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Abstract

We present a technique for optimally performing n searches of an n-vertex hierar­

chical DAG on Mesh-Connected Computers. As immediate consequences of this. we

obtain the first optimal mesh algorithms for the problems of computing the convex: hull

of a. set of 3-dimensional points, and of computing the intersection of two 3-dimensional

convex polyhedra. The best previously known bounds for these problems WNe a factor

of log n away from optimality.
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1 Introduction

Data structures, which have been used as a fundamental technique in the design of efficient

sequential algorithms. have also proved to be very useful in efficient parallel algorithm

design. In general , there are two phases to using a data structure in an n-processor machine:

the building phase and the searching phase. The searching phase often follows immediately

if the data structure has been properly defined and built. This is frequent I:.' true for parallel

models in which a data structure can be stored in a. common memory and each processor

can access any memory cell in one time unit. However. in network models. the searching caD

lJe the bottleneck because a data. structure has to be stored distributively in the processors.

and an access of a data element in another processor might take more time than building

t,he data structure. In fact. on an n-processor Mesh-Connected Computer (MCC). there

were situations in which a data structure of n nodes could be built optimally; however.

optimal solutions to performing n searches simultaneously were elusive [D55881. Thus. in

network models. the issue of optimally performing multiple searches can be as challenging

as that of optimally building the data structure.

In this paper. we study the multisearch problem on a class of hierarchical directed acyclic

graphs (DAGs) (which will be defined later) on a .;n X ..;n MeC. We show that n searches

of an n-vertex hierarchical DAG can all be performed in parallel in optimal D( y'ii) time. As

immediate consequences of this, we obtain the first optimal D( y'n) time MeC algorithms for

t.he tnree dimensional convex hull and the convex polyhedra intersection problems. settling

,Ul open problem mentioned in (AW88] and (MS88bJ. The algorithms easily generalize to

higher dimensional MCCs, running in D(nl / d ) time on a n 1/ d X n1/ d x ... x n1{d l1CC.

The previously known best algorithms ran in D( Jiilog n) time [DSS88] (their time bounds

became D( y'n) if each processor has D(log n) local storage). The multisearch technique of

hierarchical DAGs presented in this paper will probably have applications to other problems

as well. The formulation of the multisearch problem is an abstraction of the searching

problems in [DK87, DK82. Kir83].

The rest of this paper is organized as follows. Section 2 gives preliminaries. Section 3

gives the algorithms for the multisearch problem, Section 4 gives applications. and Section

,J concludes.

For i ~ 1, we will use Iog(i) to denote the function which applies the log function i times,
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Figure 1: A 4 x -l Mesh-Connected Computer

I.e. togll ) n = log nand IOl!'YJ n = log log(i-1l n. For convenience. we define lo~{O) n = nj2.

l ·) ') I ('+ll l· I)for any n 2. l6. log" n = ma.x{illog I ?:: 4} (hence lo~,l n = '2 0g T\?:: (log 1+ n.)2. for

l ~ i ~ log- n - 1).

2 Preliminaries

In this section. we review the MCC model and some basic 1·1CC operations. then we define

a class of hierarchical DAGs and the multisearch problem.

2.1 The ivICC model and basic lVICC operations

:\ ..;n x yn MCC is a parallel machine in which the n processors are arranged as in a

2-dimensional array (see Figure 1) and operate synchronously in SIMD mode (i.e .• at any

time step, all of the n processors are executing the same instruction. although the details

of that instruction can depend on the processor's ID). The processor at location (i,j) is

connected to the processor at location (i',l) iff Ii - i'l + IJ - /1 = 1. At each time step,

a processor can either perform a local operation or communicate with one of its neighbors.

The communication links between processors are bidirectional. Each processor has a unique

ID from 0 to n - 1 and has only O( 1) storage registers, each of which can store O(log n J

hits (hence it can store its own ID).

A .;n x ..;n MCC has a diameter 0(.fii) (i.e., the maximum of the distances between

any two processors is 0( y'ii)). Hence!1(y'7i) is a clear lower bound for any nontrivial
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t:amputation in this model. We next review some basic NICC operations which will be used

later in our algorithms. All of tbe operations can be done in (.j1i) time [MS89. NS79. NS81.

TK77] and easily generalize to higher dimensional MCCs. running in O(n1/ d ) time on a

n1/ d x n1/ d x ... x n1/ d MeC.

1. Sorting takes as input an array of n records. one in each processor. and rearranges

them into nondecreasing order of a specified key, i.e. the record in processor i has key

values no larger than that of the record in processor i + 1.

2. Random access read takes as input an array R = roo rl,"" rn_l of n records whose

key values are pairwise distinct. and an array A = lIQ. a2, ... ,an-l of n (not necessarily

distinct) key values. where ri and ai are in processor i. and sends the record rj whose

key value equals a; to processor i. If there is no record with key value ai. processor i

receives a null message.

:3. Concentration moves m (m ~ 1l) selected records. wbich are arbitrarily distributed in

m of the n processors. into the first m processors. i.e those with IDs ~qual to 0, 1,

...• m-1.

..L Compression moves m (m ~ n) selected records. which are arbitrarily distributed in

m of the n processors. into the top-left .;m x ..;m submesh (see Figure 2). In our

algorithm. the problem size is usually reduced by a constant factor before further

recursion. We usually use compression to compress the smaU problem into the top­

left submesh to reduce the diameter (from ..;n to .fiii) before we recursively solve the

subproblem. The information which will be used in the conquer stage (but not needed

in the recursive call) is stored in the remaining processors as described next.

5. Uncompression distributes n - m selected records. which are arbitrarily distributed in

n - m of the n processors, to the processors which are not in the top-left .;m X ..;m
submesh.

6. Prefix operations take as input an array A = aO,aL, ...• an_l, where aj is in processor

i, and an associative binary operator !£I. and compute an array B = bOt bl , . .. ,bn_1

where bj = lIQ tIl at til ... EEl ai· The value of bi is stored in processor i. Segmented

prefix operations partition the array into dusters and perform the prefix operation

on each cluster independently. A special type of prefix operations is the segmented
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Figure :l: Compression

broadcasting operation in which the value of the first element of each cluster is copied

to the remaining elements in the cluster.

In the rest of the paper. we usually want to partition and MeC into sqllare submesh of

m processors and duplicate a set S of m selected records such that each square submesh

of m processors contains a copy of S (see Figure :3). The duplication of S can be done

in O{ y1i) time as follows: (i) compress the m selected records into the vm x .;m square

submesh. (ii) for each of the first mIl'" rows of the MCC. partition that row into mIl'"

blocks each consisting of mIl'" contiguous processors, and duplicate the subset of the m1/-l

records stored in (the first mil'" processors of) that row such that each block contains a

copy of that subset. (iii) for each column of the MCC. duplicate the mI/4 records stored in

(the first m1
/

4 processors of) that column as in (ii). Step (i) can be done in O( J7i) time.

using the compression operation, and Step (ii) and (iii) can be done in O(jii) time, using

basic row and column operations. When .;n is not divisible by Viii, the partitioning will

introduce "leftover pieces". These leftover pieces will be combined with their nearest square

subrneshes. and each new combined submesh will contain only one copy of S (note that the

diameter of the new combined submesh is no more than 2Jm).

Lemma 2.1 Given a set S of m < n elements, S can be duplicated such that each square

submesh of m processors contains a copy of S in O( J1i) time.

We next define the class of hierarchical DAGs and the multisearch problem.
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Figure 3: Partition the MCC into square submeshes. The "leftover pieces" are combined

with their nearet square submeshes

2.2 Hierarchical DAGs

:\ directed graph D = (V, A) consists of a set of vertices V and a set of arcs A ~ V xV.

Each arc of D connects a vertex u (called its tail) to another vertex v (called its heari). A

DAG is a directed graph containing no directed cycle. To represent D. we will associate

each vertex v with an adjacency list which contains the heads of the arcs emanating from

l>.

An n-vertex DAG D = (V, A) is said to be hiemrchical if its vertices are partitioned into

levels Lo, L l • •••• Lh where h = O(logn), Lo = {vol and [Li+!1 = ,JILd for some constant

J> 1 (hence ILd = ,J 1
), each arc of D connects a vertex in Li to a vertex in Li+! for some

i E {1,2•... . It}, each vertex has no more than d outgoing arcs for some constant d ~ ,13.

A vertex v is said to have level number i if v E Li. The restriction that IL; I = ,d i is made

to simplify the presentation. in fact. Clpi ::; ILd ,:5; c2l3 i , for some constants CI and C2, is

sufficient to establish the results we seek. We will use h, f3 and d as above throughout the

rest of this paper. When we say that "D is stored in an MCC", we mean that each vertex

of D is stored in one processor of the ,fii x vn MCC. and the processor containing it also

contains its adjacency list (of length no more than d = 0(1)).

Lemma 2.2 Given an n~vertex hiemrchical DAG D = (V,A) on a..jnx.,fii iv/GG. we can

compute all vertices' level numbers in D( vn1 time.

Proof: Let D' = (V',E') be the subgraph of D induced by vertices in V - Lh. We obtain
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D' from D by removing all the vertices which have no outgoing arcs and the arcs incident to

them. We then compress D' in the top-left v'T'V'Tx v'TV"T submesh and uncompress D-D' in

the remaining processors. and then we recursively compute the level number for each vertex

of D'. using the top·left JlViT x Vfi7iT submesh. Once the level numbers of vertices in V'

are known. the level number of vertices in V - V' is one plus the maximum level number in

V'. If we exclude the recursive call, the other parts (including compression. uncompression

and prefix operations) of the above computation can clearly be done in 0(v'1i) time. Since

lV'l = L:7::ri'IL;1 = L:t"01 (Ji ~ nlJ3, the time complexity, T(n). of the above procedure

satisfies the recurrence T(n) ~ T(n/l3) + c.,fii, where c is some constant. Since p > 1, this

recurrence implies that T(n) = O(fi). 0

From now on. it is implicitly assumed that every vertex of D knows its level number.

2.3 The multisearch problem

We will view a hierarchical DAG D = (V, A) as a search structure. That is. D is used to

guide the computation of the answers to queries. A query thus corresponds to a path from

Lo to L". Instances of hierarchical DAGs are the subdivision hierarchies of Kirkpatrick

[Kir83] and (overlapped) quad-tree [Sam84] which have wide applications in computational

geometry and computer vision. respectively.

Let U denote the set of possible search queries. A search path for a query q is a directed

path P( q) = I. L'o, 1)1, ••• , L'h), where Vi E L" is defined by a successor function 8UCC,/ :

V X [f - V such that ViH = ,mcc,/{vd. Note that (Vi,8UCC,/(1.';)) is an arc of D. A search

path P(q) is not given as input, instead. it has to be generated "on the fly" with ViH

generated only after reaching Vi for all 0 ~ i .:::; h - 1. We will assume that. for any q E U

and v E P(q), succ1 (v) can be computed in 0(1) time. The assumption is reasonable

because each vertex has only a constant number of outgoing arcs. Given a set of n queries

q1, q2, .... qn' the multisearch problem is then to trace the P( q,. )s, starting from level 0 and

ending with level h. Here by "tracing" a path P( qi) = (vo, V1, •••• Vh), we mean touching

the vertices along it in the order of vo, 1)10 ••• , I)h (vertex Vj is touched by P( q;) if Vj and qi

are held in the same processor). In the applications of this graph multisearch problem. the

computation of the answer to a query q occurs as the vertices of its search path are touched

in the correct sequence, that is, as query q "travels" from Vo to VI to tI',Z ••• to Vh. The

difficulty is in how to do the n queries simultaneously (it is trivial to do just one query).
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In this paper. we will show that this multisearch problem can be solved in O( y'n) time on

a .;n X jTi MCC. and give its applications. vVe will first present an algorithm which runs

in G(.fii) time but uses O(log- n) storage per processor. The number of storage registers

lIsed in each processor will then be further reduced to O( 1) to obtain an optimal algorithm.

We will assume. in what follows. that the vertices of D are evenly distributed in the

.,fii x Vii MCC, Le. that each of the n processors contains a vertex of D (together with

its adjacency list). By Lemma 2.2. we also assume that each vertex already knows its level

number. Since IAI ::::; .81Y1. we will use IDI to denote the size of D (, i.e. the number of its

vE'rtices ).

3 Multisearch on hierarchical DAGs

In this section. we present an optimal MCC algorithm for the multisearch problem on

hierarchical DAGs. We will first present an algorithm that runs in G{ vn) time bllt uses

G(log- II) storage per processor. Later in this section. the storage per processor will be

further reduced to 0(1) to obtain an optimal algorithm.

3.1 A preliminary algorithm

In this subsection, we present an algorithm for performing n queries on a hierarchical DAG.

wllich runs in G(J1i) time and uses O(log- h) storaJ:!;e per processor on a -Iii x.;n MCC.

We lirt review au algorithm of [DSS88! that achieves the O( vnJ time performance but

uses O(logn) stroage per processor. and then show that O(log- n) storage per processor is

sufficient to achieve the O(J1i) time performance. Since each application of the successor

function takes 0(1) time, the search can be advanced from level ito i + 1 in 0(Vii) time.

using the random access read operations. provided that the search is at level i.

Lemma 3.1 The search can be advanced from fevel i lo level i + 1 in O( In) lime. provided

thallhe search is at level i.

The algorithm of [DSSaaJ is sketched in the following lemma.

Lemma 3.2 fDSS88} Given an n~verlexhierarchical DAG D = (V, A) and n quen"es on D,

the mulHsearch problem can be solved in O( -vnJ lime with O(log n) storage per processor.
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Proof: For simplicity, let us assume that that JfLJ is divisible by ~, for 1 -:; i ~

log- h. The modification to handle the general case will be explained later. Let S,. be the

subgraph of D induced by its vertices between level 0 and i inclusive. The algorithm of

[DSS88J consists of two phases: the duplication phase and the searching phase. In the

duplication phase. each Li is duplicated such that each square submesh of IL;! processors

contains a copy of Ii. In the searching phase. the search is advanced from level i to i + 1

in O( JlIi'T) time, using each square submesh of ILd processors for ILd of the n queries

(Lemma 3.1). This is possible because, after the duplication phase, each square submesh of

ILd processors contains a copy of Ii. Since ILd = O(J3') and d is a constant. the total time

of the searching phase is O(I:?=o Jl'LiT) = G( v'Ji) time. We next explain the duplication

phase.

III the duplication phase. the LiS are duplicated ill the order of Lh , L"'_I, .... La. Each

~i is duplicated in O( JlIi'T) time. using each square submesh of ILd processors. III order

to do this. we need to maitain that, before Ii is duplicated. each square submesh of ILd
processors contains a copy of Si. This is possible because the number of vertices in S..

is 0(2=~:~ ILj!) = G(lLd) since ILil = 8(f3i) and J3 is a constant. Thus the duplication

phase is done as follows. For i = tog- h, log- h - l, ... , 0, we do the following three steps:

(i) partition the MeC into square submeshes of IL;! processors. (ii) in each such submesh,

obtain a copy of Li from the copy of Si stored in that submesh. (iii) in each such submesh.

obtain a copy of S,._L from 5i, and duplicate 5,_1 such that each square subsubmesh (I.e.

the submesh of that submesh) of ILi-1! processors contains a copy of 5'_1' The initial

consition of the above process is that each square submesh of IL",I processors contains

a copy of D. This condition can be set up in O(yn) time since IDI = O(lLhl). Each

iteration of (ii) can be done in G( JfLil) time since each vertex knows its level number.

Each iteration of (iii) can be done in O( JfLiT) time as in Lemma 2.1. The total time of

(i)-(iii) thus is OO:::?=o~) = O(v'Ji). The number of storage used in each processor

is O(h) = O(log n) since each processor conains a vertex of each Li for 1 ::; i ~ h.

When VTL;I is not divisible by ~, we need to handle the following two problems

in the searching phase: (i) leftover pieces might appear while we partition the MCC (resp.,

a submesh) into submeshes (resp., subsubmeshes) to duplicate tb.e LiS (resp., SiS), (ii) the

partitioning (of a square submesh of ILd processors) to duplicate Si might not match the

partitioning tof the MCC) to duplicate Li. The leftover pieces can be handled as previously

10



~xplained in Lemma 2.1. Since. in the layouts of the partitioning (mentioned in problem

(ii)), each square of one partitionin~ overlapps no more than four squares of the other

partitioning, problem (ii) can be handled by increase of only a constant factor of the total

time complexity. 0

With a different duplication scheme in the duplication phase. and also a faster con~

stant storage per processor algorithm in the searching phase. we show that the number of

storage per processor can be reduced to O(log· II) while maintaining the O( JU) time per­

formance. We next outline the algorithm which runs in OCJ1Z) time with O(log- h) storage

per processor. The details are given in the lemmas which follow.

Let Bi = (V;,Ai) be the subgraph of D induced by the vertices of D between level

h - 'llog(i) hand h - 1- 2Iog(i+Jl It inclusive. In the algorithm which runs O( ,jJi'") time with

O(\eg" h) storage per processor. D is partitioned into log" h partitions. Bu. ill •...• 8 10,,' h)i.

n.rtd each Bi is duplicated such that each square suhmesh of IB;I processors contains a copy

of Bi. We the do the search on Bo, then B t , •..• then B log ' h in the searching phase. usill~

the algorithm of Lemma 3.5. It is clear that the number of storage used in each processor

is O(log- h) = O(log- n). We next show that the duplication and the searching phases can

be done in O( JU) time.

Let Bi be defined as above and Ri

analysis of the algorithms.

o - u~o~: h Bj. The following lemma is used in the

Lemma 3.3 1. Bi has O(log(i) II) leuds atld IBd = O( I \~I 2).
(og hi

Proof: direct consequences of simple combinatorial calculations and the definitions of hi·

erarchical DAGs, BiS, and RiS. 0

The details of the duplication phases are given in the following lemma.

Lemma 3.4 Given an n-vertex hierarchical DAG D. in O( Jii) time. the BiS can be dupli­

cated such that each square submesh of IB;I processors contains a copy of Bi.

11



Proof: The initial condition of the following process is that each square submesh of IBlos' hi
processors contains a copy of D. This initial condition can be set u.p in O{ J7i) time with

00) storage per processor since IBlos' hi = O(n). Let RI+1og ' h = D. The duplication is

done in O( Vii) time as follows. For i = log~ h.log· h - L ...• O. partition the MCe into

square submesh of IBd processors. and on each such square submesh. do the following:

(il obtain Bi from R;+t. (ii) obtain Hi from R;+l and duplicate R; such that each square

submesh of lEi-Ii processors contain a copy of R;. The purpose of (ii) is to ensure that

(i) can be done independently on each sauqre submesh of the Mee and hence is done in

O( JfBJ) time. Since Ri+I contains O(lBi_t1) vertices. each iteration of (ii) takes O(lB;1)

time and increases the number of storage used in each processor by 0(1). Thus. the total

time of the above process is O(vn + L~~;h IBd) = O(JU) (by Lemma 3.3). its stora!!;e

complexity of each processor is O(log- It) = O(\og *n). 0

The searching phase is based on the routine described in the followilll!; lemma.

Let hi and h'l be two level numbers to:::; hi < il 2 :::; il), and m be the number of vertices

between level ht and h2 inclusive (i.e. In = I:?";hl ILill.

Lemma 3.5 Given the m-vertex subgrnph of D induced by its vertices between level h t and

h2 inclusive. and m queries on D on a Viii x Viii MeG. the search can be advanced [rom

level h t to level h2 in O( vrn1og(h2 - hd) time with O( 1) storage per processor.

Proof: Let D' = (V'. If) be the subgraph of D induced by the vertices between level hi

and h? -2(oglh2 -hd inclusive. Note that IV'I = O(mj(h2 -Ill )2). The aJ~orithm consists

of the foUowing four steps: (i) identify D' from D. (ii) duplicate D' such that each square

submesn of IV'I processors contains a copy of D' (as in Lemma 2.1). (iii) partition the Mee
into square submeshes of IV'] processor and use each square submesh processors to advance

IV'I of the m queries from level hi to level h2 - 21og(h? - lid, and (iv) for the remaining

levels. advaltce the search level by level. Step (i) is trivial to do in O( Vii) time since each

vertex knows its level number. Step (ii) can be done in O(J71) time by Lemma 2.1. Since

each application of the successor function takes O( 1) time. the search can be advanced from

level i to level i + 1 in O(vmJ time, using the random access read. Because of this, Step

(ii) can be done in O(v1V'!(h, - htl) = O(,fii) time since IV'I =O(mf(h, - htl'), and

Step (iii) can be done in O(vmlog(hz - Itt») time. 0

12



Lemma 3.6 Given SiS such that each square submesh of IBd processors contain a copy of

B; for i = 0.1, ... , log" h. and n queries on D. the search can be done in O( J1i) lime.

proof: We do the search on Eo then B1 then ... then Bios' h. Since each square submesh

of IB;l processors contain a copy of Bi. we can partition the MCC into square submeshes of

IBil processors and use each such square submesh to do the search for IB,I of the n queries.

Since Bi has O(log(i) h) levels. the search on Bi can be done in O( VlB'iTlog{i+l 1h) time.

lIsing the algorithm described in by Lemma 3.5. Thus. the time complexity T(n) of the

search satisfies the inequality T(n) ~ c L~~; h v1BiTlog(i+lJ h. where c is some constant.

By Lemma 3.3), Ten) = O(y'n). 0

We therefore have the following theorem.

Theorem 3.1 Given an n~vertex hierarchical DAG D of h levels and n queries on D. the

l1Iultisearch problem can be solved in O( J1i) lime with O( (og~ It) storage per 1,rocessor.

Proof: clear from Lemma 3.4 and Lemma 3.6.

The same idea can be used to obtain an algorithm that runs in O(.jitlog· h) time and

0(1) storage per processor.

Corollary 3.1 Given an n·verlex hierarchicalleuel graph D of h levels and a sel oln quries

on D. the mullisearch problem can be solved on a ..;n X Vi MeG in O( .jnlog" Il) time wilh

O( 1) storage per processor.

Proof: To obtain an algorithm that achieves O( ,jiilog" It) time and O( 1) storage per

processor, we interleave the duplication phase and the searching phase. That is. B;+1 is du­

plicated after the search on Bi is completed. This is done as follows. for i = 0,1•... ,log'" h.

do the following two steps: (i) duplicate Bi such that each square submesh of IB;[ processors

contains a copy of Bi. (U) partition the MCC into square submesh of B;I processors. and

use each such submesh to do the search on Bi for IBi of the n processors. It is clear that

the total time of (i) is O(vnlog" h) since it is iterated log· h times and each iteration can

be done in O( J1i) time. The total time of (ii) is O(..fit) time as in Lemma 3.6. 0

3.2 Reducing the storage

In this subsection, we will show how to reduce the O(log- h) storage bound of theorem

3.1 to 0(1) and hence obtain an MCC algorithm whose time and storage bounds are both
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optimal. We will develop a new duplication scheme to reduce the total number of storage

to O(n). and a new distribution scheme to store the data evenly among the processors and

still preserve the required locality (locality requires that each 8; be stored contiguously, i.e.

in a submesh).

3.2.1 Reducing the total storage

To reduce the O(n log- h) total storage to O(n). we decrease the duplications of each Hi.

The idea is as follows. Let e > 1 be a. constant such that 18; I < (log~0 h):2. Note that such a

constant c exists since IEil = O( (lost',') h):2) (recall that Bi is the subgraph of D induced by the

. . h-'lo,I"" h £ d 1£ 1 Ji) I d [ ... h r.: r.: Mee .ve-rtlces III U j =h_210gt')h jan i =.! • nstea 0 partltlonmg t e yn X yn I Il1to

square submeshes of size IBd each. each of which contains a copy of Bi. we now partition

the MeC into square suhmeshes of size (log.:~nLl fI)l each. each of which contains a copy of

Bi. Before we do the search on Bi in the searching phase. we duplicate Bi within each

square submesh of I st,'~flil :2 processors in 0(1 glfilJ,) time. to ensure that each square
( 0 h) - 0

submesh of 18il processors contains a copy of H;. We ne:<t show that the total number of

the storage of the above procedure is O(n). In the next subsection, we will show how to

avoid congestion such that each processor uses only O( 1) storage.

Let f(k) 2J{k-l) and [(I) = 2. The following two inequalities will be used III the

analysis.
00

L Ilf(k) ~
k=1

00

L(11 f(k))' ~ 1/2
k=l

( I)

(2)

Lemma 3.7 The multisearch problem can be solved in O( JTi) time with O( n) total storage.

Proof: Let S(n) be the total number of storage used in the above process. Since each square

submesh of (log\.+l)h)~ processors contains exactly one copy of Bit there are Hlog(i+tl h)2

copies of Bi stored in the MCC. The total storage, Sen), of the above process then satisfies

the following inequality

Sen) <_ ",log" h-l n (I (i+lI I)')
Cl L...j=O (lost.) h):2 og l

",log" h-I (!og(i+l 1h )'
et n L...i=O loi') h t
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where c, is some constant. Since log(i) h == 210g\·+1111 and 10gli+11 h ~ 4, for 0:::; i :::; log- h-l.

\\iE' have log(i) h ~ (log(i+1l h)2. Hence.

<

<

"logOh_l( I )'
L..i""o 10g(,+lj 11

,,~ ( , )'
L..,,,,,I m
1/2, by inequality (2).

Thus. S( n) S Tn. We next show that the extra time to do the local duplications is D( y'1i).

Let T(n) be the total extra time to do the local duplications. Since each square submesh

of I ,.,~n'l, ~ processors contains a copy of Bi. we can duplicate Bi within each square(og )

b h f co ' O( @ ) t' TI:ill mes a (log(.+0l1j1 processors In 10g~'+1111 Ime. len.

T(n) <

<

<

where Cz is some constant.

We therefore reduce the total storage to O( n) and still maintain the O(.fill time per­

formance. 0

The previous lemma guarantees Lhat the total storage requirements are not too much.

but it does not guarantee that "congestion" does not locally occur at a processor. causing

it to need too much storage. We next show how to store these BiS such that the number of

storage per processor is reduced to O( 1) and the time performance is still O( y'n).

3.2.2 Avoiding congestion and preserving locality

Since each square submesh of (logl-.':rnlj 11J1 processors might be allocated to store one copy of

B d(lo''''')'' fBf' ,', I h d"bth;+1. an 10g(.+I" copies 0 i or J == 0.1, .... t, It IS not c ear ow to Istn u e t e

data to achieve the following two requirements.

l. The locality is preserved well enough to maintain the D( Vi) time performance (recall

that by "locality" , we mean that each Bi is in a square submesh of O(IBil) processors).

2. Congestion is avoided. and hence the number of storage used in each processor is 0(1).

We adopt the following distribution scheme to achieve both 1 and 2.

15



Rule 1. When a submesh of (logl,~n h)'l processors is allocated to hold a copy of Hi ;::.

(V"Aj}. B; is stored in that submesh's top-left square portion ("subsubmesh") of IB;I

processors.

Rule 2. When a submesh of (Iogl,r+".. h)2 processors is allocated to hold a copy of B;+I. B;+1

is stored in the processors of that submesh which are not allocated to hold any Bj for

all j ::; i.

Rule 1 is adopted to ensure the "locality!> needed for maintaining the O(v'1i) time

performance. and Rule 2 is adopted to ensure even distribution and hence reduce the storage

registers per processor to 0(1). We next prove that the above distribution scheme does

indeed reduce the number of storage registers needed per processor. while maintaining the

required locality. In the next subsection. we will give an O( v'ti) implementation to realize

R.ule I and Rule 2.

Lemma 3.8 The above distribution scheme stores the BiS such th(lt

1. each square submesh (of the MGG) of (logl,c;Oh)'l processors contains (I copy of Hi,

2. each copy of B; is stored in the top~/eft square subsubmesh (of a square submesh of

.'J. the number of storage used in each processor i.e; 0(1).

Proof: By Rule 1. it is clear that claims 1 and 2 are true. We next show that Rule 2 does

reduce the storage per processor to O( 1).

Consider a square submesh M of (lOg(.'=t
n
ll h )2 processors. Let T denote the number of

processors of A.J which are allocated to hold some Bj, for 0 ::; j ::; i. Since each pair of

adjacent copies of Bj are stored 'og~WLh apart (both horizontally and vertically). there are

( Io~""h)' b h [ c. [ '{ h all d hid Bat most log"+llh su mes es 0 (loglJJhj1 processors 0 lV. t at are ocate to 0 j.

Therefore,

<

"<
<

'\'i en ( lo/fJ+ II h)'
L..j=O (logW h)'l 1015(.+1) h

en '\" (log{}+i1 h)'
(logt,+O h)2 L..j=O 10gU) h

". .,..; ( 1 ),. I Ii) h > (I (i+l) h)'(log'-.+l/ h)2 L..j=O log\J+l lh ,Since og _ og

1 ".'2 (IOg'-'+l) h)2 •
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This gives us that. when IVl is allocated to hold a copy of Bi+l. there are :.!(log\~~dhl~

processors of Al available. under Rule 1 and Rule 2. Since B;+l ::; (IUg\:~"11 h}:l' the number

of storage registers used in each processor is indeed constant. 0

We next give an D(.j7i) implementation to realize Rule 1 and Rule 2.

3.3 The implementation

The implementation to realize the allocation and distribution schemes of the last two sub­

sections consists of two phases: the allocation phase and the distribution phase. In the

allocation phase. the processors allocated to store a copy of B,. are "marked" with i. for

i = 0.1 ...• Iog- h - 1. Each Bi is then duplicated and its copies are distributed to their

allocated processors in the distribution phase.

Let c be a constant such that 18il ::; (lo;"~h)J (sllch a constant exists since IBd =

O{(lo~~Jh)1))-

Algorithm SPARSE-DUPLICATION

1. For i = log- h -1,log- h -2, ... ,0. "mark" with index i the top·left (lo;'~h)2 processors

of every square submesh of (log."~"1\ h)1 processors.

2. For i = log- h - I.log" h - 2•... ,0. do the following (a)-(b):

(a) In parallel. for each square submesh of (log~-'~hll processors. obtain a copy of Bi

from RiH and stare that copy in the processors wbich are "marked" with index
("+11

i (recall that B i is the subgraph of D induced by the vertices in U;~:~02gl~g.'l~Lj

and Ri = V - u~~; h-I Bi). If there is no processor marked i. then discard that

copy of Bi.

(b) In parallel, for each square submesh of (lo;'~h)2 processors, obtain Ri from Ri+1

and duplicate R.. such that each square submesh of (IOgl/"Ji h)2 processors holds

a copy of Ri' if i ~ 1.

End of Algorithm SPARSE-DUPLICATION

Lemma 3.9 Given an n-verte:c hierarchical DAG D of h levels on a vn X ,;n MeC, we

can duplicate Hlog(i+IJ h)2 copies of Bi ,for all 0::; i $; log'" h - 1, and store each of Bi in
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the top~left square submesh of (lot·'~hj2 uf each square submesh of (lOs";~nl)hI2 processors 10

0(J7i) time with 0(1) storage per processor.

Proof: It is dear that Step 1 realizes Rule 1 since the processors marked with i are in

the top-left square submesh of (lot',) h)1 processors of each square submesh of (log(,-:..nIJ h)2

processors. Step 2 duplicates and distributes each copy of Bi in its allocated processors.

By Lemma 3.7. the storage registers used in each processor would be 0(1) if Step 2(30)

stores each copy of Bi evenly in its allocated processors. The time complexity of Step 1 is

O(L~:S~ h !o;IT h) = O(JU). Similarly, the total time of substep 2(b) is O( Vii). We next

explain how to implement Step 2(30) in D(.J7i) time to store each copy of Bi evenly in its

allocated processors.

Step 2(30) can be implemented in O( JU) time as follows.

(i) For each of the four quadrants of the submesh. count the number of processors allocated

to hold Bi.

(ii) Partition Bi into Bi,l' Bi,2, B;,3 and B'.-I whose sizes are proportional to the counts

obtained in 0) and send Bi,i to the (ilth quadrant of the submesh for j = l.2,3,4.

(iii) In parallel. recursively repeat the process in each quadrant of the submesh (to dis­

tribute Bi,i in the (j)th quadrant for j = 1.2,3,4).

It is clear that the above process takes D( !o'f/Ah) time to store Bi evenly in its allocated

processors. The total time of Step 2( a) is thus OO=~:S~h 10;0h) = O( jU). This completes

the proof of this lemma. 0

Since each square submesh of (Iog(l,~nl J h)2 processors contain a copy of Bi after the above

data duplication and distribution phases. we can duplicate Bi such that each square submesh

of ('ogI7J h)2 processors holds a copy of Bi in D( (oirE h) time, and then advance the search

from level h - 210g(il h to level h - 210g{i+1)h in DC ,jii' log(i+l) h) time using each.
(logl'J h) ,

square submesh of (Iogl.~) h)2 processor for (logl.~) h)2 of the n queries. This gives us an O(y'n)

time and 0(1) storage registers per processor algorithm for the multisearch. problem.

Theorem 3.2 Given an n-vertex hierarchical DAG D and n queries on D. the muUisearch

problem can be solved in D( Vii) time with D( 1) storage per processor on a .;n X .;n MCG.

Proof: We sketch how to modify our algorithm [or arbitrary n. The following two minor

problems might occur.
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1. J1i might not be divisible by ;;-:--iicn~,," (and hence introduce "leftover pieces" while(los,'lhp

partitioning the mesh into submeshes).

2. A square submesh of (lo;~h)J mi~ht not be total inside any square sllbmesh of

IOg.I~~J 11)2 processors (hence the duplication of R; (in Step 2(b) of algorithm SPARSE­

DUPLICATION) has to cross the boundaries of submeshes).

They can be handled as €x.plained in Lemma 2.1 and Lemma 3.2. 0

4 Applications of the multisearch technique

The multisearch problem discussed in Section ;3 is an abstraction of the search problems

arising in many applications. and the class of hierarchical DAGs includes several important

DAGs. such as. for example. the complete d-ary tree. the overlapped quad tree [Sam84], and

the subdivision hierarchies of Kirkpatrick [Kir83]. In this section. we apply the multisearch

technique presented in the Section ;3 to obtaining the first optimal ",ICC algorithms for

the 3-Jimensional versions of the following geometric problems: (i) the lines-polyhedron

intersection problem, in which we are given a convex polyhedron P and n lines. and we

are asked to to compute the intersections of each line with P, (ii) the multiple tangent

determination problem. in which we are given a convex polyhedron P .and n lines. and we

are asked to compute the plane tangent to P through each line. (iii) the convex hull problem.

in wh.ich we are given a set of n points. and we are asked to compute their convex. hull.

and (iv) the intersection of convex polyhedra problem. ill which we are given two convex

polyh.edra. and we are asked to compute th.eir intersection. The above problems have been

discussed in [ACG+88, Ch080, OK82. OK87. DS588] on various parallel models. We review

some of them. In (DK82J, an O(n log n) time sequential algorithm for problem (i) was given.

which implies an O(log n) time n-processor PRAM algorithm. That algorithm was modified

in (DK87] to obtain an O(log n) time n-processor PRAM algorithm for the multiple tangent

planes determination problem. which is then used to complete the "conquer" stage of the

algorithm of [DK87] for the three dimensional convex hull problem. In [DSS88], Dehne el.

al. presented an O( yn(og n) time algorithm for the three dimensional convex hull problem.

based on the idea of [DK87]. The polyhedra intersection problem can be easily translated

to the three dimensional convex hull problem by solving the lines-polyhedra intersection

problem first. It 15 clear from the algorithms of [DK82], [DKS7J. and [DSS8S] that the major
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tasks of their algorithms are to solve instances of the multisearch problem. and this is the

only bottleneck of the MCe algorithm of [OSS88]. Therefore. it is not surprising that our

optimal solution to the multisearch problem leads to optimal algorithms for the above four

[lroblems. For the sake of completeness. we review below the algorithms of [OK82J, [OK87J,

and [OSS88J. The search OAGs implied in their algorithms are instances of hierarchical

DAGs. and are defined from the hierarchical representation of convex polyhedra introduced

by Oobkin and Kirkpatrick [DK82. OK85], which we review next.

4.1 Hierarchical representations of polyhedra

The algorithms of [OK82J and [DK87J for the lines-polyhedron intersection problem and the

multiple tangent planes determination problem. respectively, make use of tIle hierarchical

representation of convex polyhedra introduced by Dobkin and Kirkpatrick. which we review

next (for the full details. we refer the reader to (OK82. OK85]).

Let P be an n-vertex convex polyhedron with vertex set V(P), edge spt E(P) and face

set F( P). A hierarchical representation of P is a sequence of convex polyhedra PI. P2, ... ,

Ph, which refines P progressively. PI = P, Ph has no more than 15 vertices, and PiH is

obtained from Pi by removing a set of low-degree independent (i.e. pairwise nonadjacent

in Pi) vertices. (The degree of a vertex is the number of edges incident to it.) Since the

graph of the vertices and edges of a convex polyhedron Pi is an embedding of a planar

graph. at least a fixed fraction of its vertices is pairwise independent and has degree less

than or equal to 6. and hence a fixed fraction of its vertices is of low-degree and pairwise

independent. say, eW(Pi)l of them for some constant 0 < c < 1 (where V( P;) is the vertex

set of P;). The number of vertices in PiH is then guaranteed to be a fixed fraction of that

of P, (specifically, IV(P,+dl = (1- c)lV(P,JI).

More formally, a sequence of convex polyhedra. H( P) = Pt , P'l, ... ,Ph, is said to be a

hierarchical representation of P if

I. PI = P and IVCPhll ~ [5;

2. V(P;+tl c V(P,) and IV(P,+dl = "IV(P,)I, for some constant" < I;

3. the vertices of V(Pi) - V(Pi+d are of degree less than or equal to 6 and form an

independent set (i.e. are pairwise non-adjacent) in Pi.

20



Lemma 4.1 {DSS88} Given an n-vertex convex polyhedron P. a hierarchical representation

HIP) = PI ,P2, .... Ph oj P can be constructed in O(J1i) time on a.jii x..;n iv[CG.

Proof: Dehne et al [DSS88] implemented the algorithm of Dadoun and Kirkpatrick [DK87]

to construct a hierarchical representation of P in O( y'7i) time on a .,fii X ..;n MCe, using

the list ranking algorithm of Atallah and Hambrusch [AH86]. 0

4.2 Defining the search DAG

In this subsection, we review the search DAG that was implied in [DK82] and in [DK87J.

Let H( P) = P1 , P2 •. .. ,Ph be a hierarchical representation of P. "Ve say that v E

F(P;) - V(Pi+tl is a relevant vertex of an edge e E E(Pi+d if e is entirely visible from v.

assuming Pi+l is the only opaque object in the space. Intuitively, v is a relevant vertex

of an edge e if e is in the "base" of the "cone" with apex v which is cut from Pi if v

were the only vertex removed from Pi (a polyhedron is a cone with apex v if all the other

',ertices are adjacent to v, and its base is the faces not containing v). Note that each edge

of P,+l is visible from at most two vertices of V(Pd - V(Pi+d since V(Pi+d ~ l/{P,J.

and all the vertices in yep;) - V(P,+d are pairwise nonadjacent in P,. One of the search

DAGs D(H(P)) implied in the algorithms of [DK82] and [DK87J is defined as follows: (i)

the vertices of D(H(P)) are partitioned into h + 1 levels Lo, Lit .... Lh , Oi) Lo = Vo

(l'O is some distinguished node), and each node of Li corresponds to an edge of Ph-i [or

0::; i::; h- 1. (iii) an edge e( E Pi is connected to an edge e2 E P i - 1 , i.e. (el,e2) is an arc

of D(H(P)), if and only if el = e2 or e2 is incident to a relevant vertex of el.

Lemma 4.2 The D(H(P)) defined as above is a hierarchical DAG. and can be constructed

in O( Jii) time on a .fii X .,fii MGG.

Proof: Since !P,+ll = alP,1 (0 < ct < 1) and IPh] ~ 15, there exists two constants Cl and

C2 such that clli ~ IE(Pdl :$; c2/Ji ({3 = 1/0:) because the PiS are convex. Since each vertex

of V(P;) - V(P,+d has degree no more than 6 and each edge of V(Pi+l) has no more than

2 relevant vertices, each edge of Pi+I will be connected to no more than 12 edges o[ Pi.

D(H(P)) can be easily constructed in O( J7i) time on a.,fiix.;n MCC while H(P) is being

constructed. 0

The successor function used to guide the search on D(H(P)) will be defined later. when

we review the algorithms o[ [DK82J and [DK87].
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4.3 Lines-polyhedron intersections

Given an n-vertex convex polyhedron P and n lines [I, l2, .... In. the lines-polyhedron

intersection problem is to compute the intersections TE,(F) of Ii and P. for all 1 :S i ~ n. An

O( n log n) time sequential algorithm for the lines-polyhedron problem was given by Dobkin

and Kirkpatrick in [DK82J, which implies an o(log n) time n-processor PRAM algorithm.

In this subsection, we review their algorithm and explain how to implement their algorithm

in O( jn) time on a .;n x .;n MCC, using the multisearch algorithm presented ill Section

:3. The idea of their algorithm is as follows.

Let H(P) = PI .P2•..•• Ph be a hierarchical representation of P. To compute IE,(P)

for 1 S i ~ n. the algorithm of [DK82] computes the sequence II,(Ph), IdPh-I), ....

[I,(Pd· It consists of two phases: the detection phase and the determination phase. In the

detection phase. the lines which intersect Pare idenfitied. and in the determination phase.

tIle intersections are computed for those lines. The details are reviewed next.

We first review the algorithm of Dobkin and Kirkpatrick [OK82J for the identification

of the liS which intersect P. Let I be one of 11 ,12 • •••• In. and let T be some chosen plane

perpendicular to l. To check jf I intersects P. it suffices to check if I' == In T is inside the

projection pi of P on T along direction l. (note that I' is a point and pi is a convex polygon

on T). Let PI be the projection of Pi on T. To check if I' is inside pi, the algorithm of

[DK82J checks if (' is in PI for i = h.h - 1, ...• 1. in that order. Their algorithm is based

on the fact that the sequence P{, P~ . .. _. Ph is a refinement of pI [DI(821. In other words.

P! = p', qPI+l) ~ V(PIY. F(P!) - V(FI+l) forms an independent set. and W(P!.)I:S 15.

For any edge e of PE, define the growing region g( e, PI) of e w.r .t. PI to be the triangle

bounded by three lines. one of them through e and each of the other two through each of

the two edges adjacent Co e in Pf. Their algorithm is outlined as follows.

1. Project Ph on T and decide jf l' is in Ph' If I' is in Ph. then conclude that [intersects

P. Otherwise. identify an edge of Ph whose growing region contains I'. rr no such

edge exists. then conclude that I does noC intersect P. Otherwise. let e be the edge

so identified and proceed to Step 2 below.

2. For i = h - 1, h - 2, ...• 1 or until the conclusion is reached. repeat the following steps:

(a) explore the portion of P: which are in g( e. Pi+l), (b) if the projection on T of that

portion contains [I. then conclude that I intersects P, (c) if [I is not in the projection
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of that portion. then identify the edge of Pf whose growin~ region contains l'. (d) if

no such edge of Pi exists. then conclude that I does not intersect P: otherwise. let e

be such an edge and repeat (a)-(d).

Correctness of the above procedure follows from the fact that P' <;: Ffu (U~EPfg(e,pn)

for any 1 ~ i::; h, and that for any two distinct edges el, e2 of Pi, g(et,P/) and g(e2,P/)

are disjoint except possibly at the vertices of Pf. Step 1 can be done in 0(1) time since

IV(Ph)1 S 15 (~ence IV(Ph)1 S IS). Since V(Pi+I)'; V(P[) and V(P[) - V(Pi+I) forms an

independent set. no more than one vertex of P[ is in gee. F(+d for any e E V(Pf+d, and if

such a vertex exists. it must be the projection on T of a relevant vertex of e. Since each edge

has no more titan two relevant vertices and each relevant vertex is of constant degree. each

itNation of Steps 2(a)-2(0) can be done in 0(1) time. Since lel,e2) is an arc of D(H(P))

defined in Subsection 4.2 if and only if et = t'2 or e2 is incident to a relevant vertex of el,

D( H{F)) is the search DAG of the above process. The successor succ, function identifies

the edge in the next level whose growing region contains l'. We also associate each node

of D(H(P)) with its relevant vertices (note that each node of D(H(P)) corresponds to an

ed~ein HIP)).

We thus have the follOWing lemma.

Lemma 4.3 Given an n-vertex convex polyhedron P andn lines It. 12l ... . In on a .;ux.,jn

.lICe. we can decide if /j,(F) = \I) for all I ~ i 5" T1 in O(JU) time.

We next explain how to actuail,v compute the intersections. We will compute the se­

quence [/fPh), [/(Ph-d, .... [1(Pd as follows.

Suppose Pi is the first one of the sequence Ph, Ph_I> .... PI that intersects I (i.e.

I,(P;)i' 0, and I,(P;) = 0, [or j > i). T~e subsequence I,(Ph), I'(Ph_d, ... , I,(P;) can be

computed while detecting the intersection. Note that l,( Pi) is the intersection of I with the

portion of Pi that is explored in Step 2(a). Since that portion is of size 0(1), ll(Pi) can

be computed in 0(1) time. Once we have l'(Pd, we can compute the sequence [/(Pi-l),

It(Pi-2), .... l,(Pt} (with [/(Pj-ll from [/(Pj) in 0(1) time for 1 5" j ::; i). We next explain

how to compute [/(Pi-I) from [/(Pi ) in 0(1) time. Similarly, we can compute ['(Pj-d from

[,P(j) in 0(1) time for any j < i. The DAG and successor function to guide the search

process of the computation of [,( P) will be clear from the following' discussion. The idea
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is to explore the portion of Pi-l from the faces of Pi that intersect l. ill order to compute

f,( Pi-d.

Given IdP;) #- 0, we can compute J,(Pi-d in 0(1) time as follows_ Let u be one of

the two elements of I,(Pd. We compute an element of J,(Pi-Ll from u as follows. For

simplicity. assume u is in the face f of P; a.nd is not on any edge of Pi. We say that a vertex

v E V( Pi_I) is a relevant vertex of a. face f E F(P;) if and only if f is entirely visible from

1.' wnen Pi is the only opaque object in the space. Note that each face nas no more than

one relevant vertex since V(Pj) ~ V(Pi-d and V(Pi_d - V(P;) forms an independent set.

Let v be the relevant vertex of f (if no such vertex exists. then u E II( P'--I)). One element

of I/(P,_I) belongs to the intersection of l with tne "cone" of F;-l whose apex is v. Since v

is of constant degree, that element can be computed in O( 1) time. When u is on an edge e

ilnd is not a vertex of Pi, we examine the faces of Pi-L incident to relevant vertices of e to

ontain one element of Id Pi-I) in O( 1) time. When u is a vertex of Pi and III( Pi H::: i. we

do the following: (i) choose a point that is on a face of P;-l - CHCV(Pi_1 - {It}), which

does not contain u (note that Pi-l - CH(V(Pi_1 - {u}) is a "cone"' with apex u), and let

h be the line defined by that point and u, (ii) choose a plane T which is perpendicular to h

(note that tne projections on T along direction h of the incident edges of u in Pi-L preserve

their adjacent relationship around u in Pi-d. (iii) examine relevant vertices of the faces

or edges of Pi_I whose projections on T along direction h intersect the projection of I on

T along direction h (tnere are no more than two such faces or edges). The correctness of

(i l-(iii) follows from the fact that the PiS form a hierarchical representation of P.

The search DAG of the above search process is defined as follows. Each node of Li.

corresponds to and edge or a face of Ph - i+1• and (VI. V2) is an arc if and only if (i) VI = V2

or (ii) V2 incident to some relevant vertex of VI' It is clear that the DAG so defined is

hierarchical and can be obtained in O(.;n) time on a vn x "fiiMCC. The successor function

identifies the next faces or edges (no more than two) whose relevant vertices are examined

to explore O(l)-sized portion of the next convex polyhedra. Note that the number of paths

traversed by each query line l may be more than one (wh.ich violates the assumption in the

formulation of the multisearch problem). This can be easily nandled in our algorithm.

We therefore have the following lemma.

Lemma 4.4 Given an n-vertex convex polyhedron P and n lines h, l2' .... ln' we can

compute I'i (P) for aliI::; i :5 n in O( y1i) time.
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We next explain how to compute tIle tan~ent plane TE,(P) of P througll ii for all 1 ::;

i ::; n in O( v'li) time.

4.4 Multiple tangent planes determination

Given an n-vertex polyhedron P and n Hnes i1 , l1' .... ln, in this subsection. we show that

the tangent plane T,;(P) of P through Ii for alll::; i ~ n can be computed in O(JUl time

on a..;n X vn MCC. III (DK87], Dadoun and Kirkpatrick presented an O(logn) time n­

processor PRAM algorithm for this problem. In what follows. we will review their algorithm

and show that it can be implemented on a .Jfl x ..;n MCC in O( JU) time by using the

multisearching result of Section 3. Since the intersections of aUi; and P can be detected in

O(JU) time Isee Lemma 4.3), we assume that none of the liS intersects P. For simplicit.v.

we assume that no four vertices of P are coplanar. ami. no vertex of P IS all any ii.

Let l be one of the given l,s. Let H( P) = P"Pz , .... Ph be a hierarchical representation

of P. In order to compute II(P), the algorithm of [DK87J computes the sequence I/{Ph),

T/(Ph_d, ... , TECPd as follows.

1. Compute T/{Ph). For each t E 'I/(Ph), (a) choose a plane T perpendicular to t. (b)

project on T the edges of Ph incident to the vertex of Ph supporting t (note that

those projections are in some half plane of T. since PIL is convex), (c) identify the two

edges whose projections form the largest angle less than 11" among all the projections

obtained in (b). Let b(t) be the two edges so identified in (c).

2. For i = h - 1. h - 2....• 1, for each t E TIC Pi+l) do the following steps to obtain an

element of T,{Pi}: {a} examine the relevant vertices of edges in bet) to see if t intersects

Pi, (b) if t intersects Pi, then obtain a tangent plane t' of 'I/(Pd from t and compute

b(n, (c) if t doesn't intersect Pi, conclude that t E TtCP;), and update b(t).

Clearly, Step 1 can be done in 0(1) time since IV(Phl! ::; 15. Correctness of Step 2

follows from the following facts: (i) for any vertex v of Pi such that v and Pi+! are in

different half spaces defined by t, u is a relevant vertex of an edge of b(t), (ii) if such v

exists. then v is unique since V(Pd - V(Pi_ll forms an independent set. (iii) if such v

does not exist, then b(v) can be updated by examining the edges of Pi incident to relevant

vertices of edges of b(v). Since IbU)1 = 2, each edge has no more than two relevant vertices

and each relevant vertex is of constant degree, Step 2 can be done in 0(1) time. It is clear
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that the search DAG is the DAG D(H(P)) defined in Subsection 4.2. Note that the portion

of D(H(P)) traversed by the query l is not a path. but rarller is a DAG which has no

more than four vertices from each level of D(H(P)). However. this can be handled by our

multisearch algorithm since what matters to our algorithm is that the search process for

each query has the following properties: (i) it moves from one level Li to the next level i+ 1,

Oi) the vetices reached by the search at any level are on the adjacency lists of those reached

at the previous level. and (iii) the number of vertices reached at any level is constant. These

conditions (i)-(iii) on a query's search process are easily seen to be the only requirements

for the algorithm of Section 3 to work (i.e., it is not necessary for a query's search process

to trace a path).

Lemma 4.5 Given n lines ll. /2, _. _. In. and an n-Vl'rtex convex polyhedron P.1i,(P) for

all 1 :s; i .:s; It can be computed in O( J1i) time on a .fii X ..;n MeG. where li,(P) is Ule

langent planes of P through Ii (T'i(P) = 0 if no silch tangent planes exist).

Dased on the above lemma, we next present an optimal MeC algorithm for the three

dimensional convex hull problem.

4.5 Three dimensional convex hull

The a1~orithmoutlined below is similar to that of Dadoun and Kirkpatrick [DK87] and that

of Dehne et al [DSS881. Where we differ from (DK87] and [DSS88] is in the details of Steps

:3 and 4- which are given in Lemma 4.5. For simplicity, we. assume that the given n points

are in general position. Le. no four distinct points are co-planar. Under this assumption. all

the faces of the convex hull are triangular. The algorithm can easily be modified to handle

the degenerate case.

Algorithm 3D-CONVEX-HULL

Input: A set S = {Vl,V2, •.•• Vn } of n points in three dimensions where each point is in

one of the Vii x vn processors.

Output: The convex hull CH(S) of points in S. CH(S) is specified by its vertices set

V(CH(S)), edge set E(CH(Sn, and [ace set F(CH(S)).
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1. Partition S into S\. 52, 53 aud 5.1 of size n;4 each by horizontal (i.e. parallel to

the x-y plane) cut-planes in top-to-bottom order (Le. the points in S; have larger

z-coordinate than those in 5tH ).

'2. Recursively compute the convex hulls GH(Sd, CH(S2), CIl(S3) and CIl(S.1l in

parallel. using one quadrant of the ..;n x ..;n processors for each Si.

'l. Combine CH(S,) and C H(S,) (resp., C H(S,) and CH(S,)) to obtain C[[(S, US,)

(resp .• CH(S3 U 54)) in parallel. using one half of the ..;n x VIi processors.

-I. Combine GII(SI U 5'2) and GIl(S3 U S.d to obtain GIf(S).

End of 3D-CONVEX-HULL

We do Step 1 and move the points in each Si to the ith quadrant of the .;n x ..;n
processors in O(J7i) time by sorting. [f we could obtain the hull of the union of two

O{n)-size convex polyhedra in O(jU) time. then tIle time complexity T(n) of algorithm

3D-CONVEX-HULL would satisfy the following recurrence:

T(n) :s T(n/4) + c"ln + c,.jn

T(4) :s c"

wn.ere CI, Cz and C3 are constants. This would imply that T(n):; O(.JII} , Thus it suffices

to show how &0 compute the convex hull of the union of two linearly separable convex

polyhedra in O(.fii) time on a .;n x .;n MeC.

For a canvex polyhedron P and a line (or a line segment) I. let Tt{ P) denote the two

planes that are tangent to P and contain I (TI{P) = l/) if no such tangent planes exist. Le.

if I intersects P). To compute CH(SI U52) from CH(S.) and CH(S2). we do the following

two steps.

I. Compute T.(CH(S,)) for each e E CH(Sd and also T.(CH(S,» for each e E CHiS,).

2. Use the tangent planes obtained in Step 1 as well as C H(S,) and C !l(S2) to compute

CH(S, US,).

In Lemma 4.5, it has been shown that Step 1 can be done in O( J7i) time. We next

review a lemma of [DSS8S] which shows that Step 2 can be done in O(.fii) time.
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Lemma 4.6 [D55881 Giuen T~(GH( 5-2)) for each e E G H(51 1 and T~(CJf(5dl for each

~ E CH(5z ), lL'e can compute CH{51 U 5'1) in O(JTi) time on a,;n x..fii MCG. provided

that CH(51) and C H( 52) are linearly separable.

Proof: A proof was sketched in [DSS88J. and we review it briefly. Since CH(5il and

C H(52 ) are linearly separable, each face of C If(SI U 52) shares at least one edge with

either CH(St) or CH(52 ). To construct CH(51 U 52), it suffices to examine every edge of

CR(51) and GR(S2) and. if it is an edge of C H(SI US2), determine the faces of CH(SI U52 )

incident to it. Consider an edge e of CH(Sil or GH(S1)' WLOG, assume e is an edge of

CH(Sil. If Te(C H(52)) = 0. the line I containing e then intersects C H(S2) and hence e is

not in GHeS, U 52)' Otherwise. Te(GJI(51 )) contains two planes t l and t2 each supported

by a vertex ot' CJI(52 ). Let Vt (resp., u:.d be the vertex of GII(52 ) supportin~ t l (resp ..

l'l)' Let /1 (resp·,!zl be the face formed bye and VI (resp .. t'2), and let hand J.J, be the

two faces of C H{5d to wn.ich e is incident. We observe tn.at e is an edge of C ll(S, u 52) if

and only if the four faces Ii, h, hand /4. are in the same half space defined by some plane

through. e. Furthermore. if e is an edge of GIl(S, U 52), the two faces of GIl(S. U 52) to

wnich e is incident are those two of 11,12, hand 14. that form the largest angle less than

Jr. The entire process takes 0(1) random access reads and 0(1) local computations. 0

We therefore have the following theorem.

Theorem 4.1 The convex hull GIl{S) of a set S of n points in three dimemions can be

mmputed in 0(.JTi) time on a ..;n X ..;n lV/CG.

Proof: Immediate from Lemma 4.6, 4.4. 4.5. and algorithm 3D·CONVEX-IIULL.

4.6 Convex polyhedra intersection

It is easy to see that the intersection of two convex polyhedra PI and P2 is the convex hull

of the set of points that contains all the vertices of PI (resp., P2) inside Pz (resp., PI) and

all the intersections between the edges of P l (resp .. P2) a.nd the surface of P1 (resp., PI)'

Based on this. we give the following algorithm for computing the intersection of PI and P2

in O( J1i) time on a ..;n x ..;n.

Algorithm CONVEX-POLYHEDRA-INTERSECTION
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Input: Two n-vertex convex polyhedra P, and Po. PI and P2 are distributed in the fix.jTi

MCC. All of the faces of PI and P2 are triangulated.

Output: The intersection PI n P2 of PI and P2' All of the faces of PI n P2 are triangulated.

1. For each e E E(Ptl (resp., e E E(P2 )), find the intersections of e and P2 (resp., PI),

if any. Let II (resp., 12 ) be the set of intersection points so obtained.

'2. Identify the set V{ (resp., q) of vertices of PI (resp., P2), which are inside P2 (resp.,

PI), using the intersection information obtained in Step 1.

3. Compute the Convex Hull C H(I U V{ U Vn, using algorithm 3D-CONVEX-HULL.

C H(it U h U V{ U V;) is the intersection of PI and P2 .

End of algorithm CONVEX-POLYHEDRA-INTERSECTION

Step 1 can be done in O( jn) time as in Lemma 4.4. Step 2 is straightforward. and Step

a can be done in O( jn) time as in Theorem 4.1.

We therefore have the following theorem.

Theorem 4.2 Given two convex polyhedra PI and P2, we can compute PI n P2 in O(.fii)

time on a Vii X .;n MCG.

5 Conclusion

In this paper. we consider the multisearch problem on a class of hierarchical DAGs and

present an optimal MCC algorithm for it. which leads to the Crist optimal MCC algorithms

for the 3-dimensional convex hull and convex polyhedra intersection problems. settling an

open problem posed in {AW88J and in [MS88bJ. We believe our muJtisearch technique would

have applications to other problems as well. Although our algorithms are described for a

,fii x .;n MCC. all of them generalize to higher dimensional MCCs.
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