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ABSTRACT
In real-life applications, different subsets of data may have
distinct statistical properties, e.g., various websites may have
diverse visitation rates, different categories of stocks may
have dissimilar price fluctuation patterns. For such applica-
tions, it can be fruitful to eliminate the commonly made sin-
gle execution plan assumption and instead execute a query
using several plans, each optimally serving a subset of data
with particular statistical properties. Furthermore, in dy-
namic environments, data properties may change continu-
ously, thus calling for adaptivity. The intriguing question is:
can we have an execution strategy that (1) is plan-based to
leverage on all the benefits of traditional plan-based systems,
(2) supports multiple plans each customized for different
subset of data, and yet (3) is as adaptive as “plan-less” sys-
tems like Eddies? While the recently proposed Query Mesh
(QM ) approach provides a foundation for such an execution
paradigm, it does not address the question of adaptivity re-
quired for highly dynamic environments. In this work, we
fill this gap by proposing a Self-Tuning Query Mesh (ST-
QM ) – an adaptive solution for content-based multi-plan
execution engines. ST-QM addresses adaptive query pro-
cessing by abstracting it as a concept drift problem – a well-
known subject in machine learning. Such abstraction allows
to discard adaptivity candidates (i.e., the cases indicating
a change in the environment) early in the process if they
are insignificant or not “worthwhile” to adapt to, and thus
minimize the adaptivity overhead. A unique feature of our
approach is that all logical transformations to the execution
strategy get translated into a single inexpensive physical op-
eration – the classifier change. Our experimental evaluation
using a continuous query engine shows the performance ben-
efits of ST-QM approach over the alternatives, namely the
non-adaptive and the Eddies-based solutions.

1. INTRODUCTION
1.1 Motivation

Many modern applications deal with data that is updated
continuously and needs to be processed in real-time [2, 6, 38,
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40]. Examples include network monitoring, financial mon-
itoring, fraud detection, etc. Even if given a highly effec-
tive query execution strategy at the start, data and system
characteristics may change considerably during the query
lifetime, making it necessary to adapt the execution strat-
egy. This pressing problem of adaptivity has become an
important and active area of research in recent years [3, 21,
31, 36, 39]. Moreover, real-life datasets typically tend to be
non-uniformly distributed [22], e.g., sensor networks, moving
objects, etc. Enforcing a single query plan execution strat-
egy, as is the defacto standard for most database technology,
may lead to serious performance deterioration in situations
where subsets of data may have very different statistics [8].
Motivating Example. Consider the following continuous
query used in a financial monitoring application to correlate
stock prices with current events: SELECT * FROM stocks,

news, currency, blogs WHERE blogs.subject = stocks.

industry AND stocks.region = news.region AND news.

country = currency.country AND stocks.change% > 15.

To answer this query, the data may be acquired from several
stock exchanges, geographically dispersed news sources and
blogs that may be updated at various rates, e.g., based on
the location or the time zone. Arriving from various data
providers, the respective data subsets are likely to have dif-
ferent statistical properties, such as their data values, their
frequency, and arrival rates. To complicate matters, in reac-
tion to the same real-life events, prices of stocks may fluctu-
ate rather differently over time. News about political insta-
bility in certain geographical regions may affect positively
the stocks of defense-related companies while having an op-
posite or no effect on other sectors. Change in data values
and their frequencies may lead to the disappearance of ex-
isting and the emergence of new statistically similar data
subsets, consequently leading to changes in query execu-
tion statistics. To ensure good performance at all times,
a database system must be capable to continuously iden-
tify such distinct data subsets and to adapt the execution
strategy accordingly.

Unlike most adaptive solutions, e.g., [3, 31, 36], our work
does not focus on adapting a single execution plan for a
query, but rather on adapting the multi-plan-based (or we
refer to it as multi-route-based) execution strategy1 [35].

1.2 Multi-Route Query Processing
Multi-route query processing is a an effective approach,

1
We use terms “plan” and “route” interchangeably. Both mean the

same thing in the context of this paper. To prevent any confusion
with Eddies-based systems [12, 33], a route in our work is a fully
pre-computed query plan.
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especially when datasets are non-uniformly distributed. In-
stead of forcing all data to be processed by the same sin-
gle plan, a multi-route solution effectively supports the con-
current usage of multiple plans to evaluate a query. The
recently proposed approach called Query Mesh (QM ) [35]
supports such execution paradigm very efficiently.

QM employs a practical middle-ground strategy between
the two query optimization extremes – the solutions that
employ a “monolithic” single execution plan strategy for
all input data, e.g., nearly all commercial DBMSs [1, 11,
29], and the systems like Eddies that employ a fine-grained
“plan-less” approach, where instead of predermined plans, at
runtime the Eddy operator determines, one-at-a-time, the
next operator, that the tuples must visit for processing [33].
The former strategy may miss critical opportunities to im-
prove query execution performance when data has distinct
data subsets. The latter strategy may incur the frequent
and often unnecessary re-optimization overhead [12]. Since
there are no pre-computed plans, the system continuously
“re-discovers” the best routes for the arriving tuples.

QM provides the middle-ground by using multiple pre-
computed plans, each optimized for a subset of data with cer-
tain statistical properties, and the classifier component to
determine which data subsets should be processed by which
of the pre-computed routes (Figure 1)2. The QM frame-
work, implemented in a continuous query processing engine
[13], has been shown to be very effective for both real and
synthetic data compared to the single plan and the Eddy-
based query processing alternatives. Experimental evalua-
tion in [35] has shown that the QM -based optimizer can
find a good QM solution in a reasonable amount of time,
and for skewed data, it typically performs much better in
both response time and throughput than alternative sys-
tems, namely the single plan and the Eddy-based systems.
For more details on QM framework we refer the reader to
Section 2.

1.3 Adaptive Multi-Route Query Processing
The open question now arises, if a multi-plan based exe-

cution strategy, such as QM, can be as adaptive as “plan-
less” systems like Eddies? The need for adaptivity is ev-
ident. Even with an initial good choice of a QM solu-
tion, after some time, data characteristics, e.g., data values,
their frequencies and execution statistics, such as operators’
costs and selectivities, may change considerably requiring to
adapt the execution strategy. The fundamental challenge for
QM adaptivity is the problem of determining the discrep-
ancy between the previously constructed QM model3 and
the currently most suitable QM solution based on the new

2
In the rest of the paper, we will refer to the combination of two

components: classifier and a set of execution routes – a QM solution.
3
A QM solution represents a particular “model” of execution, as de-

termined by the classifier and the set of execution routes. In machine
learning, this term is commonly used to refer to classifier-based sys-
tems.
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Figure 2: Virtual and real concepts in QM.

data characteristics, i.e., its values and its statistics. In ma-
chine learning, such disrepancy is called a concept drift [27].
Concept drifts happen when a model built in the past is no
longer applicable to the current data.

In the context of QM, the change may occur at either the
target concept level, i.e., the routes in the multi-route con-
figuration, or at the underlying data distribution level, i.e.,
the data values and their frequencies (see Figure 2). The
necessity to change the current model due to changes in the
data distribution is called a virtual concept drift [14]. A real
concept drift may occur for instance when more accurate
statistics become available during execution and the routes
in QM should be adapted based on this new information.
Virtual and real concept drifts often occur together. We
refer to such case as hybrid concept drift [27]. From a prac-
tical point, a concept drift (real, virtual, or both) gives a
good indication that the current QM solution needs to be
adapted. A concept drift implicitly indicates that either the
data values, their frequencies or execution statistics have
changed. Thus the predictions made by the current QM so-
lution become less accurate as the time passes, e.g., data
may be assigned to “wrong” subsets and less efficient execu-
tion plans may be used for processing of those data tuples.
Hence, detecting concept drifts can serve as a good signal
indicating a possible need to adapt.

Multi-route adaptivity is a more complex problem com-
pared to a single plan adaptivity and brings several new
challenges. First, we must continuously find and deploy the
best execution solution where multiple plans are used con-
currently. The majority of current adaptive solutions [3]
are inapplicable here, as these methods are designed to sup-
port only a single plan. Second, QM employs a classifier
as a component of query processing infrastructure. There-
fore the classification cost must be taken into account by
the QM optimizer. Furthermore, a QM may need to be
adapted not only when statistics change, but also when data
values change (even if statistics stay the same), because such
change has a direct impact on the classifier accuracy4 and
the overall performance of QM solution. Therefore, moni-
toring data values is as important as monitoring statistics.
Finally, the physical execution of QM adaptation itself must
be inexpensive to make it practical for dynamic environ-
ments where query results must be produced in near-real
time. In summary, the key challenges include: (1) how and
when to determine that the current QM solution is no longer
adequate, (2) how to determine the new“best”QM solution
based on the new data values and the updated statistics, and
(3) how to efficiently execute the physical migration from the
current QM to a new QM solution while the query is being
executed.

4
The classifier is constructed based on data values.



1.4 Our Proposed Solution: ST-QM
We address the above-mentioned challenges by proposing

a self-tuning framework for QM called ST-QM. The tech-
niques presented in this work are discussed in the context of
stream environments and multi-plan query processing, how-
ever, in principle, they can be applicable to other systems
as well. In summary, the contributions of this paper are:

1. We abstract the adaptivity of a multi-plan solution QM
as a concept drift problem. Our approach, based on
monitoring and detection of concept drifts, can discard
many insignificant adaptivity cases early, and thus min-
imize the adaptivity overhead.

2. We present algorithms to efficiently determine virtual
and real concept drifts in QM used to determine if and
how the execution strategy should be adapted.

3. The key feature of our adaptive method is that all
logical transformations to the current execution solu-
tion are translated into a single physical operation –
the change of the classifier, without effecting the rest
of the execution infrastructure. This makes physical
adaptivity extremely lightweight.

4. We thoroughly evaluate the ST-QM approach through
experiments. Our results show that ST-QM is very
effective in adapting to different kinds of concept drifts,
its overhead is minimal, and the physical actuation of
adaptivity has nearly negligible cost.

The rest of the paper is organized as follows. Section 2 gives
the background on the core QM framework. Sections 3-6
describe the details of ST-QM design. Section 7 presents
our experimental evaluation of ST-QM framework. Section
8 discusses the related work and we conclude in Section 9.

2. BACKGROUND: QUERY MESH
The QM framework consists of two primary components:

query mesh optimizer and query mesh executor (Figure 35).
For a given query, the optimizer computes the QM solution
offline using available statistics and samples of data (the
training data). The training data accurately represents the
distribution of the data expected to come in the near future
– a common assumption in most database systems [30, 34]
and prediction models in data mining and machine learning
alike [16]. For streaming databases, relying on samples of
data is unavoidable, since it is impossible to “see” all of the
data a priori. For a QM solution generated by the optimizer,
the classifier model is inferred and the routes are computed.
For details of these steps, we refer the reader to [35].

The query executor takes the QM solution produced by
the optimizer and instantiates the physical runtime infra-
structure, which consists of two main elements: the Online
Classifier Operator and the Self-Routing Fabric (SRF ). The
online classifier at runtime classifies arriving data tuples and
assigns the best routes for their processing. While many
classification models could be plugged into QM, e.g., neural
networks, naive bayes, etc., in our work we use a decision
tree (DT ) [27]. Decision trees are considered as very effec-
tive classifiers: (1) DT generation algorithms do not require
additional information besides that already contained in the
training data, i.e., they are non-parametric [32]. (2) Com-
pared to neural networks or bayesian classifiers, DT s can
be easily understood and interpreted by a human user [19].

5
A thick black arrow in Figure 3 illustrates an example of a QM -based

query execution for a subset of data.
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Figure 3: Core QM framework.

This can be useful when a DBA wants to analyze the QM
performance and relate the classifier model to the actual
input data. (3) DT s display similar and sometimes better
accuracy compared to other learning techniques [10].

For efficient query processing, the QM -based executor
uses an infrastructure, called the Self-Routing Fabric (SRF ),
which implements query processing via multiple routes with
near-zero route execution overhead. In contrast to current
adaptive systems, SRF eliminates the expensive central data
router, such as the Eddy operator [12, 33, 41]. Instead, route
specifications are encoded in meta-data tuples, called routing
tokens (or short r-tokens). R-tokens are then embedded in-
side data streams along with their data tuples by the online
classifier operator. This allows de-centralized self-routing of
data and eliminates the “backflow” bottleneck [12, 30, 33]
present in the Eddy-based systems.

To keep memory and CPU overheads minimal, the tuples
are assigned to an existing route in groups called “routable
clusters” or short “rusters” rather than individual tuples.
Rusters distinguish themselves from traditional batching,
e.g., [12, 21], in that they are formed by probing the classi-
fier. Hence, only the tuples that share the same best route
get assigned to the same ruster. To enable de-centralized
routing, routes in the r-tokens are specified in the form of an
operator stack based on the design of SRF. The stack nodes
represent the indexes of the operators in the SRF, e.g., the
r-token <2,3,1,4> indicates that ‘2’ is the first operator in
the route, ‘3’ is the next, etc. A ruster is always sent to the
operator that is currently the top node in the routing stack.
After an operator is done processing the ruster, the opera-
tor “pops” the top of the routing stack – its unique identifier
in the r-token, and then puts the ruster into the next (now
the top) operator’s input queue. When the operator stack is
empty, the ruster tuples are forwarded to the global output
queue reserved by index “0” and then to the application(s).

3. OVERVIEW OF SELF-TUNING QM
3.1 The Main Idea

The following is the problem we tackle in this paper:
Multi-Route AQP Problem: For a given query Q and
its multi-plan solution QM computed at time ti based on
the representative dataset T and statistics H, continuously
detect a concept drift when a new sample dataset T ′ and
statistics H ′ become available at time tj > ti. If a concept
drift has occurred, find a new solution QM ′ based on H ′ that
results in the lowest execution cost for tuples in T ′. If the
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estimated cost(QM’) < cost(QM), replace QM with QM’.
The goal of Self-Tuning Query Mesh framework (or short

ST-QM ) is to detect QM concept drifts and to adapt the
current QM solution correspondingly to best suit the ob-
served drift. Our approach is unique in that we view the
problem of adaptive query processing (AQP) as a concept
drift problem from machine learning [42]. This abstraction
of the AQP gives several advantages to the adaptive system.
First, if we discard an adaptivity case due to an absence or a
presence of a small concept drift, it is likely not going to lead
to a better QM solution, because we’ve discarded insignif-
icant changes in the environment. If we do not discard a
case, then there is a high chance that it is worthwhile to an-
alyze further. In the end, there are fewer cases ST-QM has
to analyze and the ones that do get analyzed further are all
promising. Second, techniques from machine learning and
data mining fields addressing the concept drift detection and
analysis can be leveraged here to determine if adaptation is
needed and how to best adapt to the observed drift.

3.2 Query Mesh Concept Drifts
Given the two kinds of concepts in QM (virtual and real)

described in Section 1.2, the following three cases may occur:
Case 1: Virtual Concept Drift. This indicates that data
values and/or their frequencies have changed, but the ex-
ecution statistics of the new data subsets stay the same,
thus making the previously computed routes still applica-
ble. One example when such scenario may occur is when
a better quality (i.e., more representative) training dataset
is collected over time. In this case, the execution statistics
of the subsets might not change significantly, yet the QM
classifier can be further fine-tuned by integrating new data
values. For example, a new DT sub-tree can be added or the
nodes can be “pushed-up”or “down” for faster classification.
Another example of this case (based on the application men-
tioned in Section 1.1) is when a stock exchange opens and
starts streaming its data. The streaming data values from
the recently opened stock exchange get combined with the
streaming data from other previously streaming stock ex-
changes (e.g., from other regions). Here the new stock data
values, e.g., symbols, location, etc., will appear in the data
streams, yet the underlying distribution and the statistically
similar data subsets are likely to stay unchanged.
Case 2: Real Concept Drift. This case means that the data
values stay unchanged, but their execution statistics (e.g.,
selectivities or operator costs) begin to vary, thus requiring
the execution routes to be adapted. This scenario tends to
be less frequent, but may arise when the optimizer used a
rough approximation of data subsets’ statistics, and then
more accurate statistics become available as a result of the
query execution feedback. The updated statistics enable
the “tune-up” of the execution routes. Using the financial
application example, this case may happen when a sole stock
market is being monitored.Here, the data values, e.g., stocks
being sold on this stock exchange, become available as soon
as it opens and are unlikely to change significantly during
the day. Yet, the statistics for the new data might not be
very accurate at the beginning of the execution. However,
the longer the query runs, the more accurate estimations
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Figure 5: Self-tuning QM framework.

can be made. Another example when this case may occur
is when better routes are found through route exploration
described in Section 4.2.
Case 3: Both Virtual and Real Concept Drifts. We re-
fer to this case – the hybrid concept drift, and it happens
when both the data distribution and the execution statistics
change, consequently leading to alterations in the execution
routes and the classifier. Using financial application exam-
ple, this case may happen when during the after-market
trade hours, important news become public, which may have
a significant impact on the stock prices of some industries.
Since not all stocks participate in the after-hours trading,
the data distribution changes after the markets close. Fur-
thermore, the real-life news may impact the prices of only
certain types of stocks. In this case, both the data distribu-
tion and the execution statistics may change significantly,
thus requiring both the classifier and the set of execution
routes in QM to be adapted.

The three cases described above are not independent. Vir-
tual and real concept drifts are the special cases of the hy-
brid concept drift. The three cases compose a comprehensive
“spectrum” of changes that may occur in a system (Fig. 4):
specifically, a change in data values and their frequencies, a
change in execution statistics and a change in both.

3.3 ST-QM Architecture
ST-QM adds three new components to the core QM frame-

work: ST-QM Monitor, ST-QM Analyzer and ST-QM Ac-
tuator (shaded grey in Figure 5). We have designed ST-QM
to be highly modular, enabling adaptivity functionality to
be turned on/off with complete transparency to the core QM
framework (bottom of Figure 5). The architecture is easily
extensible: new algorithms and metrics can be added with-
out much disturbance to the rest of the system. We describe
the functionality of each ST-QM component next.

ST-QM Monitor continuously samples data and execution
statistics that will be used to determine if a concept drift has
occurred. Monitored parameters include data values, their
frequencies, and the operators’ costs and selectivities. Our
monitoring approach is comparable to that of the existing
systems, e.g., [36, 37] with a few distinct characteristics (see
Section 4). Given the measurements from the ST-QM Mon-
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itor, the ST-QM Analyzer determines if a concept drift has
actually occurred, how well the current QM solution is meet-
ing its estimated costs and performance goals, and what (if
anything) is going wrong. Based on the analysis, the ST-
QM Analyzer makes recommendations if and how the QM
solution should be adapted. ST-QM Actuator takes these
recommendations and physically adapts the QM solution.
Figure 6 graphically depicts the flow of the entire process.

Monitoring, analysis, and actuation of adaptivity in ST-
QM add overhead to query processing. Thus, to minimize
the overhead, the following system requirements must be
met: (1) monitoring must be light-weight, and only if sig-
nificant changes are detected should the more expensive
analysis process be invoked, (2) adaptivity candidates corre-
sponding to insignificant changes in the environment must
be discarded early, e.g., during monitoring or in the early
analysis, without invoking the optimizer, (3) the decision to
adapt should be made only if significant improvement in the
performance is expected, and (4) the physical execution of
adaptivity must be fast and inexpensive to be done online.

4. ST-QM MONITOR
Monitoring aims to identify if the current QM solution

is no longer consistent with the current data and its char-
acteristics. What sets apart our monitoring goals from the
existing systems, e.g., [36, 37] is that: (1) we monitor not
only the change in data distributions and execution statis-
tics but also in the data values, and (2) we focus not only
on assuring the overall representativeness of a sample but
also on ensuring that new, i.e., the never seen before data
values are not gone undetected. ST-QM Monitor employs
two complimentary techniques, namely the input data and
the execution statistics monitoring.

4.1 Input Data Monitoring
For data monitoring, we sample the arriving to the server

data to collect a new training dataset. This new dataset
is analyzed to see if changes in the data values and their
distributions have occurred. Monitoring data values (in ad-
dition to the distributions and execution statistics) has the
advantage that the adaptive system can exploit this extra in-
formation, which is collected inexpensively, to minimize the
overhead of the more expensive execution statistics moni-
toring, e.g., when profiling operators or exploring for new
execution routes alternatives. Often changes in data val-
ues implicitly indicate changes in data distributions. Con-
sequently, this leads to a possible change in the execution
statistics, since virtual and real concept drifts frequently oc-
cur together. If the system detects a change in data values,
it may then employ a more expensive and detailed execu-
tion statistics monitoring to see if the routes may need to
be adapted. Simple random and systematic sampling tech-
niques can be used here for data sampling [34]. However
they can miss potentially “important” training data trying

to uniformly cover the entire sampling window. Thus, we’ve
designed the following techniques:
Classifier-driven sampling . This type of sampling is based
on the “importance” of tuple attributes. In QM, some at-
tributes are naturally more important than others, e.g., when
the decision tree (DT ) classifier is constructed, a split cri-
terion is used to select the best splitting attribute at each
node. Information gain, entropy, or gini index measures of
impurity can be used for this purpose [10, 27]. Comparing
the impurity value of a split attribute in the DT classifier for
the old and the new samples of data can be a good indicator
if the data distribution possibly changed. If the differences
between the old and the new impurity measures for the same
attributes are significantly different, then the new sample is
considered “interesting to analyze further” and thus is not
discarded. The decision of how many impurity measures to
compute, i.e., for how many DT nodes, and their relative
importance in the overall sampling is parameterized.
Route-driven sampling . This sampling method resembles
a biased sampling approach. It is guided by the QM exe-
cution routes and the expected percentage (% expected) of
tuples to be processed by those routes. Here, each tuple
from the new sample first probes the current QM classifier
(Stage 1). After probing, tuple groups are formed, with each
group being assigned to a particular route. If the difference
between the actual and the expected route assignment frac-
tion of tuples is less than the system-set threshold, then a
random selection of k members from those groups is per-
formed. If the difference is greater than the threshold, these
tuple groups get a high “priority”, because they contain the
different (from before) data and (k + k * (% expected - % ac-
tual)) tuples are sampled from each such tuple group (Stage
2). The sub-sample size here is directly proportional to the
observed frequency difference.

Data Stream

c1
c2

c3

c4c5c6c7

ci - classifier test condition
rj  - execution route

r1 r2 r3 r4

else

rdefault

else

else

% expected tuples
is associated with 

each route

sample 
k tuples from each group of 

tuples assigned to these routes

% expected - % actual 
< threshold

sample 
(k + k * (% expected - % actual))

tuples 

% expected - % actual 
> threshold

Figure 7: Route-driven sampling.

The motivation behind this method is the following: if
the same fraction of tuples were assigned to the same routes,
then the data distribution is unchanged. However, if the dif-
ference is significant, e.g., in the case of a special route called
the default route6, then more tuples should be sampled, as
this could be an indication of a virtual concept drift and pos-
sibly the classifier may need to be updated. Since this type
of sampling is “biased” towards collecting previously unseen
data, the new sample is treated as a compliment to the old
training data set and the two sets are combined (unioned)

6
A default route rdefault (illustrated in Figure 7) is an execution

route based on the overall statistics of the data. It is used by the
data that has similar statistics as the overall data statistics, as well
as by the “new” data with properties (values and frequencies) that
may have not been present when the QM was originally computed.



to improve the overall quality of the training data and the
resulting execution model.

4.2 Execution Statistics Monitoring
The statistics collected during execution are used to detect

the presence of the real concept drift. Execution statistics
monitoring consists of two complementary sub-parts: ex-
ploitation and exploration statistics monitoring.
Exploitation Statistics. Exploitation statistics monitor-
ing tracks the selectivities and costs of operators when using
the established execution routes. We instrument query oper-
ators to collect three types of statistics: (1) independent se-
lectivities, (2) correlated selectivities and (3) operator costs
(measured by wall-clock time). To compute independent se-
lectivities, a statistics bit is turned on in the r-token of a
randomly selected ruster, thus making it a special-purpose
(statistics) ruster. If a tuple from a statistics ruster does
not satisfy operator predicate, the tuple is not physically
discarded, but rather marked as a “ghost” to be able to com-
pute independent selectivities for other operators en-route.
For correlated selectivities, the selectivity is computed using
only the regular (“non-ghost”) tuples in the statistics ruster,
i.e., the tuples that have not been discarded by any previ-
ous operators in the route. All three types of statistics are
collected for each individual route by the operators.
Exploration Statistics. The motivation for the explo-
ration statistics lies in the fact that the only way to know
precise costs of alternative strategies is through competitive
execution [33]. For this purpose, we use exploration rusters
– a small fraction of the input rusters that are randomly se-
lected and assigned different from their current“best”routes,
while monitoring the statistics along these routes. The ex-
ploration routes are determined by the exploration policy.
ST-QM employs two exploration policies: (i) random exist-
ing route, where chosen rusters and sent on another ran-
domly picked existing route; (ii) random new route, where
rusters are sent on a randomly generated and currently non-
existing in the QM solution route.

Devoting resources to exploration to obtain information
about thus-unknown costs may help in finding better routes,
but in the short term it detracts from exploitation – pro-
ducing results with the current best routes. This is a clas-
sic exploration versus exploitation dilemma [3]. To address
this problem, ST-QM adaptively determines the number of
rusters used for exploration. The total number of explo-
ration rusters (TER) depends on the value of a distance
measure (described in Section 5) and is computed as: TER
= DER + (α * µ), where DER is the default number of
exploration rusters, µ is the value of the distance measure
and α is the fraction of rusters per distance unit. The larger
the distance, the larger the number of rusters used for ex-
ploration. Exploration may also be applied selectively to
only some rusters, to put more focus on exploring routes for
certain subsets of data.

5. ST-QM ANALYZER
The ST-QM Analyzer takes the data samples and the

statistics from the ST-QM Monitor and based on them de-
termines if any concept drifts have occurred. It then gives
tuning recommendations based on the analysis. The execu-
tion consists of two phases: (1) concept drift detection, and
(2) tuning recommendations.

5.1 Phase I: Concept Drift Detection

5.1.1 Virtual Concept Drift Detection
The concept drift detection algorithm CD-Detect (in Fig-

ure 8) maps the problem of virtual concept drift detection
to the problem of comparing two data samples T and T ′.

Algorithm CD-Detect( T old training set, T ′ new tuple sample,

H old statistics, H′ new statistics )
1: distdata = ComputeDataDistance(T ,T ′)
2: distroutes = ComputeRoutesDistance(H,H′)
3: if (distdata > θdata) and (distroutes > θroutes) then

4: return Hybrid Concept Drift

5: else if (distdata > θdata) then

6: return Virtual Concept Drift

7: else if (distroutes > θroutes) then

8: return Real Concept Drift

9: end if

Figure 8: QM concept drift detection.

The algorithm requires a distance measure distdata which
quantifies the difference between data samples T and T ′.
If distdata > θdata, where θdata is the adjustable distance
threshold, virtual concept drift is reported. The key to the
change detection is the intelligent choice of the distance func-
tion to compute distdata, which must accurately quantify a
data change that may impact the current QM. The choice
for the threshold θdata value defines the balance between the
sensitivity and the robustness of the detection. The smaller
θdata, the more likely we are to detect small changes in the
data, but the larger is the risk of a false positive.

One common approach to measuring data differences is to
first estimate the probability distributions of the data, and
then compute the distance, such as the Kullback-Leibler Di-
vergence or the Jensen-Shannon Divergence [9], between the
estimated distributions. However, this approach is compu-
tationally impractical for large and high dimensional data.
The problem becomes even more challenging in streaming
data environments, as the high speed makes it difficult for
such expensive algorithms to keep up with the data [45]. To
tackle this issue, we have designed two efficient methods:
Misclassification Rate. Misclassification rate or error rate
E , described as E = (1 - A) where A is the classifier accuracy,
represents the fraction of total cases “misclassified” by the
current QM classifier for the new data sample. The main
idea here is to assign the execution routes to the tuples from
the new data sample. Then the tuples from the new sample
probe the current classifier, and the classifier’s misclassifica-
tion rate, e.g., mean absolute error, is computed. The rea-
son we assign the new sample tuples to the existing routes
(even though we could possibly find better plans for their
processing) is because we are checking for virtual concept
drift with respect to the current target (i.e., the current set
of execution routes).
Signature-Based Method. This method regards the deci-
sion tree classifier as a summarization of the distribution of
data. Each leaf node contains a route label and the fraction
of tuples expected to be processed by that route. Together,
all the leaf nodes can be thought of forming a special “his-
togram”of route assignment frequencies. Then after probing
the classifier, a signature is assigned to each data sample
that depicts the route assignments frequencies. This way
we evaluate data distribution changes by comparing these
signatures. This method is extremely efficient, since all it
requires is a quick probe of the classifier.

5.1.2 Real Concept Drift Detection
Real concept drift occurs when execution statistics change

significantly, consequently implying that the execution routes



Algorithm TR-Produce(CD detected concept drift, T’ new

training dataset, H’ latest execution statistics)
1: QM = current query mesh solution used in execution

/* VIRTUAL CONCEPT DRIFT RECOMMENDATIONS */
2: if (CD.Type == Virtual Concept Drift) then

3: Compute new classifier C’ based on the training set T’

4: Let QM’ = new query mesh solution with classifier C’
5: if (cost(QM’) < cost(QM )) then

6: Recommend New Classifier C’
7: end if

/* REAL CONCEPT DRIFT RECOMMENDATIONS */
8: else if (CD.Type == Real Concept Drift) then

9: Compute new set of routes R’

10: Let C’ = current classifier QM.C
11: Update the target level of the classifier C’ with routes R’

12: if (the target R’ requires modification of classifier C’) then

13: Compute a new classifier C” based on the new target R’
14: Let QM’ = new query mesh solution with classifier C”

15: if (cost(QM’) < cost(QM )) then

16: Recommend New Classifier C” and New Routes R’

17: else

18: Let QM’ = new query mesh with routes R′

19: end if

20: if (cost(QM’) < cost(QM )) then

21: Recommend New Routes R’

22: end if

23: end if

/* HYBRID CONCEPT DRIFT RECOMMENDATIONS */
24: else if (CD.Type == Hybrid Concept Drift) then

25: Compute new QM’ solution based on the training set T’ and
the new statistics H’

26: if (cost(QM’) < cost(QM )) then

27: Let C’ = classifier QM’.C
28: Let R’ = set of routes QM’.R

29: Recommend New Classifier C’ and New Routes R’
30: end if

31: end if

Figure 9: QM tuning recommendations.

may need to be altered as well. Given the updated execution
statistics, a new set of routes is computed and compared
to the old set of routes. The goal here is not to estimate
whether the QM solution with the new set of routes would
necessarily be“better”(remember, the cost of a QM solution
depends on the combination of both the classifier and the
routes’ costs), but rather that the new routes are different
(see Algorithm in Figure 8). Using such simple route dif-
ference approach allows ST-QM to minimize its overhead:
since route computation is a fraction of the entire QM re-
computation [35]. Next we discuss several possible choices
for the route distance measure distroutes.
Number of Affected Routes. This distance measure counts
the number of routes that are different when comparing the
old and the new sets of routes. Let R denote the old set of
routes, and R’ be the new set of routes. Then distroutes =
|Rdiff | = |R′−R|, where ∀ r ∈ Rdiff , r ∈ R′ and r /∈ R. For
example, if a route r has a different operator ordering or if a
new route r exists in the new set as a result of exploration –
all these changes contribute to the route distance measure.
If a more fine-grained measure is needed, the approach can
be extended to consider the count of the operators with sig-
nificantly different selectivities and execution costs.
Route Edit Distance. This distance measure is based on
the edit distance approach [46]. Here, the old and the new
routes are mapped respectfully to the same data subsets,
meaning these routes were considered as the best execution
strategies for processing of the same data subset at different
times. Routes represent operator sequences and can be de-
scribed by the strings composed of operator identifiers. The
edit distance between any two routes is then the number of
operations required to transform one of them into the other.

The examples of edit distances that can be used here include
Hamming distance, Levenshtein distance, etc.

5.2 Phase II: Tuning Recommendations
After QM concept drifts have been detected, the ST-QM

Analyzer determines how to address them. In response to
the concept drifts, ST-QM Analyzer may do the following:
(1) ignore the concept drifts, if they are small or the ben-
efits of adapting the current QM is not expected to give
much performance improvement; (2) incrementally tune a
sub-part of the QM solution, e.g., a classifier sub-tree or a
route; (3) compute a new QM solution based on the updated
statistics and consider to replace the current QM solution.

5.2.1 Recommendation Algorithm
Figure 9 illustrates the pseudo-code for the TR-Produce

algorithm7 employed by the ST-QM Analyzer to produce
tuning recommendations. Similar to many adaptive solu-
tions, ST-QM uses the QM optimizer cost model [35] to
compare the current execution to what was originally ex-
pected or what is estimated to be possible [3]. The recom-
mendation algorithm has the following cases:
Case 1: Virtual Concept Drift Recommendation. If a vir-
tual concept drift is detected, first a new classifier C’ for the
new training set T’ is computed. Then the cost of the new
query mesh (with the new classifier C’ ) QM’ is determined
and compared to the cost of the current QM. If the new QM’
has a smaller cost, the new classifier C’ is recommended.
Case 2: Real Concept Drift Recommendation. If a real
concept drift has been detected, the target level (i.e., the
routes) in the QM classifier are updated. If this update
does not require the modification of the rest of the classifier,
and if the QM’ solution with new routes R’ has a smaller
cost than the current QM solution, then the new routes R’
are recommended. If the classifier needs to be adjusted (e.g.,
if some routes are now shared by several groups or if some
routes are removed), this case is then handled as a hybrid
concept drift.
Case 3: Hybrid Concept Drift Recommendation. If a hybrid
concept drift has been detected, a new QM solution with
the new classifier and the new set of routes is computed,
its cost is estimated and compared to the current QM solu-
tion’s cost. If the newly computed QM’ has a smaller cost,
then both the new classifier C’ and the new routes R’ are
recommended8.

To evaluate the benefit of a recommendation, ST-QM An-
alyzer uses the metric, called improvement I :

I(QM,QM ′, T ′, H ′) = 100% ∗

(

1 −
cost(QM ′, T ′, H ′)

cost(QM,T ′, H ′)

)

where QM is the initial and QM’ the recommended solution,
and cost(QM’,T’,H’) is the expected cost of evaluating a
query under the QM’ solution based on the training data
set T’ and the statistics H’. The ST-QM Analyzer computes
the expected improvement value, and if the value is deemed
as substantial, only then the recommendation is outputted.

6. ST-QM ACTUATOR
6.1 Physical Execution of Adaptivity

7
“TR” is the abbreviation for “Tuning Recommendations”.

8
If either the classifier or the new set of routes have been computed

in the earlier stages of analysis, e.g., during concept drift detection,
they are cached and not recomputed in this phase.



ST-QM Actuator physically adapts the QM solution in
the execution framework based on the recommendations re-
ceived from the ST-QM Analyzer. As described in Section
5.2, ST-QM Actuator may receive the following three kinds
of recommendations:

• R1. New Classifier + Old Routes

• R2. Old Classifier + New Routes

• R3. New Classifier + New Routes

The key characteristic of the ST-QM is that all three rec-
ommendations get translated into a single physical opera-
tion in the execution infrastructure, namely the change of
the classifier in the online classifier operator. To accomplish
this, only a simple pointer re-assignment to the new clas-
sifier object is needed (Figure 10). This single step is the
actual execution of QM adaptivity and the implementation
is trivial. What makes this possible is the architecture of
QM framework. Although routes (i.e., query plans) are pre-
computed, their topology is not physically constructed. In-
stead the Self-Routing Fabric (SRF ) infrastructure provides
distributed routing (i.e., forwarding of tuples to the opera-
tors in the plan) based on the plan specifications assigned by
the classifier (Section 2). This physical separation between
the component that determines which plans should be used
for execution and the component that actually executes the
plans based on specifications, makes the QM adaptivity so
light-weight. To change the execution strategy, all the sys-
tem needs to do is modify the specification of the plans (in
the classifier).

Figure 10 illustrates an example of physical execution of
QM adaptivity. The old classifier, marked by lighter grey,
is replaced by the new classifier, and the rusters with new
routes are sent into the self-routing fabric instantaneously.
The attractiveness of our design is that we can easily switch
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Figure 10: Physical execution of QM adaptivity.

between different multi-plan solutions. If the desired perfor-
mance improvements after adaptivity are not gained, ST-
QM can easily switch back to the previous QM solution.
The architecture makes such behavior very flexible.

6.2 State Management and Adaptivity
One of the key questions that must answered in adaptive

systems is the problem of state management for stateful op-
erators. We consider select-project-join (SPJ) queries. For
joins, we employ one-way-join-probe (OJP) operators [35],
similar in spirit to SteM s [43], which correspond to a half
of a traditional join operator. There is one OJP associ-
ated with each stream attribute that participates in the join.
The OJP keeps track of the window of attribute values that

Uniform PoissonPareto

Figure 11: Experimental distributions: different col-

ors illustrate how the distribution changes when the

parameter values vary as described in Table 2.

have arrived on the stream and allow subsequent tuples from
the other streams to probe these stored attribute values to
search for a match. In the case of the join operator, the
order in which tuples probe the OJP is irrelevant as long
as each tuple passes through each OJP exactly once. This
holds from the associativity and the commutativity property
of the join operator [21, 43]. Without adaptive functionality,
the core QM framework already supports concurrent plans
with different operator ordering. Hence, adding adaptivity
does not require any additional support. We plan, however,
to investigate new state management techniques in our fu-
ture work, to extend support to other types of queries.

7. EXPERIMENTAL EVALUATION
We now describe our experimental evaluation of ST-QM

implemented inside Java-based continuous query engine called
CAPE [13]. To evaluate ST-QM ’s design, we compare its
relative performance against competitor systems, namely
the non-adaptive QM (described in Section 2) and the adap-
tive “plan-less” Eddies [33] with CBR-based routing policy
[30] – the closest solutions to ST-QM. To ensure even com-
parison, all three systems were implemented in CAPE, and
their implementation used as much of the same codebase
and data structures as possible. We also demonstrate the
effectiveness of ST-QM by measuring its overheads and the
benefits of its concept drift abstraction approach.

7.1 Experimental Setup
All our experiments are run on a machine with Java 1.6.0.0

runtime, Windows Vista with Intel(R) Core(TM) Duo CPU
@1.86GHz processor and 2GB of RAM. Our experiments
use N-way join queries which join incoming S1...SN streams.
The specific query we use is an equi-join of 10 streams, i.e.,
S0 ./ S1... S9 ./ S10. N-way join queries are one of the core
queries in database systems used to discover relationships
across data or events coming from different data sources.

We use synthetic data sources for our experiments, similar
to [4, 30, 43]. Using synthetic data allows us to manage data
properties that are hard to control in real-life data. We em-
ploy several known data distributions to determine the skew
of the data. Specifically, we use well-known distributions:
Uniform, Pareto and Poisson [7] (see Figure 11). These
distributions model many real-life phenomena (see Table 1
for examples). The default data properties, system param-
eters and distribution parameters used in the experiments
are shown in Table 1 and Table 2.

Each stream’s schema is composed of five attributes and
a timestamp. For every join attribute column, integer-based
values are generated using one of the above-mentioned dis-
tributions. The values of other attributes are correlated to
the join attribute values, e.g., in a stream S(col1, col2, col3,
col4, col5), if col1 is a join attribute, the values of col2...col5
are correlated to the values in the join attribute column ac-
cording to the specified to generator correlation parameters.
The default values are 50%, 30%, 15%, 5%. To make this



Table 1: Default experimental parameters.

Parameter Value Description

Ruster size 100 tuples Average ruster size
Sample size 100 tuples Average sample size per stream
Data moni-

toring

Route-driven

sampling

Data monitoring method.
k = |T |/|R|, θdiff = 0.2

Execution

monitoring

Exploitation

statistics

No exploration is used

distdata Signature-based Virtual concept drift detection
method. θdata = 0.1

distroutes Number of af-

fected routes

Real concept drift detection
method. θroutes = 0.2

Impr. I I = 0.1 Improvement parameter

Data Distributions

Name Parameters Application Examples

Uniform α ∈ {...,β-1,β}
β ∈ {α,α+1,...}
X ∈ {α,...,β-1,β}

• Long-term patterns of data

Pareto 0 < α < ∞
0 < β < ∞
α ≤ X < ∞

• Animal migration
• Word frequencies

Poission 0 < λ < ∞
X ∈ {0,1,...}

• Service times in a system
• # of phone calls at a call cen-
ter per minute
• # of times a web server is ac-
cessed per minute

more concrete, consider an example: value 100 is generated
in the join attribute column based on the chosen distribu-
tion, then in another attribute column, 50% of the time value
99 will appear next to 100, 30% value 98, and so on9. For
other attributes in the stream, the values are generated sim-
ilarly. We decided against generating random values in the
non-join atribute columns, to avoid short and wide decision
tree classifiers (e.g., a decision tree with height 1 and the
test conditions based on all possible random values). The
explanation for this is the following: if an attribute contains
a lot of unique random values, the entropy value for this at-
tribute column approaches 0. Since many splitting criteria
in DT construction algorithms are entropy-based [27], the
attribute with the most distinct values gets picked first, and
the algorithm stops right there, thus resulting in a short and
wide decision tree.

To simulate dynamic changes, the generation of data was
managed as follows: the data generator starts with a data
distribution and its initial distribution parameters; over time,
the distribution parameters values are varied, e.g., for Pois-
son distribution, the transition: (λ = 1)→(λ = 3)→(λ = 5)
(see Table 2), means that the initial distribution parameter
value was 1, after some time it was changed to 3, and then
to 5. This process is repeated continuously for infinite data
streams. The values of distribution parameters are changed
every 10K tuples across all streams.

The execution of ST-QM in CAPE [13] is split into two
execution threads. The monitoring and the adaptivity actu-
ation are interleaved with the query execution on one thread.
The analysis of ST-QM (i.e., concept drift detection, opti-
mizer calls and generation of tuning recommendations) is
executed on another thread. The analysis and the opti-
mizer search can sometimes be extensive [35], thus blocking
the query executor from processing the arriving data tuples,
while the system is being analyzed by adaptive component,
is not practical. Hence, we separated ST-QM analysis into
a separate thread, to prevent blocking of the query executor
and to ensure that results are produced at all times.

7.2 Results and Analysis

9
Values ‘99’ and ‘98’ were picked arbitrarily here to convey the ex-

ample.

Table 2: Distribution statistics and parameters.

Uniform (α = 0, β = 100): min: 0.0, max : 100.0, med: 49.0,
mean: 49.7, ave.dev : 25.2, st.dev : 29.14, var : 849.18, skew : 0.05,
kurt: -1.18.
Distr. trans: (α=0, β=100)→(α=0, β=150)→(α=0, β=200)...
Pareto (α = 1, β = 1): min: 10.0, max : 6833.0, med: 19.0,
mean: 73.56, ave.dev : 86.22, st.dev : 341.25, var : 116455.33,
skew : 14.26, kurt: 240.2
Distr. transitions: (α=1, β=1)→(α=1, β=1.5)→(α=1, β=2)...
Poisson (λ = 1): min: 0.0, max : 60.0, med: 10.0,
mean: 10.0, ave.dev : 7.2, st.dev : 9.8, var : 97.59,
skew : 0.96, kurt: 0.88
Distribution transitions: (λ = 1)→(λ = 3)→(λ = 5)...

7.2.1 Comparison Against Alternative Systems
In this experiment, we compare ST-QM design against

the closest competitors, specifically the non-adaptive QM
execution and the Eddy-based system with CBR-based rout-
ing [30]. The main difference between the implementations
is that the non-adaptive QM evaluates the query using the
same classifier and routes for the duration of the entire query
execution. If data characteristics change, and the classifier
does not have a sub-tree for the new data values, the“default
plan” (rdefault) is used for processing of that data. rdefault

plan is based on the overall statistics of the data and is
computed by the optimizer prior to query execution, just
like in traditional query optimization. CBR-based execu-
tion is done in the context of Eddies. Eddy operator contin-
uously profiles operators and identifies “classifier attributes”
to partition the data into tuple classes that may be routed
differently [30]. We execute Eddy with CBR routing in two
modes: (i) with batching and (ii) without batching [12]. The
batch size is set to 100, which is similar to ruster max size
parameter in ST-QM (see Table 1), and is designed to re-
duce execution overhead.

We ran the query processor for 25 minutes several times,
employing these different execution strategies, and show the
results, averaged over all those runs. Figure 12(a) compares
the average output rate, the average execution time per tu-
ple is presented in Figure 12(b), and the run-time execution
overheads present in these systems are in Figure 12(c)10.

From Figure 12(a), we can observe that for Uniform dis-
tribution, on average, ST-QM has 39% higher output rate
than CBR without any batching, 24% higher than CBR with
batching, and 6% lower than non-adaptive QM. In Uniform
distribution, most of the time, the streams tend to have a
single route. Occasionally, due to sampling, we have no-
ticed two routes per stream in ST-QM. However, even with
changes in the environment, the routes based on average
statistics of the “old” data tend to be the same best routes
for the “new” data. This explains the close output rate of
ST-QM compared to non-adaptive QM for Uniform distri-
bution. For Poisson distribution, ST-QM on average has
13% higher output rate than CBR without batching, 0-0.5%
smaller rate than CBR with batching, and 43% higher out-
put rate than non-adaptive QM. Here the simple batching
of Eddies incidentally plays out very well, thus resulting in
an average performance of ST-QM and Eddies being re-
ally close. For Pareto distribution, we observe that ST-QM
on average has 27% higher output rate than CBR without
batching, 18% higher than CBR with batching and 44%
higher output rate than non-adaptive QM.The average ex-
ecution time per tuple (in Figure 12(b)) follows a similar
trend.

For Pareto and Poisson distributions, when a concept drift

10
“QM” in the charts refers to the non-adaptive QM execution.
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Figure 12: Experimental results.

occurs, and most of the data gets processed by the default
routes in non-adaptive QM system, this results in poor exe-
cution strategy, since the data properties have changed and
the execution could be improved by determining the new
data subsets and customizing the routes for them, as is done
in ST-QM. CBR, on the other hand, suffers from continu-
ous re-optimization and re-learning overheads (the relative
overhead is depicted in black in Figure 12(c)). Implemented
in the context of Eddies, CBR continuously experiences the
“backflow” overhead, where tuples get continuously routed
back to the Eddy operator that has to re-examine the tu-
ples and forward them to the next operator for processing.
The overhead is O(n+1) time, where n equals the number
of operators and 1 accounts for the first time a tuple from an
input stream gets processed. Without any batching, Eddy
processing with CBR algorithm amounted to nearly 20% of
the total execution cost.

Batching attempts to reduce Eddy overhead. However,
batching in Eddy [12] is still very naive: every b tuples,
i.e., a continuous chunk of tuples that happened to arrive
together in time are batched and routed together. With-
out batching, the Eddy“backflow”overhead per workload of
tuples W is O((n+1)*|W |). With batching, the overhead
gets reduced by the batch size b, resulting in the total over-
head O((n+1)*|W |)/(b). In practice, the batches might be
smaller, depending on the arrival rates of the tuples. In QM,
on the other hand, tuples are grouped together into the same
ruster based on the classification, i.e., the data values and
the similarity of statistics, and are thus guaranteed to share
the same best route.

Eddies employing CBR also experience continuous over-
head of re-computing classifier attributes based on runtime
information, even though the best classifier attribute for an
operator does not change very often [30]. These overheads
limit the benefit that can be obtained from a better adaptive
policy in Eddy. Static QM and ST-QM also have a small
runtime overhead, namely the probing of the online classi-

fier to determine the execution plan for arriving data. The
classification overhead, however, was measured to be very
small, only 2% of the query execution cost (Figure 12(c)).

7.2.2 Adaptivity to Concept Drifts
This experiment evaluates how ST-QM adapts to different

concept drifts. We use non-adaptive QM execution as a base
case to compare ST-QM results.

A virtual concept drift means that the data values change,
but the distributions of the new content groups stay the
same, thus affecting the classifier component but not the
target routes. To simulate only virtual concept drifts, we
generate data using one of the experimental distributions,
and then over time replace the data values with different
values, while maintaining the same distribution of data val-
ues. Thus, the content of data changes, but their frequencies
stay the same. A real life example when this scenario may
happen is the variation between the number of times a web
server is accessed per minute. Depending on the day (e.g.,
work day or weekend), the hour (e.g., morning or evening)
the values may be different, but the overall distribution typ-
ically tends to follow Poisson distribution [24]. Due to space
constraints, we only show the results for the Poisson dis-
tribution here, but similar trends have been observed for
other distributions as well. Figure 12(d) shows the results
for ST-QM compared to non-adaptive QM. ST-QM gives,
on average, between 24% to 38% improvement over static
QM execution.

In real concept drift, the data values stays constant, but
the execution routes change. Real concept drift may occur
due to changes in either the selectivities, the costs of query
operators, or both. Typically, a change in selectivity indi-
cates a change in the data distribution, and thus most likely
a hybrid concept drift. Therefore, to simulate only real con-
cept drifts, we vary the time it takes an operator to process
a tuple over time (with non-changing data values) and re-
port the effects on ST-QM ’s performance. To motivate the



exploration of the space of higher operator costs, consider
the following example: [5] describes multilingual query op-
erators, e.g., LexEQUAL and SemEQUAL, for matching multilin-
gual names and concepts, respectively. If over time, the user
is not happy with the results produced by the queries com-
posed of such operators, the user may increase the quality
threshold [5], which may result in more detailed computa-
tions by such operators for certain phonemically close words.
In our experiments, the increase in operator cost is obtained
by running CPU intensive computations every time a tuple
has to be processed by an operator, and varying this cost
depending on the tuple’s data values. Figure 12(e) shows
that ST-QM is quite effective at detecting and adapting to
real concept drifts. On average, ST-QM ’s approach results
in 15 to 28% faster output rate than the non-adaptive QM
case.

For hybrid concept drift, we varied both data values and
operator costs. Figure 12(f) shows the results for continuous
hybrid concept drift occurrence, i.e., when both virtual and
real concept drifts take place together. We can observe, that
ST-QM outperforms non-adaptive QM by 24% to 41% in
hybrid concept drift case.

7.2.3 Run-time Overhead of ST-QM
ST-QM has three overheads: monitoring, analysis and ac-

tuation. We instrumented the code to determine the time
spent by each of these overheads. Figure 13 reports the over-
heads per workload of tuples relative to the total execution
cost. A workload in this experiment is a set of data tuples
received and processed during time interval between any two
ST-QM invocations.

The monitoring overhead per tuple was measured as the
time taken by the function that performs sampling and makes
the decision whether to discard or keep the sample (see Sec-
tion 4.1). For execution statistics monitoring, we have in-
strumented each operator to measure the time spent com-
puting the statistics (selectivities and execution cost) for
each “statistics” ruster (Section 4.2). The analysis overhead
was measured as the time taken by the function that per-
forms concept drift detection, to invoke the optimizer, and
to produce tuning recommendations (see Section 5). The
actuation overhead was measured as the time taken to re-
place the current classifier with a new classifier (described
in Section 6).
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The total overhead (monitoring together with analysis and
actuation) is 2.42% of the total execution time without opti-
mizer invocation, and 8.92% with optimizer invocation. One
important parameter to control the overhead of ST-QM is
the size of the training tuple set or the new tuples’ sample
size (due to space constraint, the chart is not shown). The
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Figure 14: Overhead when no adaptation is needed.

more tuples get collected, the larger is the analysis over-
head and the optimizer overhead. The optimizer overhead
is especially sensitive to the size and type of training tuples
collected, as was previously reported in [35]. A balance must
be kept between the size and the quality of the training data.

In addition, we also measured the worst case scenario for
ST-QM : when no concept drift occurs and the adaptation
is not needed. If there are no changes in the environment,
no benefit can be gained from changing to a different QM
solution. Thus, differences in the output rates must be due
to extraneous overhead (and not due to better decisions).
For this experiment, we ran our experimental query over
the Poisson-distributed dataset without any changes to the
data and with ST-QM functionality enabled. Figure 13 dis-
plays the average over 5 runs of the query. When no benefit
is possible, ST-QM is on average between 2.2 - 4.8% worse
than static QM in the total number of results produced.
This result confirms that ST-QM approach has detected
that changes were insignificant, based on its monitoring and
concept drift detection and did not invoke the optimizer.
By discarding such insignificant adaptivity cases early, it
minimized its adaptivity overhead. This overhead can be
further reduced in the system by minimizing the monitoring
frequency of both data and execution statistics.

7.3 Summary of Experimental Conclusions
The main points of our experimental study can be sum-

marized as follows:
1. ST-QM can give up to 44% improvement in execution

time and output rate.
2. ST-QM is highly adaptive to virtual, real and hybrid

concept drifts and can result in some cases in up-to
41% improvement compared to non-adaptive QM.

3. The runtime overhead of ST-QM relative to query ex-
ecution is small (at most 7%) . The actuation cost
of physical adaptivity is nearly negligible resulting in
0.02% of total execution cost.

4. Even if no adaptivity is needed, ST-QM ’s performance
in the worst case will be at most 2-4% slower than of
static QM.

8. RELATED WORK
Previous work on adaptive query processing primarily con-

siders traditional single execution plan query processing strate-
gies [3]. One approach is to collect statistics about query
sub-expressions during execution and use the accurate statis-
tics to generate better plans for future queries [26]. Other
approaches [18, 28] reoptimize parts of a query plan follow-
ing a materialization point based on accurate statistics of the
materialized sub-expression. We are unaware of any solu-
tions in database query optimization that abstract adaptive
query processing as a concept drift problem.



The Eddies architecture [12, 21, 33, 39, 43] enables very
fine-grained adaptivity by eliminating query plans entirely,
instead tuples are adaptively routed by the central Eddy op-
erator, to all the operators, one-at-a-time, thus determining
routes at runtime. This approach, although highly adaptive,
suffers from a continuous re-optimization overhead and does
not exploit stable conditions that often are prevalent in a
system for some time. Our approach is more coarse-grained
than Eddies, since at a given point in time a particular route
(plan) is fully pre-computed and may be used by groups of
tuples for query evaluation.

Current methods to concept drift detection in machine
learning generally involve constant relearning, either by de-
caying the importance of older instances [20], by block re-
training [44], or by sub-tree insertion for decision tree clas-
sifiers [17]. Adaptation in changing context continues to be
an active research area [15, 17, 23] in data mining and ma-
chine learning. For a survey of data mining techniques in
streaming environments, we refer the reader to [25].

9. CONCLUSION
This paper addresses the problem of adaptivity in the

multi-plan-based query processing engines. We have pre-
sented a Self-Tuning Query Mesh (ST-QM ) achitecture that
uses multiple plans for processing different subsets of data,
and yet is as adaptive as the“plan-less” systems. ST-QM in-
creases the efficiency of query processing in highly dynamic
environments, by adapting the multi-plan solution, so that
different subsets of data may benefit from different execu-
tion plans over time. ST-QM approach is unique in that
it abstracts the problem of adaptive query processing as a
concept drift problem. Such abstraction allows ST-QM to
discard adaptivity candidates early in the process, if the
changes are insignificant to adapt to and thus minimize the
adaptivity overhead. The key characteristic of the ST-QM
approach is that all logical changes to the current QM solu-
tion get translated into a simple physical operation, namely
the classifier change. Our most important contribution is
that we have shown in our prototype implementation that
ST-QM approach can be simultaneously inexpensive and
adaptive. Our experimental study indicates that ST-QM
can adapt to different types of concept drifts very efficiently.
Furthermore, the run-time overhead of ST-QM execution is
fully amortized by the performance benefits of the better
multi-plan-based query processing.
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