specified.
ray as follows:Ol-array[1] = op;, Ol-array[2] = op;, OI- Our experiments useN-way equi-join queries which
array[3] = opi, and Ol-array[4] = op;. Then a router = join incoming tuples from N streams S;...Sy of the

<opj,opk.op;,op;> Will be encoded in an-tokenas a stack form: seLECT « FROM S;, Sa, Ss,...Sy WHERE Sy.col; = Su.col

<2,3,1,4>, where ‘2’ is the first operator in the route ancnd ... Sy_i.col> = Sy.col ;. N-way join query is one of the

‘4’ is the last. The items in the stack represent the indexesre queries in database systems and can be used to discover

of the operators in th&RF A ruster is always routed to the correlations across different sources. The sliding winslanw

operator that is currently the top node in the routing stacthe queries are based on the timestamps present in the data

After an operator is done processing thester, the operator (as opposed to the clock times when tuples arrived to the

“pops” its index from the top of the routing stack in tike system). In this way, we ensured that the query answers are

token and then puts the ruster into the next (now the tople same regardless of the rate at which the dataset is gtdeam

operator's queue. lall tuples from aruster are dropped by to the system or the order of tuple processing. Due to lack of

an operatoiop;, then theruster is not processed any furtherspace, the majority of results presented in this sectioalav

and itsr-tokenis discarded. When thetoken operator stack synthetic dataset. However, similar trends were obseridd w

is empty, theruster tuples are forwarded to the global outputeal-life data as well. The query is an equi-join of 10 stream

queue reserved by the index “0” and thus to the applicatjon(se., So > S1...S9 <1 S19. Unless otherwise stated, the default
The novelty of theSRFinfrastructure is in that it completely values used in the experiments are the ones listed in Table I.

eliminates a central router operator, thus removing a “back The QM execution framework is compared against alterna-

flow” bottleneck problem present in the multi-route systemsve execution models, namely the single route-orient&iX}

[8]. Another key advantage (although not explored in thihe multi-route-less (MRL) and the content-based routing



TABLE |

DEFAULTS USED IN THE EXPERIMENTS . . .
Average Output Rate Figure 9(c) illustrates the comparison

Parameter Value Description

Arrval BoiSSOR Data arrval distiBution of the average output rates during different time inte_r\iats .
Distribution | the four execution models. We have computed this statis-
o 500 msec Mean inter-arrival rate . . . . . .
o] 1000 7 of Tuples dequeued by an operaor aja  tic @S follows: we partitioned the execution time into non-
time for processing overlapping time intervals, each 10 minutes long. For each
) 310 # of skewed partitions per stteam ___| - jme interval, the average output rate was computed, amd the
|T] 100 tuples Size of training tuple set (sample size | X
1,000 tuples) we took the average of the output rates for all execution
H SA Default heuristic used to find query meshgs  jntervals. The output rate B = N / T, whereR is the output
Start Route-Driven | Query mesh start solution strategy . i
Solution rate, N is the total number of result tuples produced during
wTe 1,000 tuples | Classification window size the interval andr is the length of the time interval (in min).
Ruster size 100 tuples Averageruster size

Each bar plotted in Figure 9(c) represents the average putpu
(CBR) [3] solution§. All four systems were implementedrate value over a particular time interval, and the last bar i
inside CAPE. We have used a multi-way join operator (shatie overall average. To prevent the average value from being
MJoin) [39] as a representative of SRO. MJoin is a geneskewed, we have removed the warm-up time interval (the first
alization of symmetric binary join algorithms, providinget 10 minutes). Figure 9(c) shows a solid trend t@&t’s output
best plan for each stream, and thus it became our choice fate on average can be up-to 60-100% higher than that of SRO,
a single route-oriented solution. In SRO, data from a streamp-to 10-40% higher than that of MRL and 8-28% than that of
follows the same best route computed based on the ove@BR. This trend was confirmed by multiple runs of the same
statistics. For MRL, we used Eddy execution framework wituery on different datasets.

lottery routing policy [7]. Lottery routing is one of the lbet Memory Utilization : Figure 9(d) shows the memory overhead
routing policies as it favors not only fast operators bubalsy the three execution models. Memory cost (measured in MB)
operators with low selectivity. CBR was implemented as amas periodically computed as followdM = TM - FM, where
extension to the Eddy system based on the original paper [BM is the amount of memory used@M is the total amount of
We use a Round-Robin scheduler in all four systems, whighemory in the system arféM is the amount of free memory in
cycles over the list of active operators and schedules the fithe Java Virtual Machine, respectively. Figure 9(d) shaduwat t
operator ready to execute. When scheduled, an operator r&RO model has the least memory overhead. This is expected,
for a fixed amount of time bounded H¥4,|, the number of as all tuples follow the same route, so there is no extra multi
tuples that an operator may dequeue from its input queuersute overhead. The memory overhead in MRL and CBR is
each execution epoch. Round-Robin was chosen as it haasgociated with the bitmask attached to each tuple to serve a
desirable property of avoiding starvation — no operatohwiits lineage, plus the delay in processing (due to the backflow
tuples in its input queue goes unscheduled for an unboundsxtk to Eddy’s queue) which may contribute to the increase in
amount of time. memory requirements and a few additional data structures in
A. Experimental Results CBR. The memory overhead QM is due to the presence of

Total Number of Tuples Produced Figure 9(a) shows the the routing tokens to store thrasters routes. The smaller the

total number of result tuples produced by the four executi(? ramet(;:)r I'm'ftr'rt]gkthe purtr;]bertof tupIesBmtaster, the Larger

models over time. We ran the query processor using differe f number of-lokensin the streams. but as can be seen,

solutions for over an hour and show the average output e percent of overhead IQM is still not noﬂce_abl;_/ Ia_rger

the first 60 minutes. We observe that over time the totgpmpared to the SRO (between 5-16%) and is significantly
' - 0,

number of tuples outputted BYM is significantly larger than sm'\?lletr thandthat %f MRL atndfCBR (b.etweten 10-38%).

by alternative solutions. In SRO, single plan optimization e.)f(. we " escribe a set of experiments measui@ig-

coarseness leads to producing a lot of intermediate res pecine cosis. e

filing up the queues and hindering the performance of tt verhead of Runtime Classification We have evaluated the

system. Whereas the multi-routeless system suffers fram &verhe_ad of the qnhne classifier relative to t_h_e overalirgue
ecution cost. Figure 9(e) shows the classifier overhead fo

“backflow” overhead, where tuples get continuously routez< 6 8 410 . o5, A b

back to the central router operator that has to re-examiae {f V2Y: ©-Way, o-way and 19-way Join qUeries. AS can be seen,

tuples and forward them to the next operator for processi ogﬂhne classification has a very low relative overhead naggi
&

CBR suffers from the same overhead as the MRL, plus m 2% for a 10-join query up to 4% for a 4-join query.
' e have observed that the classifier tends to be small in

overhead of continuous re-learning. However, throughebetthei ht (maximum 2-3 levels high) ardT traversal is thus
routing policy it can achieve better performance than MRL. 'gk and cheap. Additional s;?stem overhead of the online

Figure 9(b) shows the total number of tuples produced usiffy'c ¢ . -
the real-life datasets. Although not by as much as in 1% ssifier corresponds to scheduling an additional operato

synthetic dataset experiment, still the trend is similaruerg bly th.?. sc_hefdulterihSmce thte pro;]:essmgr;] C:jf :hg tuplesltgy the
mesh outperforms the other three alternatives. classiier 1S fast, the operator, when scheduled, complEes

work very quickly giving majority of the execution time to

8In the rest of this section, we will refer to these alternatsolutions using their other operator_s._ . i i
abbreviated names, SRO, MRL and CBR, respectively. Effect of Classification Window: Figure 9(f) shows the effect
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Fig. 9. Experimental results.

of the size of the classification window on the output rate @&ffect of Training Set Size In this experiment, we study
the QM. The classification window size parameter is one of ththe effect of the training set size on the cost of the query
tuning choices in th&@M system, since every arriving tuplemesh optimizer and the resulting quality of query meshes. Fo
has to be classified first, before the actual query procesHingthis purpose, we have varied the training set size from 8 to
the classification window is set to be too small, many tuplds000 tuples. The sampling method stayed unchanged, only
would be waiting in the input queue of the online classifighe upper-bound for the training set size was varied. Figure
to be classified to be sent to query operators. However, if th6(b) (the bottom chart) shows the optimizer search timé wit
parameter is set to be too large, it will increase the timehef tvarious training set sizes usir§A and |l search heuristiés
classifier execution relative to the actual query executimst. Figure 10(b) (the top chart) shows the total number of result
It would also increase the number of tuples that get forwérdé&uples produced — our method of measur@il performance.

to other operators. Since query operators have a bound on hHidve results support our hypothesis that (1) larger traisietg
many tuples they can process per execution epoch, thosstupicrease theQM optimization cost, and (2) if compact, yet
may be waiting in the operator queues for a long time befoaecurate, training sets are chosen the qualitpbf does not
they would be processed. suffer, keeping the optimization time very practical. As ¢Be

) ) seen, the distribution is accurately depicted|By= 100 and
Effect of Ruster Size Figure 10(a) shows the effect of thejg performance is no worse than i = 1000.

ruster size parameter on th@M performance. This parametergect of Start Solution: Here, we evaluated the effect of the

controls the number of tuples in euster, i.e., miNiMUM  giart solution(Section IV-B) on the quality of resultin®M
number of tuples that follow am-token It is also one of i heyristic-based searches. We chose tuple output Ete a
the tunable parameters iQM execution. Not surprisingly, o, measure to estimate the quality of query meshes. Figure
we observe that with smalleusterswe tend to add more 15(c) shows the performance for different query meshes,
overhead and reduce the o_utput rate. This is due to the larQSanuted when the optimizer employed differstart solution
number ofr-tokenspresent in the streams that tal_<e Up MOTgynroaches. As can be seen,Qilfls are pretty close in quality
memory and CPU resources. Note also that this parameigfcept for theExtreme-1which is a single plan start solution
affects how many of the actual tuples get processed by queR/ateqy). But stillRoute-Driverapproach results in a slightly
operators, when operators get scheduled. The number OfbetterQM that is 6% better thafExtreme-N QM 10% better
tokenscontributes to the total number of tuples that an operat@{;, content-Driven OM 12% better tharRandom QMand

can dequeue (controlled bfq|). MorTegver, aruster sizé 1904 petter thamextreme-1 QMIt is no surprise thaExtreme-

is also bounded by the size of tH&"™ and depends on \yg guality is close toRoute-Drivers QM, as the former is a
the arriving content distribution of data. After classifioa, special case of the latter approach.

if there are someustersthat have a smaller size than the#xperimental Conclusions The main findings of our exper-
maximum ruster size parameter, the operator still sends o

these “mcomplgte’rustersfor processing without waiting for 90ptimization cost forfT| = 1000 is not shown for the relative visibility of the costs
the next execution epoch. for 8 < |T| < 100.
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Fig. 10. Experimental results (cont.).
imental study can be summarized as follows: as possible. A conditional plan is typically computed on a

1) QM can give up-to 60-100% higher output rate thaRowerful computer (a basestation) and then appropriate pla
SRO, up-to 10%-40% higher than MRL and 8%-28% sent to the different sensor nodes in the network. Thus,
higher than CBR approaches for skewed datasets. conceptually, still a single plan strategy is employed liycat

2) Memory overhead of query mesh is lower, 10-38% lesgach sensor node for execution, which is different frQi-
than for MRL and CBR solutions and only 5-16% highebased execution approach.
than for SRO solution. Several techniques from adaptive query processing [23],

3) The runtime overhead of classification is very small (436], [45] are related to query mesh. Most adaptive query
4%) relative cost to the overall query processing cogsrocessing works, however, still focus on adapting a single
The decision tree probe is fast, and on average only 2g8ery plan Eddies[7], which can potentially adapt at the tuple

test checks are needed to traverdeTa granularity, is observed to mostly be using a single plan for
4) Route-drivenstart solution strategy results in highemnearly all tuples as was also indicated in [3]. [8] adds biatgh
quality QMs. to the Eddies routing to reduce the tuple-level routing bead
VII. RELATED WORK which is close in spirit to ouruster concept. What differs

Query optimization is a well-studied area, with most eiprt Eddy batching from ours is that in the former, the batching
however, primarily concentrating on optimizingsingle plan IS Very naive: ever tuples, i.e., continuous chunk of tuples
for all data [31], [40], [41], [42], [39]. that happened to arrive together in time are batched anddout

Our proposed query mesh model is related to the concepti@@ether. I\QM, the tuples are grouped together into the same
horizontal partitioning[43]. Conceptually, the main idea is toruster based on the classification, i.e., the data values and the
partition data so that different partitions can be procgssing similarity of statistics and are thus guaranteed to shage th
different plans. For example, selectivity-based paritig Same best route.
scheme [4] adopts a divide-and-union approach. A relationRelated taQM is the content-based routing (CBR) extension
is partitioned according to selectivities, and subseduehe of Eddies [3]. CBR focuses on continuously profiling opersito
query is rewritten as a union of constituent queries ovand identifying “classifier attributes” to partition the derly-
the computed partitions. The approach presented in [4] ifgg data into tuple classes that may be routed differently by
orthogonal toQM, as it primarily focuses on the partitioningeddy. The key distinguishing characteristic betwé&gd and
algorithm rather than a complete systematic approach t6-muCBR is that CBR considers only single-attribute classifiers
route query optimization and query processing — the focus e take a more general approach@M and build a clas-
our work. In fact, the selectivity-based partitioning afgfom sifier model that implicitly takes multiple attributes, uabk’
can be employed bM-based optimizer to find a good startcorrelations and statistics into account to identify distidata
solution in the query mesh search described in Section 1V-Bubsets with respect to execution routes. Although theoasith

Conditional plans[44] generalize serial plans by allowingstate in [3] that CBR approach does not require “previous
different predicate evaluation orders to be used for diffiér knowledge” of the data, thgain ratio metric in CBR is based
tuples based on the values of attributes and the cost af a historic profile of an operator which is similar to our
their acquisition Since the main goal is to minimize theapproach. Finally, CBR inherits several problems assediat
communication and acquisition costs in order to minimize ttwith Eddies, such as continuous and often unnecessary re-
sensor battery consumption, conditional plans primaolyus optimization and re-learning overhead. The classifieitaites
on selecting a single and very cheap to acquire partitioniage re-computed continuously, even though the best ckassifi
attribute. Such attribute is not necessarily the “bestittspj attribute for an operator does not change very often [3].
attribute in a more general query optimization context. IBxtending CBR to non-Eddy-based systems, i.e., systems tha
that respect, query mesh is a more general model selectprg-compute plans prior to execution, is non-trivial, asRCB
the best splitting attributes (in the classifier) based ota daloes not compute full routes and instead makes its decisions
distribution-based measure from machine learning to assigcally and continuously for each operatQM contribution
data to routes so that tuples would be discarded as ednhs a higher significance for two reasons: @ has a much



wider scope of applicability as it addresses multi-routergju
processing in plan-based systems - the standard in datab
systems, and (2) experimentalM approach has shown to
outperform Eddies and CBR by a substantial margin. [10]
QM has some characteristics that are close in spirit H)ll
Parametric Query OptimizatioifPQO) [46], where a set of
plans appropriate for different situations is found and tHe2]
decision of which one to use is deferred until runtime. Thig3]
. . ; ! 14]
work differs substantially from ours in three essential siay ;s
First, in PQO, the execution plan is computeddtirdata, thus
not exploiting the partitioning of data into distinct datbsets, [16]
which we have seen to be prevalent and widely exploitablez,
Second, in PQO, the choice of an execution plan is typically
query parameter-driven rather than data characterigtigen. [18]
Third, PQO does not exploit machine learning to identify thgg,
relationships between the data properties and the execufiz]
routes as our approach.

VIIl. CONCLUSION

. . 22]
In this paper, we have proposed a multi-route query o[)-
timization and execution model, calle@Query Mesh(QM). [23]
QM is general and applicable to static DBMSs as well as

. . . [24]
streaming engines, offering numerous advantages. Fst,
employs efficient machine learning techniques to learn ties)
relationship between the data and the resulting routes ¢b filg6]
the best processing strategy for different subsets of da[tfy.
Second, we present a compl&@dl-based approach for query
optimization and query processing applicable to arbitcatia (28]
and queries. ThirdQM-based query processing uses Veryq)
efficient multi-route execution infrastructure, which ifaates
shared processing and has near-zero route execution agerh0l

Our most important contribution was to show th@M (3
implemented in a real database system can achieve sigifican
performance improvements over other alternative solstior32]
Our experimental results demonstra@V potential as a 33
paradigm for efficient query optimization.

Although routes inQM are fully computed, the physical 34
operator pipelines are not constructed, which makesQhe 35
infrastructure very amenable to adaptivity — the subjectiof
future work. The problem of adaptiv@M is orthogonal to [36]
the issues addressed in this paper. Here, we have provi
the foundation of th&)M problem and the algorithms to find
a goodQM solution efficiently, without which the adaptive[38]
aspect cannot be addressed. 139]
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