
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1990

Computing Some Distance Functions Between Polygons Computing Some Distance Functions Between Polygons

Mikhail J. Atallah
Purdue University, mja@cs.purdue.edu

Celso C. Ribeiro

Sergio Lifschitz

Report Number:
90-1006

Atallah, Mikhail J.; Ribeiro, Celso C.; and Lifschitz, Sergio, "Computing Some Distance Functions Between
Polygons" (1990). Department of Computer Science Technical Reports. Paper 9.
https://docs.lib.purdue.edu/cstech/9

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4971383?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

COMPUTING SOME mSTANCE
FUNCTIONS BETWEEN POLYGONS

Mikhail J. Auillah
Celso C. RIbeiro
Sergio Lifschilz

CSD-lR-1006
August 1990

(Revised SepLcmber 1990)

Computing Some Distance Functions Between Polygons

Mikhail J. AtallahO
Purdue University

Department of Computer Science
West Lafayette, IN 47907

USA
Celso C. Ribeirot

GERAD and Ecole Polytechnique de Montreal
5255, avenue Decelles

Montreal (Quebec)
Canada H3TlV6

Sergio Lifschitz
Catholic University of Rio de Janeiro
Department of Electrical Engineering

Caixa Postal 38063 - Gavea
Rio de Janeiro 22452

Brazil

May 1990

Abstract

We present algorithms for computing some distance functions between two (possibly
intersecting) polygons, both in the convex and nonconvex cases. The interest for such
distance functions comes from applications in robot vision, pattern recognition and
contour fitting. We present a linear sequential algorithm and an optimal EREW·PRAM
parallel algorithm for the case when the input polygons are convex, and an essentially
quadratic sequential algorithm for t.he case of arbitrary polygons (possibly with holes).

Keywords: Computational geometry, polygons, distance computation, Hausdorff dis
tance, pattern recognition, contour fitting, robot vision, algorithms.

"This author was supported by the Office of Na.val Research under Contta.cts N00014-84-K_0502 and
N00014-86-K-0689, the Air Force Office of Scientific Research under Grant AFOSR-90-0107, the National
Science Foundation under Grant DCR-84.51393, and the National Library of Medicine under Grant ROl
LM051l8.

lTbis author is on leave from the Catholic University of Rio de Janeiro, Department of Electrical Engi
neering, Cma Postal 38063, Rio de Janeiro 22452, Brazil. His work was pnlially supported by Con6elho
Nacional de Dt:6envollJimen/o Cient{fico e Tecno16gico under Grant 202005/89.5

1

1 Introduction

The computation of distance functions between two polygons, in addition to being relevant
to computational geometry, has applications in pattern recognition (as described in Cox,

Maitre, Minoux and Ribeiro [7]) in the context of determining the optimal matching of
two given convex polygons (not necessarily having the same number of vertices, and with
a non-empty intersection in the general case) representing, for instance, two distinct series
of observations of the same contour or planar object. There it is shown [7] that finding the

projection of any vertex of one of the polygons on the other is the basic subproblem to be
solved at each step of the algorithm which obtains their optimal matching.

In that reference, the authors use a trivial O(IPIIQI) time algorithm for the computation
of a special kind of distance bewteen two convex polygons P and Q (we use IPI to denote
the number of vertices of P).

We present in this paper algorithms for the computation of some distance functions be
tween two (possibly intersecting) polygons, both in the convex and nonconvex cases. Among

the distances we consider are the Hausdorff distance and that defined by Cox, Maitre, Mi
noux and Ribeiro [7}. We give an O(lPI + IQI) time algorithm for the case where P and
Q are convex (this is an extension of the previous work of Atallah [1] for the computation
of the Hausdorff distance in the case where the two polygons do not intersect). The algo

rithm is shown to be optimally parallelizable: O(1og n) time with O(n/log n) processors in
the EREW-PRAM model of parallel computation. We also consider the case where P and

Q are nonconvex and give an O(IPIIQI + IPllog IPI + IQllog IQIl time algorithm; such an
algorithm does not consist of considering "all possible pairs of vertices/edges" because one
of the two points achieving the distance we seek can, in the nonconvex case, be interior to
a polygon (and hence there is no obvious enumerative scheme for finding it).

The paper is organized as follows. Section 2 gives the problem statement, along with the

basic notation. Section 3 covers the case where P and Q are convex, both in the sequential
and parallel settings. Section 4 deals with the case of nonconvex polygons. Section 5

discusses computational results and concludes.

2 Problem Statement

Each of the two input polygons P and Q is given as an ordered sequence of vertices, in (say)
clockwise cyclic order (if it has holes then it is specified as many such sequences, one for its
outer boundary and one for each hole boundary). For any point p and polygon P, we use
d(p, P) to denote the distance from p to P. That is, d(p, P) is zero if p is in the interior of
P, otherwise it is the shortest euclidean distance from p to the boundary of P. If p and q

are points then d(p, q) is the euclidean distance between them (this is the degenerate case

of P = q). We use V(P) to denote the set of vertices of polygon P.

2

With this notation, the distance defined by Cox, Maitre, Minoux and Ribeiro [7] for the
case where P and Q are convex, can be expressed as

DCMMR(P,Q) = DCMMR(Q,P) = z: d'(p,Q)+ z: d'(q,P),
PEV(P) qEV(Q)

Le., the sum of the squares of the euclidean distances from each vertex of each polygon to
the other polygon. The Hausdorff distance [11] considered by Atallah [1) can be expressed
with this notation, as

DH(P,Q) = DH(Q,P) = max{maxd(p,Q),maxd(q,P)),
pEP qEQ

Le., the maximum euclidean distance from any point (not necessarily a vertex, and possibly
interior) of any polygon to the other polygon. Let p, q be the pair of points pEP and q E Q
that achieve DH(F, Q); that is, d(PI q) ;; DH(P, Q). When P and Q are convex and none of
them contains the other, p and q must belong to the boundaries of P and (respectively) Q,
and at least one of them is a vertex of its polygon. It is trivial to see that this is no longer
guaranteed when convexity does not hold. For example, when Q is shaped like a thin donut
with a large hole in its center, and P is regular (hence convex) and sits in the donut's hole
(almost but not quite filling that hole), then DH(P, Q) ;; d(p, Q) where p is the center of
mass of P (hence is interior to P). See Figure 1.

Figure 1. Example where DH(P,Q) is achieved by an interior point.

Throughout, we use n to denote the total number of vertices of F and Q, Le., n :;::
IFI + IQI· 'We use Interior(P) to denote the interior of P, that is, P minus its boundary.

3 Convex Polygons

Throughout this section we assume that P and Q are convex. In this case, for both distance
functions of interest, it suffices to compute d(p, Q) and d(q, P) for all p E V(P), q E V(Q)

(since DH(P,Q) and DCMMR(P,Q) can both be computed from these with an O(n) extra
effort).

3

We give an algorithm for computing d(p,Q) for all p E V(P) (using the same algorithm
with the roles of P and Q interchanged would give d(q,P) for all q E V(Q»). We assume
that P is not entirely contained in Q (the problem is trivial otherwise).

3.1 A Linear Time Sequential Algorithm

We give an O(n) time sequential algorithm as a "warmup" for the parallel algorithm of
the next section. First we compute, in linear time, a description of the region of the
plane in P or Q but not in the interior of their intersection (call this region C). That is,
C == (P U Q) - Interior(P n Q). The region C consists of a number of "pieces", where
each piece is typically not convex, and the boundary of each piece consists of two convex
polygonal chains: one coming from the boundary of P (we call it the"P-chain" of that
piece), the other coming from the boundary of Q (we call it the "Q-chain" of tbat piece).
A piece has a (clockwise) "predecessor piece" and a "successor piece", in the obvious way.
For example, in Figure 2, C consists of 6 pieces, the predecessor of piece A is AI, and its
successor is piece All. The computation of C takes linear time as a consequence of the
known linear time algorithms for intersecting two convex polygons (e.g., the algorithm in
[14]). The vertices of P that are in Q have zero distance to Q and we do not worry about
them: we only worry about the other vertices of P (all of which are in C).

v

P, X P,
P,

P.
q, Y q,

qo

"

Figure 2. illustrating the pieces of C.

Let X be the P-chain of a piece P of C (where X is outside of Q), Y be the Q-chain of
P, V be the Q-chain of the predecessor ofP in C, W be the Q-chain of the successor ofP in
C. (Note that chains V, Y, Ware adjacent and occur in that order along the boundary of Q;
see Figure 2.) It easily follows from convexity that, for each vertex p of X, the point q of Q
closest to p is on one of {V, Y, W}. This implies that as far as X is concerned, it suffices to
look at Y, V and Wanly. We only explain how to do it for X and Y in O(]XI + WD time,
because for X and V we can do it in O(IXI + IVI) time by using the algorithm of [1] for the

4

disjoint polygons case, and similarly for X and Win O(IXI + IWI) time (these two cases
are essentially like the disjoint-polygons situation-the fact that they "touch" at one point
is of no consequence to the algorithm in [1]). For X and Y, we do it in O([Xj +11'1) time by
exploiting the following observation. Let VeX) = (Po, ... , PIXI-I), V(l') = (qo, ... ,qIYI_l)
(see Figure 2). Let f(Pi) be the point of l' closest to Pi. Observe that the sequence
!(Po), ... , !(PjXI-l) is sorted along Y. This implies that we can essentially walk along X
and Y simultaneously (like the way two sorted lists are merged), computing as we go along
for each vertex Pi on X that we encounter the point of Y closest to it. What makes it work
is the fact that, as we move monotonically along X, we also move monotonically along Y
(during this walk, the distances themselves are, of course, not monotonic: the sequence of
distances can switch from increasing to decreasing many times). This walk along X and Y
is easily seen to take O(lXI + WI) time. This completes the sequential algorithm, which
is described in details in Ribeiro and Lifschitz [17] along with computational results. The
parallel algorithm is discussed next.

3.2 Optimal EREW-PRAM Algorithm

Recall that the PRAM is the shared-memory model of parallel computation in which the
processors, which operate synchronously, share a common memory that they access con·
currently. The EREW version of the PRAM is the one where at any time step, no two
processors can attempt to simultaneously access the same memory cell (and hence is the
weakest version of the PRAM, since other v.ersions allow concurrent reading and/or writ
ing). We sketch how the algorithm of the previous subsection can be simulated on the
EREW-PRAM model so that it runs in O(logn) time with O(njlogn) processors. Before
giving the details, we observe that these bounds are worst-case optimal for this model. The
time x processors product is optimal because (i) these same bounds are known to be opti
mal for the problem of computing the logical OR of n given boolean variables [6], and (H)
the latter problem is reducible to our problem without any cost (that is, in zero time and
with zero processors). The no·cost "reduction" is as follows: we imagine Q to be a regular
n-gon (hence convex) centered at the origin of coordinates, and we encode the n boolean
variables in P by first considering P to be a slightly "shrunk" version of Q (also centered at
the origin), and then "perturbing" each vertex of P so that it encodes one of the n boolean
variables (a "lit is encoded by moving the vertex slightly outside of Q, a "0" by keeping it
inside of Q). Note that P and Q are not c.onstructed explicitly: the "shrinkage factor" (for
getting P from Q) and the n boolean variables are a complete implicit description of P and
Q (i.e., from them one processor can get any vertex of P or Q in constant time).

We now turn our attention to the parallel algorithm. It will be convenient to analyze it
using the time and work (i.e., number of operations) complexities. The processor complexity
is deduced from these using Brent's theorem [3), which states that any synchronous parallel
algorithm taking time T that consists of a total of W operations can be simulated by
P processors in time O«W/P) + T). There are ac.tually two qualifications to Brent's
theorem before one can apply it to a PRAM: (i) at the beginning of the i·th parallel

5

step, we must be able to compute the amount of work ~Vi done by that step, in time
O(W;j'P) and with P processors, and (ll) we must know how to assign each processor to
its task. Both qualifications (i) and (ii) to Brent's theorem will be easily satisfied in our
case. Consequently, we can henceforth concern ourselves with achieving W= O(n) work
in time T= O(logn). using P= n processors. Using n processors rather than nj log n will
simplify our exposition, and Brent's theorem guarantees that we can decrease the number
of processors to O(nj log n) without any deterioration in the time complexity.

The ERE\V-PRAM parallel algorithm for obtaining the Hausdorff distance through the
computation of the point of P furthest from Q is structured as follows (the algorithm for
the computation of DCMMR would be quite similar and is omitted here):

1. If P is inside Q then all points of P are at a distance of zero from Q, and we can stop.
Otherwise we proceed to the next step.

2. Compute P n Q, the region C, and break C up into its constituent pieces.

3. Process the pieces of C in parallel. That is, if for a certain piece P we let X, V, Y, W be
as in the previous subsection, we need to compute for each vertex of X the point of Y
(respectively V, W) dosest to it. We shall explain, after this outline of the algorithm,
how this is done for Y, and we later point out how the computation for V and W
can be reduced to a constant number of computations each of which is similar to the
computation for Y.

4. Collect answers by finding the vertex of C n P that is farthest from Q.

There are two main bottlenecks to implementing the above steps within the desired parallel
bounds: (i) computing the description of P n Q (step 2), and (ll) the "walks" along X and
Y. X and V, and X and TV (step 3). (The other steps are trivial to perform in logarithmic
time and linear work.) Computing P n Q (hence C and its pieces) turns out to be easy,
while parallelizing the "walk" along X and Y is more interesting. We use the fact that it
is known how to merge two sorted sequences within these complexity bounds, and also a
recent result of Chen [5J for computing the convex hull of a sorted point set in O(logn)
time and O(nj log n) processors on the EREW:PRAM.

Computing P n Q is the dual [16J of the problem of computing the convex hull of the
union of two sorted point sets, and hence it can be done within the desired complexity
bounds (by first merging the two sets and then using Chen's above-mentioned convex hull
algorithm). Therefore, it suffices to show that each of the three walks involving X (i.e., X
with each of Y, V, a.nd W) can be parallelized so that it takes logarithmic time and linear
work. We begin with the easier of the three cases, tha.t for the pair X, Y, in which the goal

is to achieve O(log(IXI + IYD) time and O(IXI + WD work.

Parallelizing the walk along the vertices of X and Y requires a careful look at the wa.y
the above-mentioned sequential walk along X and Y works. Suppose that, in the sequential
algorithm, we are at x E X and y E Y. We decide whether to take a step along X or Y as
follows:

6

1. Let ~ be the segment joining y to its predecessor vertex in Y, let L be the line
containing 3, and let z be the foot of the perpendicular to L from :2:. U z E 8 - {y}
then we set f(x) = z, we move along X to the successor of x, and we remain at yin
Y. If z is not in 3 - {y} then we proceed to (2) below.

2. Let T be the perpendicular at V to the segment :XV. If T is tangent to Q at V then we
set /(x) = y and we move along X to the successor of x. Otherwise we proceed to
(3) below.

3. If T is not tangent to Q at y then we move along Y to the successor of V, and remain
at x in X. See Figure 3a, and note that in this case the successor of y in Y (call it y') is
on the same side of T as x (this follows from the way the sequential algorithm works,
as assuming y' and x to be on opposite sides of T quickly leads to a contradiction
with the way the algorithm works).

T
?x /x

/ T /,
Y

,
/ /

Y / /

y' Y

Y
y'

<a) (b)

Figure 3. illustrating the relative position of T and y'.

It naturally suggests itself that one should mimic the above sequential computation by
using an optimal parallel merging algorithm (such as that of [2] or of [12]), and using
T to "compare" x a.nd y. However. there are complications: in case T is not tangent,
we might well have y' and x on opposite sides of T (see Figure 3b). When the parallel
merging algorithm compares an:r: E X to ayE Y, it expects to know the outcome ofsuch a
comparison. We would like the parallel merging of X and Y to produce a "merged" sequence
xu Y in which each x E X has /(x) either already computed by the merging procedure,
or determined by the two elements of Y that are before and after it in xu Y (that is, if
these elements are y' and y", then /(x) is either V, or y", or the foot of the perpendicular
from:2: to the segment Y'V"). This property (assuming we can somehow achieve it) would
be sufficient, because the merging procedures of [2] and [12) produce, in addition to the
merged sequence, the rank of each element of X in Y (and vice-versa), so that the above
mentioned 11 and y" are available in constant time for each x EX, and hence it is trivial to
obtain all the /(x)'5 with a postprocessing step that takes constant time with a = IXI +IYI
processors or, alternatively, o(log a) time and 0(0') work. Hence from now on we focus on
the problem of computing an Xu Y that has the above-mentioned desired property. One

7

can prove that this property of X U Y will hold so long as a comparison "x : y" is treated
as follows by the parallel merging algorithm (as before, T is the perpendicular to segment
xyat V):

1. Let 5 be the segment joining y to its predecessor in Y, let L be the line containing
5, and let z be the foot of the perpendicular to L from x. If z E s - {V} then the
merging algorithm behaves as if the outcome of the comparison had "'x < y" as its
outcome, otherwise it behaves as in (2)-(4) below.

2. If T is tangent to Q at y then the parallel merging algorithm sets f(x) = y and behaves
as if the outcome of the "comparison" of x with y had "x = y" as its outcome.

3. If T is not tangent to Q at y and if the successor of y in Y is on the same side of T as
x, then the parallel merging algorithm behaves as if the outcome of the "comparison"
of x with y had U z > y" as its outcome.

4. If T is not tangent to Q at y and if the successor of y in Y is on the opposite side of
T relative to x, then the parallel merging algorithm behaves as if tbe outcome of the
"comparison" of x with y had "x < y" as its outcome.

Note that the above scheme does not guarantee that every f(x) will have been computed

for every x E X when the parallel merge terminates (that is, the postprocessing stage we
mentioned earlier is in fact needed). The fact that the X U Y produced by this scheme
has the desired property is a consequence of the fact that our rules for the outcomes of

"comparisonsll of x and y are as if we were comparing y to f(x) rather than to x. That is,
it is as if we were in effect merging Y with the (still unknown) sequence f(X) rather than
with X itself.

The computation for the pair X, V (i.e., when V is playing the role of Y) must be
handled somewhat differently, since in the sequential algorithm the direction of the walk
along V can change, and hence the analogy with parallel merging seems to break down.

However, we can reduce the computation for the pair X, V to four computations, each of
which is similar to the computation for the pair X, Y. We do this as follows. We compute
the common tangent between X and V (there are many such tangents; we are referring to

the one that does not intersect P n Q). This tangent can be computed in O(log(IXI + IVI))
time by a single processor [15J. The point at which this common tangent touches X (resp.,
V) partitions X (resp., V) into two chains X 1,X2 (resp., Vb V2). Clearly, to solve the
problem defined by X, V it suffices to solve the four subproblems defined by the four pairs

Xi, Vj for i,i E {1,2}. (In fact it is enough to solve three of these subproblems - we do
not elaborate on this, however, in order not to clutter the exposition.) But each such pair
Xi, Vj is a problem similar to that for the X, Y pair, which we have already explained how
to solve. Hence the X, V case can be handled within complexity bounds similar to those

for the X, Y case, namely, O(log(IXI + IVI)) time and O(IXI + IVI) work.

Of course, the problem for the pair X, W is handled similarly to that for X, V.

8

4 Arbitrary P and Q

In this section we consider the Hausdorff distance computation in the general case where

P and Q are not necessarily convex, can have holes, and possibly intersect. Essentially the
same technique solves the problem for other distance measures, including any of the natural

generalizations of DCMMR to nonconvex polygons (for example, replacing in the definition
of DCMMR each d(p,Q) by d(p, Boundary(Q))). Since the procedure for such a DCMMR

would be quite similar to the one we give below for DH I we choose to omit its detailed
specification and focus instead on DB. the Hausdorff case.

Vile only compute the point of P farthest from Q (using the same algorithm ' ith the
roles of P and Q interchanged gives the point of Q farthest from P). It is trivial to see that
this point can be interior to P (as in Figure 1). However, although there are apparently

infinitely many points of P we need to consider, an O(lPIIQI + IPIIog IPI + IQllog IQI) time
algorithm is obtained as follows.

Triangulate P, and compute the Voronoi Diagram [16J of the segments of Q (call it

Vor(Q)). These can be done in time O(IPllogIPI) and (respectively) O(IQllogIQI) by
well-known algorithms (e.g., [10J for triangulation and [18] for Voronoi). \Ve then modify
Vor(Q) so that it becomes a planar subdivision 8(Q) obtained by (i) coalescing, in the
V or(Q) planar subdivision, all the faces that are inside Q into a single (nonconvex, possibly
with holes) face, and then (ii) triangulating Q. That is, the portion of SeQ) outside of Q
is identical to Vor(Q), and the portion of SeQ) inside of Q is the triangulation of Q. Of
course we have IS(Q)I = O(IQI).

Let T be any triangle in the triangulation of P. It clearly suffices to give an O(IQI) time
algorithm for getting the point of T that is farthest from Q. This is done as follows.

1. Intersect T with the planar subdivision defined by S(Q), inducing a subdivision of T
into no more than £ =O(IQI) pieces TI , ••• , Tl (possibly f. =1, in which case T1 =T).
Implementation Note. Computing the Ti's is done in O(IQI) time by locating a vertex
of T in the S(Q) planar subdivision and then "cutting" out of that planar subdivision
the triangular region T by tracing the boundary of T and computing this boundary's
intersection(s) with the edges of SeQ). The details are straightforward and are omit
ted.

Comment Observe that although the size of a particular Tj need not be 0(1), we have

L:1:Si.:SlIT;1 = O(IQI). Therefore to achieve the O(IQI) bound we claim for processing
T it suffices to show that, for each Ti' the point of T; that is farthest from Q can be

found in O(ITd) time. This is done in the next two steps.

2. For each T; that is inside Q I any point of T; has zero distance to Q.
Comment. Whether T; is inside Q is obtained in Step 1, as a byproduct of the
computation of T;.

3. For each Tj that is not inside Q, computing the point of Ti furthest from Q can be
done by computing the largest distance between any vertex of Tj and the segment or

9

vertex of Q that corresponds to the face of Vor(Q) containing Ti. Thus one needs
only to do one constant-time computation for each vertex of Tj.

The .hove clearly implies an O(IPIIQI + IPllog IPI + IQIlog IQI) time algorithm. Note
that a consequence of Step 3 is that, if P is not contained in Q, the point of P that is
farthest from Q is a vertex of some Tj (in fact a vertex of V or(Q)).

5 Summary and Conclusions

\Ve gave a linear time sequential algorithm and an O(log n) time and O(njlog n) processor

ERE\V-PRAM parallel algorithm for the computation of some distance functions between
two (possibly intersecting) convex polygons. We also gave an 0(12'2) sequential algorithm for
the case when the polygons are not convex. The distance functions considered are motivated

by applications in robot vision, pattern recognition, and contour fitting.

Algorithmic details and computational results concerning the sequential algorithm de
scribed in Section 3.1 are presented in [17]. It was noticed during the computational ex
periences reported in Cox, Maitre, Minoux and Ribeiro [7] that most of the computational
times observed for the solution of the problem of optimal matching of convex polygons cor
responds to computations of the distance function between them. The linear time sequential
algorithm described in Section 3.1 can then be used to considerably speed up the approach

proposed in that paper. Furthermore, the algorithm presented in Section 4 for arbitrary
polygons can be used for the optimal matching of non convex polygons corresponding to
more detailed contour representations, in the context of the application described in [7] (i.e.,

instead of considering just the convex hulls of the contours to be matched).

A very useful result would be the extension to convex polyhedra. Such a 3·dimensioanl
solution is virtually certain to involve the result of Chazelle [4] on linear-time computation of
the intersection of convex polyhedra, and the Dobkin-Kirkpatrick technique of hierarchically
representing polyhedra [8, 9}. Another interesting line of research, pursued in [13] for point
sets, is to find a translation (or other motion) that, when applied to one set, minimizes the

distance function.

References

[1) M. J. Atallah, "A Linear Time Algorithm for the Hausdorff Distance between Convex Polygons",
lnfonna~ion Processing Letters 17 (1983),207-209.

[2] G. Bilardi and A. Nicolau, "Adaptive bitonic sorting: An optimal parallel algorithm for shared
memory machines", SIAM Journal on Compu~ing 18 (1989), 216-228.

[3] R. P. Brent. "The parallel evaluation of general arithmetic expressions", Journal of ~he ACM
21 (2) (1974),201-206.

[4] B. M. Chazelle, "An Optimal Algorit.hm for Intersecting Three-Dimensional Convex Polyhedra" ,
Proceedings of ~he 30~h Annual IEEE Symposium on Found4~ions of Compu~erScience, 1989,
Research Triangle, NC, 586-591.

10

[5] D. Z. Cben. "An EREW·PRAM algorithm for the convex hull of a sorted point set", TR 89.928,
Department. of Computer Science, Purdue University, November 1989.

[6] S. Cook and C. Dwork, "Bounds on the Time for Parallel RAMs to Compute Simple Functions" ,
Proceedings of the 14th ACM Symposium on Theory of Computation, 1982, San Francisco, CA,
231-233.

[7] P. Cox, H. Maitre, M. Minoux and C. C. Ribeiro, "Optimal Matching of Convex Polygons",
Pattern Recognition Letters 9 (1989), 327-334.

[8] D. P. Dobkin and D. G. Kirkpatrick, "Fast Detection of Polyhedral Intersection", Theoretical
Computer Science 27 (1983), 241-253.

[9] D. P. Dobkin and D. G. Kirkpat.rick, "A Linear Algorithm for Determining the Separation of
Convex Polyhedra", Journal of Algorithms 6 (1985), 381.392.

[10] M. R. Garey, D. S. Johnson, F. P. Preparata and R. E. Tarjan, "Triangulating a Simple Poly
gon", Information Processing Letters 7 (1978), 175-179.

[11]

[12]

[13J

[14J

[15]

[16J

[17J

[18J

B. Grunbaum, Convex Polytopes, Wiley, New York, 1967.

T. Hagerup and C. Rub. "Optimal merging and sorting on the EREW PRAM", In/ormation
Processing Letters 33 (1989), 181-185.

D. P. Huttenlocher and K. Kedem, "Computing the Minimum Hausdorff Distance for Point
Sets Under Translation", Proceedings of the 6th Annual ACM Symposium on Computational
Geometry, 1990, Berkeley, CA, 340-349.

J. O'Rourke, C.-B. Chien, T. Olson and D. Naddor, "A New Linear Time Algorithm for Inter
secting Convex Polygons", Computer Graphics and Image Processing 19 (1982), 384-391.

M. H. Overmars and J. Van Leeuwen, "Maintenance of Configurations in the Plane", Journal
of Computer and Systems Sciences 23 (1981), 166-204.

F. P. Preparata and M. I. Shamos, Computational Geometry: An Introduction, Springer-Verlag,
New York, 1985.

C. C. Ribeiro and S. Lifschitz, "A Linear Time Algorithm for the Computation of Some Distance
Functions between Convex Polygons", Les Cahiers du GERAD G-90-23, Ecole des Hautes
Etudes Commerciales, Montreal, Canada, February 1990.

C. K. Yap, "An O(nlogn) Algorithm for the Voronoi Diagram of a Set of Simple Curve Seg
ments", Discrete and Computational Geometry 2 (1987), 365-393.

	Computing Some Distance Functions Between Polygons
	Report Number:
	

	tmp.1307986960.pdf.DYs4o

