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Abstract

We present a technique for optimally periorming n searches of an n-vertex lLierar-
chical DAG on Mesh-Connected Computers. As immediate consequences of this, we
obtain che first optimal mesh algorithms for the problems of computing the convex huil
of a set of 3-dimensional points, and of computing the intersection of two 3-dimensional
convex polyhedra. The best previously known bounds for these problems were a factor

of log n away from optimality.
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1 Introduction

Data structures, which have been used as a fundamental technique in the design of efficient
sequential algorithms. have also proved to be very useful in efficient parallel algorithm
design. In general, there are two phases to using a data structure in an n-processor machine:
the building phase and the searching phase. The searching phase often follows immediately
if the data structure has been properly defined and built. This is {requentiy true for parallel
models in which a data structure can be stored in a common memory and each processor
can access any memory cell in one time unijt. However.in network models. the searching can
be the bottleneck because a data structure has to be stored distributively in the processors.
and an access of a data element in another processor might take more time than building
the data structure. In fact. on an n-processor Mesh-Connected Computer {MCC), there
were situations in which a data structure of 7 nodes could be built optimally; however.
optimal solutions to performing n searches simultaneously were elusive [DSS88]. Thus. in
network models. the issue of optimally performing multiple searches can be as challenging
as that of optimally building the data structure.

In this paper, we study the multisearch problem on a class of hierarchical directed acyelic
graphs (DAGs) (which will be defined later) on a \/7 x /7 MCC. We show that n searches
of an n-vertex hierarchical DAG can all be performed in parallel in optimal O /%) time. As
immediate consequences of this, we obtain the first optimal O(/) time MCC algorithms for
the three dimensional convex hull and the convex polvhedra intersection problems. settling
an open problem mentioned in {AW88] and (MS88b). The algorithms easily generalize to
higher dimensional MCCs, running in Q(n!/?) time on a n'/¢ x 2!/ x ... x n1/4 MCC.
The previously known best algorithms ran in O(y/nlogn) time [DSS588] (their time bounds
became O(y/n) if each processor has O(log n) local storage). The multisearch technique of
hierarchical DAGs presented in this paper will probably have applications to other problems
as well. The formulation of the multisearch problem is an abstraction of the searching
problems in [DK87, DK82. Kir83].

The rest of this paper is organized as follows. Section 2 gives preliminaries, Section 3
gives the algorithms for the muitisearch problem, Section 4 gives applications. and Section
5 concludes.

For i > 1, we will use log!" to denote the function which applies the log function ? times,
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Figure 1: A 4 x 4 Mesh-Connected Computer

i.e. fog!"n = logn and log!? n = loglogli~" n. For convenience. we define log!® n = nj2.
For any n > 16. log” n = max{i|log!" > 4} (hence logttn = Jogt'+hin > (logt*Y n)?, for

[<i<log™n —1).

2 Preliminaries

In this section. we review the MCC model and some basic MCC operations. then we define

a class of hierarchical DAGs and the multisearch problem.

2.1 The MCC model and basic MCC operations

A Vr x yn MCC is a parallel machine in which the n processors are arranged as in a
2-dimensional array (see Figure 1) and operate synchronously in SIMD mode (i.e.. at any
time step, all of the n processors are executing the same instruction. although the details
of that instruction can depend on the processor’s ID). The processor at location (i,7) is
connected to the processor at location (#,j') iff i — | + |j — j'| = L. At each time step,
a processor can either perform = local operation or communicate with one of its neighbors.
The communication links between processors are bidirectional. Each processor has a unique
ID from 0 to n — 1 and has only O(1) storage registers, each of which can store O(logn)
bits (hence it can store its own ID).

AV x /n MCC las a diameter ©(/n) (i.e., the maximum of the distances between

any two processors is @(y/n)). Hence Q(./r) is a clear lower bound for any nontrivial



computation in this model. We next review some basic MCC operations which will be used
later in our algorithms. All of the operations can be done in (/%) time [MS89. NS79, NS81.
TK77] and easily generalize to higher dimensional MCCs, running in O(n'/¢) time on a

nlfd w pl/d « . x nlfd MCC.

1. Sorting takes as input an array of r records. one in each processor. and rearranges
them into nondecreasing order of a specified key, i.e. the record in processor i has key

values no larger than that of the record in processor ¢ + 1.

2. Random access read takes as input an array f = ro,7y,..., -1 of n records whose
key values are pairwise distinct. and an array A = aq,as, ...,aq—; of = (not necessarily
distinct) key vaiues. where r; and a; are in processor i, and sends the record r; whose
key value equals a; to processor t. If there is no record with key value a;. processor i

receives a null message.

3. Concentration moves m {m < n) selected records, which are arbitrarily distributed in
m of the n processors, into the first m processors, i.e those with IDs equal to 0, I,

ceeym— 1.

4. Compression moves m (m < n) selected records. which are arbitrarily distributed in
m of the n processors, into the top-left /;n x \/m submesh (see Figure 2). In our
algorithm. the problem size is usually reduced by a constant factor before further
recursion. We usually use compression to compress the small problem into the top-
left submesh to reduce the diameter (from /n to /i) before we recursively solve the
subproblem. The information which will be used in the conquer stage (but not needed

in the recursive call) is stored in the remaining processors as described next.

5. Uncompression distributes n — m selected records. which are arbitrarily distributed in
n —m of the n processors, to the processors which are not in the top-left /m x m

submesh.

6. Prefiz operations take as input an array A = ag,@,,....4q—;, where a; is in processor
i, and an associative binary operator @, and compute an array 8 = bo,by,... bhey
where b = a9 ® a1 ... ® ¢;. The value of b; is stored in processor i. Segmented
prefic operations partition the array into clusters and perform the prefix operation

on each cluster independently. A special type of prefix operations is the segmented
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Figure 2: Compression

broadcasting operation in which the value of the first element of each cluster is copied

to the remaining elements in the cluster.

[n the rest of the paper. we usually want to partition and MCC into square submesh of
m processors and duplicate a set § of m selected records such that each square submesh
of m processors contains a copy of § (see Figure 3). The duplication of § can be done
in O{y/n) time as [ollows: (i) compress the m selected records into the v X \/m square
submesh, (ii) for each of the first m!/* rows of the MCC, partition that row into m!/4
blocks each consisting of m!/* contiguous processors, and duplicate the subset of the m!/4
records stored in (the first m!/! processors of) that row such that each block contains a
copy of that subset. (iii) for each column of the MCC. duplicate the m!/? records stored in
(the first m!/* processors of) that column as in (ii). Step (i) can be done in O(/7) time,
using the compression operation, and Step (ii} and (iil) can be done in O(,/%) time, using
basic row and column operations. When /n is not divisible by /=, the partitioning will
introduce “leftover pieces”. These leltover pieces will be combined with their nearest square
submeshes, and each new combined submesh will contain only one copy of § (note that the

diameter of the new combined submesh is no more than 2,/m).

Lemma 2.1 Given a set § of m < n elements, § can be duplicated such that each square

submesh of m processors contains a copy of S in O(\/n) time.

We next define the class of hierarchical DAGs and the multisearch problem.




leftover pieces —"1

Figure 3: Partition the MCC into square submeshes. The “leftover pieces” are combined

with their nearet square submesles

2.2 Hierarchical DAGs

A directed graph D = (V, A} consists of a set of vertices I and a set of arcs A C V x V..
Each arc of D connects a vertex u (called its ¢ail) to another vertex v (called its head). A
DAG is a directed graph containing no directed cycle. To represent D. we will associate
each vertex v with an adjacency list which contains the heads of the arcs emanating from
v.

An n-vertex DAG D = (V, A} is said to be kierarchical il its vertices are partitioned into
levels Lo, L. .... Ly where b = O(logn), Ly = {w} and [Liy,| = J|L;} for some constant
J > | (hence |L;| = 3'), each arc of D connects a vertex in I; to a vertex in L4, for some
i € {1,2,....h}, each vertex has no more than d outgoing arcs for some constant d > 3.
A vertex v is said to have level number i if v € L;. The restriction that |L;| = 4% is made
to simplify the presentation. in fact, ¢;3' < |Li] € c2f, for some constants ¢; and c3, is
sufficient to establish the results we seek. We will use &, 8 and d as above throughout the
rest of this paper. When we say that “D is stored in an MCC", we mean that each vertex
of D is stored in one processor of the \/n x «/r MCC, and the processor containing it also

contains its adjacency list (of length no more than d = O(1)).

Lemma 2.2 Given an n-vertez hierarchical DAG D = (V,A) on a /u x /1 MCC. we can

compute all vertices’ level numbers in O(/n) time.

Proof: Let D' = (V’, E') be the subgraph of D induced by vertices in V — L;. We obtain




Figure 4: A Hierarchical DAGof 3 =2,d=3and h =3



D' from D by removing all the vertices which have no outgoing arcs and the arcs incident to
them. We then compress D’ in the top-left \/[V'[x \/[V7] submesh and uncompress D — D' in
the remaining processors, and then we recursively compute the level number for each vertex
of D', using the top-left \/[V7] x \/[V7] submesh. Once the level numbers of vertices in V*
are known. the level number of vertices in V — V' is one plus the maximum level number in
V' U we exciude the recursive call, the other parts {including compression. uncompression
and prefix operations) of the above computation can clearly be done in O(+/7) time. Since
V| = S0 1L = T 87 < n/B, the time complexity, T(r), of the above procedure
satisfies the recurrence T(n) < T(n/5) + ¢/, where ¢ is some constant. Since @ > 1, this
recurrence implies that T'(n) = O(\/r). O

From now on, it is implicitly assumed that every vertex of D knows its level number.

2.3 The multisearch problem

We will view a hierarchical DAG D = (V, A) as a search structure. That is. D is used to
guide the computation of the answers to queries. A query thus corresponds to a path from
Ly to Ly. Instances of hierarchical DAGs are the subdivision hierarchies of Kirkpatrick
[Kir83] and (overlapped) quad-tree {Sam84] which have wide applications in computational
geometry and computer vision, respectively.

Let U denote the set of possible search queries. A search path for a query q is 2 directed
path P(q) = {vg,vr,...,0), where v; € L;, is defined by a successor function suce, :
V' x U — V" such that v;yy = auce,(v;). Note that (v, suec,(v;)) is an arc of D. A search
path P(q) is not given as input, instead. it has to be generated “on the fly” with viyy
generated only after reaching »; for all 0 < i < h — |. We will assume that. for any ge U/
and v € P(g), succy(v) can be computed in O(1} time. The assumption is reasonable
because each vertex has only a constant number of outgoing arcs. Given a set of » queries
1+ 921 ++ - - qn, the multisearch problem is then to trace the P(g;)s, starting from level 0 and
ending with level k. Here by “tracing” a path P(g¢) = (vg,v1,....08), Wwe mean touching
the vertices along it in the order of vo, vy, ..., vy (vertex v; is touched by P(g;) if v; and g¢;
are held in the same processor). In the applications of this graph multisearch problem. the
computation of the answer to a query g occurs as the vertices of its search path are touched
in the correct sequence, that is, as query ¢ “travels” from »g to v to v ...to wy. The

difficulty is in how to do the n queries simultaneously (it is trivial to do just one query).



[n this paper. we will show that this multisearch problem can be solved in O{/n) time on
a /n x /& MCC, and give its applications. We will first present an algorithm which runs
in O(y/r} time but uses O(log™ n) storage per processor. The number of storage registers
used in each processor will then be (urther reduced to O{1) to obtain an optimal algorithm.

We will assume. in what follows. that the vertices of D are evenly distributed in the
v X /n MCC, i.e. that each of the n processors contains a vertex of D (together with
its adjacency list). By Lemma 2.2, we also assume that each vertex already knows its level
number. Since |A] < 8|V, we will use {D] to denote the size of D (, i.e. the number of its

vertices).

3 Multisearch on hierarchical DAGs

[n this section, we present an optimal MCC algorithin for the multisearch problem on
hierarchical DAGs. We will first present an algorithm that runs in O{\/%) time but uses
O(log™ i) storage per processor. Later in this section. the storage per processor will be

further reduced to O(1) to obtain an optimal algorithm.

3.1 A preliminary algorithm

In this subsection, we present an algorithm for performing » queries on a hierarchical DAG.
which runs in O(+4/n} time and uses O{log™ k) storage per processor on a /7 X /i MCC.
We firt review an algorithm of {DSS88| that achieves the O(,/7) time performance but
uses O(logn) stroage per processor, and then show that O(log™ n) storage per processor is
sufficient to achieve the O(/2t) time performance. Since each application of the successor
function takes O(1) time, the search can be advanced from level i to i + 1 in O(/7) time,

using the random access read operations. provided that the search is at level i.

Lemma 3.1 The search can be advanced from level i to level i 4 1 in O /7) lime. provided

that the search is at level .
The algorithm of [DSS88] is sketched in the {ollowing lemma.

Lemma 3.2 [DSS88] Given an n-verter hierarchical DAG D = (V, A) and n queries on D,

the multisearch problem can be solved in O(/n) time with O(logn) storage per processor.



Proof: For simplicity, let us assume that that /[L;] is divisible by /[L;_], for 1 < i <
log™ 2. The modification to handle the general case will be explained later. Let §; be the
subgraph of D induced by its vertices between level 0 and ¢ inclusive. The algorithm of
[DSS88) consists of two phases: the duplication phase and the searching phase. In the
duplication phase. each L; is duplicated such that each square submesh of |L;] processors
contains a copy of L;. In the searching phase. the search is advanced [rom level i to i + |
in O(+/[L;]) time, using each square submesh of | Li| processors for |L;| of the n gqueries
(Lemma 3.1). This is possible because, after the duplication phase, each square submesh of
| L;| processors contains a copy of L;. Since |L;] = O(B') and 8 is a constant. the total time

of the searching phase is O(F%, VILi) = O(/7) time. We next explain the dupiication

phase.

In the duplication phase, the L;s are dupiicated in the order of Ls, Ls_y,.... Lg. Each
Li is duplicated in O(+/JLi]) time. using each square submesh of |Li| processors. In order
to do this. we need to maitain that, before L; is duplicated. each square submesh of |L;|
processors contains a copy of 5;. This is possible because the number of vertices in S;
is O(ZIZh 1L;1) = O(Li}) since |L;] = ©(B7) and B is a constant. Thus the duplication
phase is done as follows. For i = log™h,log"h — 1,...,0, we do the following three steps:
(i} partition the MCC into square submeshes of |L;| processors. (ii) in each such submesh,
obtain a copy of L; [rom the copy of 5; stored in that submesh. (iii) in each such submesh,
obtain a copy of 5;_ [rom S5;, and duplicate S5;~; such that each square subsubmesh (i.e.
the submesh of that submesh) of [L;_;| processors contains a copy of Si-;. The initial
consition of the above process is that each square submesh of [Ly| processors contains
a copy of D. This condition can be set up in O(\/n) time since [D| = O(|L4|). Each
iteration of (ii} can be done in O(\/[L;]) time since each vertex knows its level number.
Each iteration of (iii} can be done in O(\/[Z;]) time as in Lemma 2.1. The total time of
(i)=(iii) thus is O, VIZF 1)) = O(v/7n}. The number of storage used in each processor
is O(h) = O(log n) since each processor conains a vertex of each L; for 1 <i < h.

When +/[L;| is not divisible by \/[L;_|], we need to handle the following twe problems
in the searching phase: (i) leftover pieces might appear while we partition the MCC (resp.,
a submesh) into submeshes (resp., subsubmeshes) to duplicate the L;s (resp.. Sis), (ii) the
partitioning (of a square submesh of |L;| processors) to duplicate S; might not match the

partitioning (of the MCC) to duplicate L;. The leftover pieces can be handled as previously
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explained in Lemma 2.1. Since. in the layouts of the partitioning (mentioned in problem
(i1}), each square of one partitioning overlapps no more than four squares of the other
partitioning, problem (ii) can be handled by increase of only a constant factor of the total
time complexity. O

With a different duplication scheme in the duplication phase. and also a faster con-

stant storage per processor algorithm in the searching phase, we show that the number of

storage per processor can be reduced to O(log™ n) while maintaining the O(\/n) time per-
formance. We next outline the algorithm which runs in O(/n) time with O(log™ ) storage
per processor. The details are given in the lemmas which follow.

Let B; = (V;, 4i) be the subgraph of I induced by the vertices of D between level
h—2logl h and A —1 —21logt* ! i inclusive. In the algorithm which runs O(,/) time with
Ollog™ h) storage per processor. D is partitioned into log™ h partitions. By. I. .... Diog® nyi-
and each B; is duplicated such that each square submesh of | B;| processors contains a copy
of Bi. We the do the search on By, thenr By, .... then By,.+} in the searching phase. using
the algorithm of Lemma 3.5. It is clear that the number of storage used in each processor
is O(log™ h) = O(log™ n). We next show that the duplication and the searching phases can
be done in O(/%) time.

Let B; be defined as above and R; = D — Ul”g “B;. The following lemma is used in the

analysis of the algorithms.

Lemma 3.3 {. B; has O(log'! h) levels and |B;| = O(W}.

. Ri has O(—2—

s Wh]*) vertices.

Iog A f[—l' O(\/_)
{O.'.slh\/| Billog* h = O(y/7).

Proof: direct consequences of simple combinatorial calculations and the definitions of hi-
erarchical DAGs, B;s, and R;s. O

The details of the duplication phases are given in the following lemma.

Lemma 3.4 Given an n-vertez hierarchical DAG D, in O(/1) time, the B;s can be dupli-

cated such that each square submesh of | B;| processors contains a copy of B;.

11




Proof: The initial condition of the following process is that each square submesh of | Blog* hl
processors contains a copy of D. This initial condition can be set up in O{/%) time with
O(1) storage per processor since |Big,e 4] = O(n). Let Ryyi0g* 1 = D. The duplication is
done in O(/n) time as {ollows. For i = log"k.log™ h — 1,....0, partition the MCC into
square submesh of |B;] processors, and on each such square submesh. do the following:
(i) obtain B; from R;41, (ii) obtain R; from R;;, and duplicate R; such that each square
submesh of [Bi-;| processors contain a copy of ;. The purpose of (ii) is to ensure that
{i) can be done independently on each sauqre submesh of the MCC and hence is done in
O(V[Bi[) time. Since Riy; contains O(1B;_|) vertices. each iteration of (ii) takes O(]B;|)
time and increases the number of storage used in each processor by O(1). Thus. the total
time of the above process is O(\/7 + Zl‘:‘lh 1Bi]) = O(v/n) (by Lemma 3.3). its storage
complexity of each processor is O(log™ ) = O(log +n). O

The searching phase is based on the routine described in the following lemma.

Let hy and A, be two level numbers (0 < &, < £; € 1), and m be the number of vertices

between level £; and A, inclusive (i.e. m = Zi‘gfu | L£:i]).

Lemma 3.5 Given the m-verlez subgraph of D induced by its vertices between level by and
hy tnclusive. and m queries on D on a /m x /m MCC, the search can be advanced from
level hy lo level hy in O(y/mlog(h, — hy)) time with O(1) storage per processor.

Proof: Let D' = (V', A’) be the subgraph of D induced by the vertices between level 4,
and h, —2log(ha —/i1) inclusive. Note that |V'| = O{m/(hs ~ h; }*). The algorithm consists
ol the lollowing four steps: (i) identify D’ from D. (i) duplicate D’ such that each square
submesh of [V'| processors contains a copy of D' (as in Lemnma, 2.1). (iii) partition the MCC
into square submeshes of |V’| processor and use each square submesh processors to advance
|V’| of the m queries from level h; to level kz — 2log(h, — #1y), and (iv) for the remaining
levels. advance the search level by level. Step (i) is trivial to do in O(y/7t) time since each
vertex knows its level number. Step (ii) can be done in O(y/%) time by Lemma 2.1. Since
each application of the successor function takes O(1) time. the search can be advanced from
level i to level ¢ + 1 in O(y/m) time, using the random access read. Because of this, Step
(i) can be dore in O(/[V(h2 — h1)) = O(/7) time since V| = O(m/(hy — 11)?), and
Step (iii) can be done in O{y/mlog(hy ~ 1)) time. O

12




Lemma 3.8 Giver Bis such that each square submesh of |B;| processors contain a copy of

Bi fori=10.1,...,log" h. and n queries on D. the search can be done in O(\/7) time.

proof: We do the search on By then 5, then ...then Biog- 1. Since each square submesh
of | B;| processors contain a copy of B;, we can partition the MCC into square submeshes of
| B¢| processors and use each such square submesh to do the search for | B;| of the n queries.
Since B; has O(log!” &) levels, the search on B; can be done in O( /B log*+!! ) time,
using the algorithm described in by Lemma 3.5. Thus. the time complexity T(r) of the
search satisfies the inequality T'(n) < cZ%‘f;h VIB:{logl'*V h_ where ¢ is some constant.
By Lemma 3.3), T'(n) = O(/n). O

We therefore have the following theorem.

Theorem 3.1 Given an n-vertex hierarchical DAG D of h levels and n queries on D. the

mullisearch problem can be solved in O(\/n) time with Q(log™ k) slorage per processor.

Proof: clear from Lemma 3.4 and Lemma 3.6.
The same idea can be used to obtain an algorithm that runs in O(\/% log™ &) time and

O(1) storage per processor.

Corollary 3.1 Given an n-verter hierarchical level graph D of h levels and a set of n gquries
on D. the multisearch problem can be solved on a /7t x /a MCC in O(\/mlog™ h) time with

O(1) storage per processor.

Proof: To obtain an algorithm that achieves O(\/%log™ %) time and O(1) storage per
processor, we interleave the duplication phase and the searching phase. That is, B;4y is du-
plicated after the search on B; is completed. Tlis is done as follows. Fori = 0,1,... ,JJog" A,
do the lollowing two steps: (i) duplicate B; such that each square submesh of | B;[ processors
contains a copy of B;, (ii) partition the MCC into square submesh of B;| processors. and
use each such submesh to do the search on B; for |B; of the n processors. It is clear that
the total time of (i) is O(\/=log" A) since it is iterated log™ A times and each iteration can

be done in O(y/n) time. The total time of (ii) is O(/n) time as in Lemma 3.6. O

3.2 Reducing the storage

In this subsection, we will show how to reduce the O{log™ k) storage bound of theorem

3.1 to O(1} and hence obtain an MCC algorithm whose time and storage bounds are both

13




optimal. We will develop a new duplication scheme to reduce the total number of storage
to O(n). and a new distribution scheme to store the data evenly among the processors and
still preserve the required locality (locality requires that each B; be stored contiguously, i.e.

in a submesh}.

3.2.1 Reducing the total storage

To reduce the O(nlog™ &) total storage to O(n}, we decrease the duplications of each B;.
The idea is as follows. Let ¢ > | be a constant such that |B;| < mf—;’h-);. Note that such a

constant c exists since | 5;| = O( (recall that B; is the subgraph of D induced by the

T
(logt'l h)? )
co o h—=2loglittp i N .
vertices in Uj=h_‘°25Iog(,,th and |L;| = 47). Instead of partitioning the /7 x /2 MCC into
square submeshes of size |5;] each. each of which contains a copy ol Bi. we now partition
1 ' " T H H
the MCC into square submeshes of size o T each. each of which contains a copy of
B;. Belore we do the search on B; in the searching phase. we duplicate B; within each
[ H n H
square submesh of ﬁrﬂ'ﬁ processors in O(ﬁ:f—:ﬁ) time. to ensure that each square
submesh of |B;| processors contains a copy of B;. We next show that the total number of
the storage of the above procedure is O(n). In the next subsection, we will show how to

avoid congestion such that each processor uses only O(1) storage.

Let f(k) = 2/(:=1 and f(1) = 2. The following two inequalities will be used in the

analysis.
PRI OES! (1)
k=1
S (L f(R)? <172 (2)
k=1

Lemma 3.7 The multisearch problem can be solved in O(\/%) time with O(n) lotal storage.

Proof: Let 5(n) be the total number of storage used in the above process. Since each square
submesh of {oafITyys Processors contains exactly one copy of B;, there are L(logl™+" h)?
copies of B; stored in the MCC. The total storage, S(r), of the above process then satisfies

the following inequality

S(n)

[ Fa

log™ h— n f
ey Zio=su I w(log(ﬂ‘” ;1)2)

log* A=1,loglit1) ky2
ans " (S )

1A
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where ¢, is some constant. Since log") h = 298" % and jogt™+ 1 b > 4, for 0 < i < log™ h—1.

we have logt? A > (logt™*+!! £)2. Hence.

log” AL logl 11 s 9 log* h—1 | 2
i=0 ( !os{ljh ) S Zi:ﬂ (log(l-lvljhj
a 1
< T2y’

< 1/2, by inequality (2).

Thus. §{n) € $nr. We next show that the extra time to do the local duplications is O(/n).
Let T'(n) be the total extra time to do the local duplications. Since each square submesh

f {logT:”h_]’ processors contains a copy of B;, we can duplicate B; wicthin each square

submesh of _'-_l'!_ processors in O

o FITA)? —}:’:—T_n—i) time. Then.

T(r) < o zlug h— IE:'.E‘_W
< amLS by
< VR e, _T['L-]
< c2/m, by inequality (1)

where ¢; is some constant.

We therefore reduce the total storage to O(n) and still maintain the O(,/%) time per-
formance. O

‘The previous lemma guarantees that the total storage requirements are not too much,
but it does not guarantee that “congestion™ does not locally occur at 2 processor. causing
it to need too much storage. We next show how to store these B;s such that the number of

storage per processor is reduced to O(1) and the time performance is still O(y/n).

3.2.2 Avoiding congestion and preserving locality

Since ea.ch square submesh of m processors might be allocated to store one copy of
oglit!)

Bis1, and (l J + hy2 copies of B; for j = 0.1,...,i, it is not clear how to distribute the
logt't1) p

data to achieve the following two requirements.

L. The localily is preserved well enough to maintain the O{\/n) time performance (recall

that by “locality”, we mean that each B; is in a square submesh of O(]B;|) processors).
2. Congestion is avoided. and hence the number of storage used in each processor is O{1).
We adopt the following distribution scheme to achieve both 1 and 2.
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Rule 1. When a submesh of T_m‘_h')? processors is allocated to hold a copy of B; =
{Vi,4i). B; is stored in that submesh’s top-leit square portion ( “subsubmesh*) of |B;|

processors.

Rule 2. When a submesh of W processors is allocated to hold a copy of Biy, Bix

is stored in the processors of that submesh which are not allocated to hold any B; for

all 7 <€ 1.

Rule 1 is adopted to ensure the “locality” needed for maintaining the O(./n) time
performance. and Rule 2 is adopted to ensure even distribution and hence reduce the storage
registers per processor to (}{1). We next prove that the above distribution scheme does
indeed reduce the number of storage registers needed per processor. while maintaining the

required locality. In the next subsection. we will give an O(+/n) implementation to realize

Rule | and Rule 2.

Lemma 3.8 The above distribution scheme stores the B;s such that

1. each square submesh (of the MCC) of —Tlh_]? processors contains a copy of B;,

{a

each copy of B; is stored in the lop-left square subsubmesh {of a square submesh of

{losu:-nnﬁ]z) of “os,..yh]z processors, and

J. the number of storage used in each processor is O(1).

Proof: By Rule 1. it is clear that claims 1 and 2 are true. We next show that Rule 2 does
reduce the storage per processor to O(1).

Consider a square submesh M of EE;'.'T'_!A}? processors. Let r denote the number of
processors of M which are allocated to hold some B;, for 0 < j < i. Since each pair of
adjacent copies of B; are stored ﬁ% apart (both horizontally and vertically), there are

at most (IEE(TE submeshes of ——"—0 0 s‘-” Ty Processors of M that are allocated to hold B;.

Thereflore,

cn logl?¥1) 4
LS ZJ—lii (lug‘“h)?{l:g"“}h)z
loglt+1 R ya
< (IOEIIH);,}: iaol 'Lgu)h )
< (log’*""”h]’ 3= [03(,“15) since logt!) h > (loglt1t n)?
<
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This gtves us that, when M is allocated to hold a copy of By, there are W
processors of M available, under Rule | and Rule 2. Since B;,, < ('E'gT'f“_w the number
of storage registers used in each processor is indeed constant. O

We next give an O(\/n) implementation to realize Rule 1 and Rule 2.

3.3 The implementation

The implementation to realize the allocation and distribution schemes of the last two sub-
sections consists of two phases: the allocation phase and the distribution phase. In the
allocation phase. the processors allocated to store a copy of B; are “marked™ with i, for
t =10,1...,log" h — 1. Each B; is then duplicated and its copies are distributed to their

allocated processors in the distribution phase.

Let ¢ be a constant such that |3;| < £

i o 3 H A —
Mearap (Such a constant exists since |B;| =

O egir))-

Algorithm SPARSE-DUPLICATION

l. Fori=log™h~1,log" h—2,...,0. “mark” with index 7 the top-left (ID—EfL:h—)z PrOCESSOIS
of every square submesh of {_E?'*_n"h_}’- processors.

2. Fori=tog™h — 1l,log"kh —2,...,0, do the following (a)-(b):

(a) In parallel. for each square submesh of processors, obtain a copy ol B;

bt}
(log'*! A)2
from f;;, and store that copy in the processors which are “marked” with index

h—2logli 1 h o
jsh=2log? A

and R; =V — UL—‘;S.-.‘F"'IB.-). [f there is no processor marked i. then discard that

i (recall that B; is the subgraph of D induced by the vertices in U

copy of B;.

(b) In parallel, for each square submesh of ﬁ‘%ﬂ? processors, obtain R; from Riyy
and duplicate R; such that each square submesh of (log‘%ih_)"' processors holds

acopyof R;,if: > 1.

End of Algorithm SPARSE-DUPLICATION

Lemma 3.9 (iven an n-vertex hierarchical DAG D of h levels on a \/n x /n MCC, we

can duplicate %(log“"‘” h)? copies of B; , for all0 < i <log™h — 1, and store each of B; in
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the top-left square submesh of —B—= of each square submesh of @"':Th‘ﬂ_ Processors in

(log™ h)? s‘ ’M2
O(/n) time with O(1) storage per processor.

Proof: It is ciear that Step 1 realizes Rule ! since the processors marked with { are in
the top-left square submesh of m-h}—, processors of each square submesh of ETTTUT)?
processors. Step 2 duplicates and distributes each copy of B; in its allocated processors.
By Lemma 3.7. the storage registers used in each processor would be O(1) if Step 2(a)
stores each copy of B; evenly in its allocated processors. The time complexity of Step 1 is
O(Zlog h ﬁ‘%) = O(y/n). Similarly, the total time of substep 2(b) is O(\/%). We next
explain how to implement Step 2(a) in O(y/n) time to store each copy of B; evenly in its

allocated processors.

Step 2(a) can be implemented in (/%) time as follows.

(i) For each of the four quadrants of the submesh. count the number of processors allocated

to hold B;.

(ii) Partition B; into B, B;2, B;3 and B4 whose sizes are proportional to the counts

obtained in (i) and send B;; to the {j)th quadrant of the submesh for j = [.2,3,4.

(iii) In parallel, recursively repeat the process in each quadrant of the submesh (to dis-

tribute B;; in the (j)th quadrant for 7 = 1.2,3,4).

ﬁ%) time to store B; evenly in its allocated

processors. The total time of Step 2(a) is thus O(Z:los h IJ%) = O/n). This completes

[t is clear that the above process takes O(

the proof of this lemma. O

Since each square submesh of —=F5-— processors contain a copy of B; after the above
og h)? -

T
data duplication and distribution phases. we can duplicate B; such that each square submesh

fil—-ﬁ,—h—}; processors holds a copy of B; in O(l—‘m_z-_l—,h) time, and then advance the search

from level & — 2logl? & to level  — 2log!™1 h in O log(""” h) time, using each

{to 5“”1]

square submesh of _F}h_)’ processor for (T)h_}" of the n queries. This gives us an O(\/n)

time and (1) storage registers per processor algorithm for the multisearch problem.

Theorem 3.2 Given an n-vertez hierarchical DAG D and n queries on D, the muilisearch

problem can be solved in O(\/n) time with O(1) storage per processor on a \/n X /n MCC.

Proof: We sketch how to modify our algorithm for arbitrary n. The following two minor

problems might occur.
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l. /7 might not be divisible by mf,—’-jh—]? (and hence introduce “leftover pieces” while

partitioning the mesh into submeshes).

(IOB:: h)?
E;Tri_?'ﬁ')? processors (hence the duplication of R; (in Step 2(b) of algorithm SPARSE-

DUPLICATION) has to cross the boundaries of submeshes).

2. A square submesh of might not be total inside any square submesh of

They can be handled as explained in Lemma 2.1 and Lemma 3.2. O

4 Applications of the multisearch technique

The multisearch problem discussed in Section 3 is an abstraction of the search problems
arising in many applications. and the class of hierarchical DAGs includes several important
DAGs. such as. for example. the complete d-ary tree. the overiapped quadtree {Sam84|, and
the subdivision hierarchies of Kirkpatrick [Kir83]. In this section, we apply the multisearch
technique presented in the Section 3 to obtaining the first optimal MCC algorithms for
the 3-dimensional versions of the following geometric problems: (i) the lines-poiyhedron
intersection problem, in which we are given a convex polyhedron P and = lines. and we
are asked to to compute the intersections of each line with P, {ii) the multiple tangent
determination problem, in which we are given a convex polyhedron P and = lines. and we
are asked to compute the plane tangent to P through each line. (iii) the convex hull problem,
in which we are given a set of n points. and we are asked to compute their convex hull,
and (iv) the intersection of convex polyhedra problem. in which we are given two convex
polyhedra. and we are asked to compute their intersection. Tle above problems have been
discussed in [ACG*88, Cho80, DK82. DK87. DSS88] on various parallel models. We review
some of them. In [DK82], an O(nlogn) time sequential algorithm for problem (i) was given.
which implies an Oflog n) time n-processor PRAM algorithm. That algorithm was modified
in {DK87] to obtain an O(log n) time n-processor PRAM algorithm for the multiple tangent
planes determination problem, which is then used to complete the “conquer” stage of the
algorithm of [DK87] for the three dimensional convex hull problem. In [DSS88], Dehne et.
al. presented an O(y/nlogn) time algorithm for the three dimensional convex hull problem,
based on the idea of [DK87]. The polyhedra intersection problem can be easily translated
to the three dimensional convex hull problem by solving the lines-polyhedra intersection

problem first. It is clear from the algorithms of [DK82], [DK87], and [DSS88] that the major
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tasks of their algorithms are to solve instances of the multisearch problem. and this is the
only boti:leneck of the MCC algorithm of [DSS88]. Therefore. it is not surprising that our
optimal solution to the multisearch problem leads to optimal algorithms for the above four
problems. For the sake of completeness. we review below the algorithms of [DK82], [DK87],
and (DSS88). The search DAGs implied in their aigorithms are instances of hierarchical
DAGs. and are defined from the hierarchical representation of convex polyhedra introduced

by Dobkin and Kirkpatrick [DK82, DK85], which we review next.

4.1 Hierarchical representations of polyhedra

The algorithms of [DK82] and [DK87] {or the lines-polyhedron intersection problem and the
multiple tangent planes determination problem. respectively, make use of the hierarchical
representation of convex polyhedra introduced by Dobkin and Kirkpatrick. which we review
next (for the [ull details. we refer the reader to [DK82. DK85|).

Let P be an n-vertex convex polyhedron with vertex set V(P), edge set £(P) and face
set £(P). A hierarchical representation of P is a sequence of convex polyhedra P, P, ...,
Py, which refines P progressively. P, = P, P, has no more than 15 vertices, and Py is
obtained from F; by removing 2 set of low-degree independent (i.e. pairwise nonadjacent
in £;) vertices. (The degree of a vertex is the number of edges incident to it.) Since the
graph of the vertices and edges of a convex polyhedron P; is an embedding of 2 planar
graph. at least a fixed fraction of its vertices is pairwise independent and has degree less
than or equal to 6, and hence a fixed fraction of its vertices is of low-degree and pairwise
independent. say, ¢{V(P;)] of them for some constant 0 < ¢ < 1 (where V(P;) is the vertex
set of ;). The number of vertices in P;; is then guaranteed to be a fixed fraction of that
of P; (specifically, [V(Pis1)] = (1 — e}[V(P)D.

More formally, a sequence of convex polyhedra, H{P) = P, P;,.... P, is said to be a

hierarchical representation of P if
l. Pp = Pand [V(P)| < 15;
2. V(Fiy1) C V(P) and |V (Pigi )| = e|V(F;}, for some constant o < 1

3. the vertices of V(P;) — V(P.x1) are of degree less than or equal to 6 and form an

independent set (i.e. are pairwise non-adjacent) in F;,

20



Lemma 4.1 {D5585] Given an n-vertez conver polyhedron P. a hierarchical representation

H{P)= P, P3,.... P, of P can be constructed in O(\/n} time on a \/u x \/n MCC.

Proei: Dehne et af [DSS88] implemented the algorithm of Dadoun and Kirkpatrick [DK87]
to construct a hierarchical representation of P in O(y/n) time on a /% x 1 MCC, using
the list ranking algorithm of Atallah and Hambrusch {AH86]. O

4.2 Defining the search DAG

In this subsection, we review the search DAG that was implied in [DK82] and in [DK87].
Let H(P) = P, P,,...,P, be a hierarchical representation of P. We say that v €
V(P;) — V(Pj41) is a relevant vertez of an edge e € E( P, ) if e is entirely visible from v.
assuming £, is the only opaque object in the space. Intuitively, v is a relevant vertex
of an edge ¢ if e is in the “base™ of the “cone™ with apex » which is cut {rom P if v
were the only vertex removed from F£; (a polyhedron is a cone with apez v if all the other
vertices are adjacent to v, and its base is the faces not containing v). Note that each edge
of Fy) is visible from at most two vertices of V(P;) — V(P;y;) since V(Piy) C V(F),
and all the vertices in V(P;) — V(P:41) are pairwise nonadjacent in P;. One of the search
DAGs D(H(P)) implied in the algorithms of {(DK82| and [DK87] is defined as follows: (i)
the vertices of D{H(P)) are partitioned into k + 1 levels Lo, Ly, .... La, (ii) Ly = 2o
{(vp is some distinguished node), and each node of L; corresponds to an edge of P,_; for
0 <:<h— L. (ili}) an edge € € P is connected to an edge e; € F;_y, i.e. (e1,€2) is an arc

of D{H(P)), il and only if ¢; = e, or e, is incident to a relevant vertex of ey.

Lemma 4.2 The D(H(P)) defined as above is @ hierarchical DAG, and can be constructed
in O(y/n) time on a /7 x /n MCC.

Proof: Since {Piy;| = «|P;| (0 < a < 1} and |P,] £ 15, there exists two constants ¢; and
¢2 such that ¢ F° < |E(P;)] € e28° (B = 1/a) because the P;s are convex. Since each vertex
of V(F) — V(Fi41) has degree no more than 6 and each edge of V(P;1;) has no more than
2 relevant vertices, each edge of Py, will be connected to no more than 12 edges of P:.
D(H(P)) can be easily constructed in O(y/n) time on a /r x /= MCC while H(P) is being
constructed. O

The successor function used to guide the search on D(H(P)) will be defined later, when

we review the algorithms of [DK82] and [DK87].
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4.3 Lines-polyhedron intersections

Given an n-vertex convex polyhedron P and n lines Iy, {5, .... I, the lines-polyhedron
intersection problem is to compute the intersections I; (P) of {; and P.forall 1 < i < n. An
O(nlogn) time sequential algorithm for the lines-potyhedron problem was given by Dobkin
and Kirkpatrick in [DK82), which implies an O(logn) time n-processor PRAM algorithm.
In this subsection, we review their algorithm and explain how to implement their algorithm
in O(y/n} time on a v/ x /2 MCC, using the multisearch algorithm presented in Section
3. The idea of their algorithm is as follows.

Let H(P) = P, P,,..., Py, be a hierarchical representation of P. To compute fj (P)
for I </ < n. the algorithm of [DK82] computes the sequence 0 (Pr)y L (Phoy)y -nn
O,(£1}. 1L consists of two phases: the detection plase and the determination phase. In the
detection phase. the lires which intersect P are idenfitied. and in the determination phase.
the intersections are computed for those lines. The details are reviewed next.

We first review the algorithm of Dobkin and Kirkpatrick [DK82] for the identification
of the /s which intersect £. Let { be one of {1, !5, .... ;. and let r be some chosen plane
perpendicular to {. To check if / intersects P, it suffices to check if = I N 7 is inside the
projection P’ of P on 1 along direction {. (note that { is a point and P’ is a convex polygon
on 7). Let P be the projection of P; on 7. To check if I’ is inside P’, the algorithm of
[DK82) checks if ' is in P! for i = h.hA — 1,....1, in that order. Their algorithm is based
on the fact that the sequence P|, P}, ..., P is a refinement of P’ {DK82]. In other words.

Pl =P V(P ) CV(F), V(P) - V(P,) forms an independent set. and |V (P})| < 15.

For any edge e of P/, define the growing region g{e, P!) of e w.r.t. P! to be the triangle
bounded by three lines, one of them through e and each of the other two through each of

the two edges adjacent to e in F]. Their algorithm is outlined as follows.

1. Project Py on 7 and decide if I’ is in P{. Il ' is in P[, then conclude that { intersects
P. Otherwise, identify an edge of P, whose growing region contains #. If no such
edge exists. then conclude that { does not intersect . Otherwise. let e be the edge

so identified and proceed to Step 2 below.

2. Fort = h—~1,h—2,...,1 or until the conclusion is reached, repeat the following steps:
(2) explore the portion of P which are in g(e, Piy1), (b) if the projection on r of that

portion contains £, then conclude that { intersects P, (¢) if I’ is not in the projection
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of that portion, ther identify the edge of P! whose growing region contains ¢, (d) if
no such edge of P! exists. then conclude that { does not intersect P: otherwise. let e

be such an edge and repeat (a)-{(d).

Correctness of the above procedure follows from the fact that £’ C F{U (Ueepry(e, P1))
for any | € i € h, and that for anyv two distinc: edges ey, ey of P/, g(e;, P!) and glez, P})
are disjoint except possibly at the vertices of P/. Step 1 can be done in O(1) time since
|V(Pr)] < 15 (hence |V(P})| < 15). Since V(P!,,) CV(P)and V(P!) - V(P{, ) forms an
independent set, no more than one vertex of P! is in g{e. P{y\) forany e € V(P! ), and if
such a vertex exists. it must be the projection on r of a relevant vertex of e. Since each edge
has no more than two relevant vertices and each relevant vertex is of constant degree, each
iteration of Steps 2(a)-2{d) can be done in O(1) time. Since (e1,€2) is an arc of D{H(P))
defined in Subsection 4.2 if and only if e; = ¢ or e; is incident to a relevant vertex of ey,
D{H(P)) is the search DAG of the above process. Tle successor steer function identifies
the edge in the next level whose growing region contains . We also associate each node
of D{H(P?)} with its relevant vertices (note that each node of D(H(P}) corresponds to an
edge in A(F)).

We thus have the following lemma.

Lemma 4.3 Given an n-vertex convez polyhedron P and n lines lylg .... I ona /uxyn

MCC. we can decide if I; (P} =¥ forall 1 <i < n in O( /1) time.

We next explain how to actuaily compute the intersections. We will compute the se-
quence fi( Pa), Ii(Py_y}), .... [i{ P) as {ollows.

Suppose F; is the first one of the sequence P, Proyy ... P that intersects [ (i.e.
L{F) # 0, and I(P;) = 0, for j > {). The subsequence L(Py)y L(Py—y), ..., h(P;) can be
computed while detecting the intersection. Note that Ii{ F;) is the intersection of { with the
portion of F; that is explored in Step 2(a). Since that portion is of size O(1), L( ;) can
be computed in O(1) time. Once we have 5L(F;), we can compute the sequence ;i{Pi_;),
{(Piz2), ... (Py) (with I}(Pj~1) from [;(P;) in O(1) time for 1 < J < i). We next explain
how to compute L{ P;_;) from [;( 7;) in O(1) time. Similarly, we can compute I;( P;_;) from
LiP(7) in O(1) time for any j < ¢. The DAG and successor function to guide the search

process of the computation of f;( P} will be clear from the following’ discussion. The idea
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is to explore the portion of F._| [rom the faces of P; that intersect {. in order to compute
h{ Pic1).

Given fi( P;) # 0, we can compute [;( P;_y) in O(1) time as follows. Let u be one of
the two elements of I}{ ;). We compute an element of f;{ Pi) {rom z as follows. For
simplicity, assume  is in the face f of P; and is not on any edge of P;. We say that a vertex
v € V(Fi.1) Is a relevant verlez of a face f € F(F;) if and only if f is entirely visible from
» when F; is the only opaque object in the space. Note that each face has no more than
one relevant vertex since V(F;) C V(F,_\) and V(F.,) -~ V(£;) forms an independent set.
l.et v be the relevant vertex of f (if no such vertex exists. then u € I[;{ P._,)). One element
of fi{ Pi~1) belongs to the intersection of { with the “cone™ of P, whose apex is v. Since v
is of constant degree, that element can be computed in O(1) time. When  is on an edge e
and is not a vertex of P;, we examine the faces of £;_, incident to relevant vertices of e to
obtain one element of I;}( B;—1) in O(1) time. When u is a vertex of P; and |L{ P)] = i. we
do the following: (i) choose a point that is on a face of P,y — CH{V(Pi-| — {u}), which
does not contain z (note that Fi_; — CH(V{P;—; — {r}) is a “cone” with apex u), and let
h be the line defined by that point and u, (ii) choose 2 plane r which is perpendicular to 2
(note that the projections on T along direction % of the incident edges of u in P;_, preserve
their adjacent relationship around u in P,_,), (iii} examine relevant vertices of the laces
or edges of P;_; whose projections on T along direction % intersect the projection of ! on
T along direction /i (there are no more than two such faces or edges). The correctness of
(i)-(iii) follows from the fact that the P;s form a hierarchical representation of P.

The search DAG of the above search process is defined as [ollows. LEach node of L;
corresponds to and edge or a face of Py_;,,, and (v, v2) is an arc if and only if (i) v, = v,
or (ii) vy incident to some relevant vertex of vy. It is clear that the DAG so defined is
hierarchical and can be obtained in O(/n) time on a y/» x /= MCC. The successor function
identifies the next faces or edges (no more than two) whose relevant vertices are examined
to explore O(1)-sized portion of the next convex polyhedra. Note that the number of paths
traversed by each query line [ may be more than one (which violates the assumption in the
formulation of the multisearch problem). This can be easily handled in our algorithm.

We therefore have the following lemma.

Lemma 4.4 Given an n-verter conver polyhedron P and n lines !y, I3, ..., I, we can

compute It.(P) for all 1 < i € n in O(/n) time.
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We next explain how to compute the tangent plane I, (P) of P through /; for all 1 <

I € nin O(y/n) time.

4.4 Multiple tangent planes determination

Given an n-vertex polyhedron P and = lines {;, {3, .... {,, in this subsection. we show that
the tangent plane T, (P) of P through /; for all 1 < i < n can be computed in O(/n) time
on a y/n x u MCC. In [DK87], Dadoun and Kirkpatrick presented an O(log nj time n-
processor PRAM algorithm for this problem. In what follows. we will review their algorithm
and show that it can be implemented on a /u x va MCC in O(/n) time by using the
multisearching resuit of Section 3. Since the intersections of all {; and P can be detected in
O(\/n) time {see Lemma 4.3}, we assume that none of the /s intersects . For simplicity,
we assume that no four vertices of P are coplanar. and no vertex ol P is on any {;.

Let { be one of the given is. Let H{P) = P, P,,.... P, be a hierarchical representation
of P. In order to compute [;( P}, the algorithm of [DK87] computes the sequence Tj{ P,),
T Piq), .- Ti(Py) as follows.

l. Compute Ti(F). For each { € Ti(Py), (2) choose a plane 7 perpendicular to ¢. (b)
project on T the edges of P, incident to the vertex of Py supporting ¢ (note that
those projections are in some half plane of 7. since Py is convex), (¢) identilv the two
edges wlose projections form the largest angle less than 7 among all the projections

obtained in (b). Let b(¢) be the two edges so identified in (c).

2. Fort=h—-1.h-2....,1, for each t € T}( Pi3,) do the following steps to obtain an
element of T;( P;): {a) examine the relevant vertices of edges in (1) to see if ¢ intersects
F;, (b) if ¢ intersects £, then obtain a tangent plane ¢/ of T}( P;) from ¢ and compute
b(t'), (c) if t doesn’t intersect P;, conclude that ¢ € T}(P;), and update 5(#).

Clearly, Step | can be done in O(1) time sinece |V(Py)] < 15. Correctness of Step 2
follows from the following facts: (i) for any vertex v of P; such that v and Py, are in
different half spaces defined by ¢, v is a relevant vertex of an edge of b(¢), (ii) if such »
exists. then v is unique since V(F;) — V(P,~,) forms an independent set. (iii) if such »
does not exist, then &(v) can be updated by examining the edges of P; incident to relevant
vertices of edges of §(v). Since |b(t)| = 2, each edge has no more than two relevant vertices

and each relevant vertex is of constant degree, Step 2 can be done in O(1) time. It is clear
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that the search DAG is the DAG D(H{P)) defined in Subsection 4.2. Note that the portion
ol D(H(P)) traversed by the query ! is not a path. but rarher is a DAG which has no
more than four vertices from each level of D(H(P)). However. this can be handled by our
multisearch algorithm since what matters to our algorithm is that the search process for
each query has the following properties: (i) it moves from one level L; to the next level i+ 1,
(ii) the vetices reached by the search at any level are on the adjacency lists of those reached
at the previous level. and (iii) the number of vertices reached at any level is constant. These
conditions {(i)-(iii) on a query’s search process are easily seen to be the only requirements
for the algorithm of Section 3 to work (i.e., it is not necessary for a query’s search process

to trace a path).

Lemma 4.5 Given n lines{y, I3, .... I, and an n-verter convez polyhedron P. T (P) for
all | €1 < n can be computed in O(\/2) time on a /it X Vi MCC. where T; (P) is the
langent planes of P through &; (T},(P} =0 if no such tangent planes ezist).

Based on the above lemma, we next present an optimal MCC algorithm for the three

dimensional convex hull problem.

4.5 Three dimensional convex huli

The algorithm outlined below is similar to that of Dadoun and Kirkpatrick [DK87] and that
of Dehne et af [DSS88]. Where we differ from {DK87) and [DSS88] is in the details of Steps
3 and 4 which are given in Lemma 4.5. For simplicity, we assume that the given n points
are in general position. i.e. no four distinct points are co-planar. Under this assumption. all
the faces of the convex hull are triangular. The algorithm can easily be modified to handle

the degenerate case.

Algorithm 3D-CONVEX-HULL

Input: A set § = {v),vs,...,u.} of n points in three dimensions where each point is in

one of the /n x \/n processors.

Output: The convex hull CH(S) of points in S. CH(S) is specified by its vertices set
V(CH(S)), edge set E(CH(S)), and face set F(CH(S)).
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1. Partition § into 51, 52, 93 and S of size n/4 each by horizontal (i.e. parallel to
the z-y plane) cut-planes in top-to-bottom order (i.e. the points in §; have larger

z-coordinate than those in 5;4).

2. Recursively compute the convex hulls CH(S1), CH(S:), CH(S3) and CH(S,) in

parallel. using one quadrant of the \/n x \/n processors for each S;.

3. Combine CH(5) and C H(S52) (resp., C H{S53)} and CH(S54)) to obtain CIH (5, U 52)
{resp., CH(S3U S84)) in parallel, using one half of the \/n X /R processors.

4. Combine CH(S) U S2) and CII{53 U 54) to obtain CH(S).

End of 3D-CONVEX-HULL

We do Step | and move the points in each 5; to the ith quadrant of the /n x /n
processors in Q(y/n) time by sorting. If we could obtain the hull of the union of two
()(n)-size convex polyhedra in O(y/n) time. then the time complexity T(n) of algorithm

3D-CONVEX-HULL would satis{ly the [ollowing recurrence:

T(n) < T(n/4) + 1 /T + c3/70
T(4) < ca,

where €1, ¢z and ¢; are constants. This would imply that T(n) = O(y/n). Thus it suffices
to show how to compute the convex hull of the union of two linearly separable convex
polyhedra in O(y/7) time on 2 /i x /A MCC.

For a convex polyhedron P and a line {or a line segment) {, let T;{ P) denote the two
planes that are tangent to P and contain { (T;{ P) = @ if no such tangent planes exist. i.e.

il { intersects P). To compute CH{S, U S;) from CH(S,) and CH(S5,), we do the following

two steps.

1. Compute I.(C H(S;)) foreach e € CH(S,) and also T.(C H(5)) foreach e € CH(S>).

2. Use the tangent planes obtained in Step 1 as well as CH(S5,) and C /I(§;) to compute
CH(5 U .57).

In Lemma. 4.5, it has been shown that Step | can be done in O(y/n) time. We next
review a lemma of [DSS88] which shows that Step 2 can be done in O( /%) time.
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Lemma 4.8 [DSS88] Given I.(CH(S2)) for each e € CH(S)) and T(CH(S51)) for each
e € CH(S3), we can compute CH(S, U 83) in O(/n) time on a /u x /7 MCC. provided
that CH(Sy) and CH(S;) are lineariy separable.

Proof: A proof was sketched in [DSS88}, and we review it briefly. Since CH(S|) and
C H(S,) are linearly separable, each face of CH(S, U S;) shares at least one edge with
either CH(5,) or CH(S2). To construct CH(S; U 52}, it suffices to examine every edge of
CH(5)and CH(S2) and. i{it is an edge of C H({§,U 57), determine the faces of CH(S,US>)
incident to it. Consider an edge e of CH(S,) or CH(S3). WLOG, assume e is an edge of
CH(S,). f T.(CH(S2)) = 0. the line  containing e then intersects CH(S,)} and hence e is
not in CH{S, U §3). Otherwise, T,(CI(S,)) contains two planes ¢; and i, each supported
by a vertex of CII(5;). Let vy (resp., va) be the vertex of CH(S,) supporting ¢, (resp..
t). Let fy (resp., f2) be the face formed by ¢ and v (resp.. 1), and let f3 and f; be the
two faces of C H{S|) to which e is incident. We observe that e is an edge of CH(5,U S,} if
and only if the four faces f, f2, f3 and f; are in the same half space defired by some plane
through e. Furthermore. if e is an edge of CH(S, U 52), the two faces of CH(S; U §2) to
which e is incident are those two of fi, f2, fy and f; that form the largest angle less than
7. The entire process takes O(1) random access reads and O(1) local computations. O

We therefore have the following theorem.

Theorem 4.1 The convez hull CH{5) of a set S of n points in three dimensions can be

romputed in O(/n) time on a /n x /n MCC.

Proof: Immediate from Lemma 4.6, 4.4. 4.5. and algorithm 3D-CONVEX-HULL.

4.6 Convex polyhedra intersection

[t is easy to see that the intersection of two convex polyhedra P, and P; is the convex hull
of the set of points that contains all the vertices of P, (resp., P;) inside P, (resp., P;) and
all the intersections between the edges of P, (resp., P;) and the surface of P, (resp., A).

Based on this. we give the following algorithm for computing the intersection of P, and P,

in O(y/n) time on a /2 x \/n.

Algorithm CONVEX-POLYHEDRA-INTERSECTION
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Input: Two n-vertex convex polyhedra Py and P;. P and P, are distributed in the /2 x /7
MCC. All of the faces of P, and P, are triangulated.

Output: The intersection PN P of Py and P,. All of the faces of P, N P; are triangulated.

1. For each e € E{(P;) (resp., e € E(P,)), find the intersections of ¢ and P {resp., P,),

if any. Let f; (resp., {3) be the set of intersection points so obtained.

2. Identify the set V (resp., V) of vertices of P, (resp., P;), which are inside P (resp.,

P1), using the intersection information obtained in Step 1.

3. Compute the Convex Hull CH(IU V] U VJ), using algorithm 3D-CONVEX-HULL.
CH(L U LUV U VW) is the intersection of Py and ;.

End of algorithm CONVEX-POLYHEDRA-INTERSECTION

Step 1 can be done in O(y/r) time as in Lemma 4.4. Step 2 is straightforward. and Step
3 can be done in O(y/n) time as in Theorem 4.1.

We therefore have the following theorem.

Theorem 4.2 Given two convez polyhedra F| and P,, we can compule Py N Py in O( /1)
time on a /n x \/n MCC.

5 Conclusion

[n this paper. we consider the multisearch problem on a class of hierarchical DAGs and
present an optimal MCC algorithm for it, which leads to the frist optimal MCC algorithms
for the 3-dimensional convex hull and convex polyhedra intersection problems. settling an
open problem posed in [AW88] and in [MS88b]. We believe our multisearch technique would
have applications to other problems as well. Although our algerithms are described for a

v x /1 MCC, all of them generalize to higher dimensional MCCs.
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