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A Graph Orientation Problem

M?Jcha.i1 J. Atallah

Department of Computer Sciences

Purdue University

West Lafayette. Indiana 47907,

ABSTRACT

We consider the following problem: Given a connected,

undirected graph with a cost associated with every vertex, assign

directions to its edges so that the resulting digraph is acyclic, h.as

a root and is such that the sum of the costs of its sinks is as small

as possible. We give a linear time algorithm for solving this prob

lem if the costs are nonnegative. and prove that it is NP-hard if

negative costs are allowed.

Keywords: Graph algorithms, depth-first search, NP-complete problems



1. Introduction

Graph orientation problems are usually of the following form: Given an

undirected graph G, assign directions to its edges (Le. orient them) so that the

resulting digraph satisfies a given set of properties and/or is optimal in some

sense, For example, if G is bridgeless then in linear time its edges can be

oriented so that the resulting digraph is strongly connected: Simply find a

depth-first spanning tree of G and orient the tree edges in the father-tOR child

direction and the other edges in the descendant-to-ancestor direction. Spinrad

[S] has given an efficient algoritlun for orienting the edges of G such that the

resulting digraph is transitive, provided such a transitive orientation exists. If G

is connected, then it is trivial to orient its edges so that the resulting digraph is

rooted (has a vertex from which there is a path to every other vertex) and acy-

clic: Find a depth-first spanning tree of G and orient all the edges of G in the

ancestor-to-descendant direction. Note. however, that in this case the resulting

digraph has as many sinks as the number of leaves in the original depth-first

tree (a sink is a vertex whose out-degree is zero). Suppose we are interested in

orienting the edges of G so that, in addition to being acyclic and rooted, the

resulting digraph has as few sinks as possible. In Sections 2 and 3, we give a

linear time algorithm for finding solving this problem. In Section 4. we consider

the weighted version of the problem. where a cost is associated with every ver-

tex and we want the sum of the costs of the sinks to be as small as possible. We

show that a linear time solution is still possible if the costs are nonnegative. and

that the problem is NP-hard if negative costs are allowed.

We assume that the reader is familiar with depth-first search [T,AHU] and

with standard graph-theoretic terminology. Throughout, n is the number of ver-

tices of the graph under consideration and m is its number of edges. We assume

that the input is an adjacency lists representation of that graph.
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2. Orienting a Biconnected graph

Let G=(V,E) be a biconnected undirected graph, and let s and t be any two

distinct vertices of G. In this section we give a linear time algorithm for orient-

ing the edges of G so that the resulting digraph is acyclic, rooted at s, and has t

as its only sink.

Let P;;;,v 1 , .. vii: (v 1=s,v,I::=f) be an s-t path in G. P can be extended into

a depth-first spanning tree T I so that the depth-first number of 11" is i (l::::;i::::;k).

We use T to denote both the tree and its set of edges (the context will make it

clear which one is meant). From now on we ~efer to vertices using their depth-

first number (so vertex 1 is s and vertex k is t). Let F(i) (2~i:S;n) denote the

father of i in T, and define the lists T(i) and U(i) (lSiSn) as follows:

T(i)=lj [i=F(j)J,

U(i)=!j Ij<i, (i,j)EE-T}.

In addition, let LOW(i) (2SiSn) be defined as follows:

LOW(i)=MIN!j Ij=i or there exists an edge (:r,j)EE-Tsuch
that % is a descendant of i and j is an ancestor of i in T j.

Since G is biconnected. we have LOW(i)<F(i) (3::=i::=n) and. in addition, vertex 2

is the only child of 1 in T (for a proof, see [T] or [ABU]).

We describe the orientation algorithm assuming that the tree T is available.

and that the U(i)'s, F(i)'s and LOW(i)'s have already been computed (these

preliminary computations can be done in time O(m+n) [T,AHUJ). The orienta-

tion algorithm consists of a preorder traversal of T, during which whenever a

node i is visited all the edges I(i,j) [jEU(i)1 as well as the edge (i,F(i» are

oriented. The algorithm makes use of an array STATUS. where STATUS(i) is up

or down depending upon the orientation of the most recently oriented tree edge

(i,:r) (i=F(:r»: If it was oriented in the x-to-i direction then STATUS(i) is up,
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otherwise STATUS(i) is down. Note that STATUS(i) may change between up

and do'lU/l. as many times as the number of children of i in T minus one. The fol·

lowing is a. pseudo-Pascal description of procedure VISIT which, when called

with VISIT(l), will produce the desired orientation of G. Recall that k is the ver-

lex which is to become the sink in the resulting digraph D, that 1 is to become

the root of D. and that the l-to-k path in T consists of the vertices 1.Z,· .. ,k.

Procedure VISIT(i):
begin

1 if 2===i~ then
begin

2 orient edge (i,F(i)) in the F(i)-to-i direction;
3 STATUS(F(i)) := down

end
else

if i>k then
begin

4 if STATUS(LOW(i))=down then
begin

5 orient edge (i,F(i)) in the i-to-F(i) direction:
6 STATUS(F(i)) := up

end
else

begin
7 orient edge (i,F(i)) in the F(i)-to-i direction:
6 STATUS(F(i)) := down

end
end;

9 for every JEU(i) do
begin

10 if STATUS (j)=down then
11 orient edge (i,i) in the j-to-i direction
12 else orient edge (i,j) in the i-to-j direction

end:
13 for every JET(i) do VISIT(j)

end:

It is easy to see that VISIT(l) runs in time O(n+m). To prove correctness,

we must show that the resulting digraph is acyclic. has vertex 1 as a root, and

has vertex k as it unique sink. From now on, we use the shorthand i -+ j to stand

for "edge (i,j) was oriented in the i-to-j direction".

Observation 1 Let x and y (x =F(y)) be consecutive vertices on the path in T

from the root (vertex 1) to vertex z (2'::ty). When z is visited, the value of
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STATUS(x) depends only on the way eC4le (x,y) was oriented: It is up if y->x

and down if x -+y.

Proof: Follows from the definition of STATUS(x) .•

Corollary 2 As the subtree of k in T is Visited, STATUS(i) (l5::i~-l) remains

down..

Proof: Follows from Observation 1 and the fact that i-+i+l for l~i<k (lines 1-3).

•

From now on we use D=(V,A) to denote the digraph resulting from orienting

the biconnected undirected graph G=(V,E), using the algorithm described

above.

Lemma 3 D is acyclic.

Proof: Suppose not, and let C=wo' .. WlWO be a directed cycle in D. Let

wt =Mi:n fwD, ... ,Wl J. Note that Wi-l and Wi+l (subscripts are modulo l +1) must

be descendants Df w, in T since if one of them (say, Wi_I) is not a descendant of

Wi then the fact that (w'_I,wd€.E would contradict the fact that T is depth-first.

]n addition, Wi_l and wi+l are descendants of the same child of Wi because oth

erwise there is no way to complete the cycle C without passing through a proper

ancestor of Wi' and this proper ancestor of Wi would have a number less than

Wi, contradicting our choice of Wi as the lowest-numbered vertex on C. Let s be

the child of Wi whose subtree contains both Wi-I and w,;t-1. At least one of the

two edges (wi_l'w,;) and (wHl,Wi) is in E-T; without loss of generality, assume

(WHl,Wi)EE-T, Then we distinguish two cases:

Case 1: W';_l=S

In this case Observation 1 and the iact that W';_14W,; imply that when wHl was

Visited we had STATUS (w,;}=up. Since WiEU(Wi+I)' lines 9-12 then imply that

Wi+l-+Wj, a contradiction.
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Case 2: W';_l ¢:.s

In this case STATUS(W;,) is the same when w;'-l is visited as when wi+l is visited

(this follows from Observation i), and since W;,EU(Wi_t) and WiEU(~+I)' lines

9-12 imply that either wC-IoWi_l and wi"'~wi+l (this occurs if STATUS (Wf,) is down

when Wf._1 and Wi+l are visited, Le. if Wi-+S), or ~-1~Wj, and w;'+l-+w" (this

occurs if S ....Wi). This contradicts the fact that Wi_l-tWi and 'W( -tWi+l'

In either case we have a contradiction, and therefore D is acyclic.•

Lemma 4 Vertex 1 is a source in D, vertex k a sink, and every other vertex is

neither a source nor a sink.

Proof (i) Vertex 1 is a source: The only tree edge incident on 1 is (1,2) and lines

1-2 imply that 1-+2. As for nontree edges, let (l,x) be one such edge. Observe

that STATUS(l) remains down throughout the algorithm. so that when verte~ x

is Visited lines 9-11 imply that 1-+%.

(ii) Vertex k is a sink: We must show that for every (z ,k )EE, we have z -+k.

Case 1: (x,k)e:T

If x =F(k) (=k -1) then lines 1-2 imply that x -+k .

If k=F(x) then, since LOW(x)<k (because G is biconnected), it follows from

Corollary 2 that STATUS(LOW(z)) is down when % is visited, and therefore lines

~-6 imply that x -+k. Note that this also implies that STATUS(k) is set to up

when its first child is visited and remains up throughout (this observation will

soon be needed).

Case 2: (x,k)e:E-T

]f x<k (Le. x is ancestor of k) then by Corollary 2 STATUS (x) is dO'Umwhen

k is visited and therefore lines 9-11 imply that x -+k.

]f x >k (Le. x is descendant of k) then when x is visited STATUS(k) is up
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(as observed above) and therefore lines 9-12 imply that %.-+k.

This completes the proof that k is a sink.

(ill) Every vertex other than 1 and k is neither source nor sink: We must show

that for every ilZ 11 ,k} we have %-+i and i ... y for some % and y.

It l<i<k then lines 1-2 imply that i-l-+i and i-Joi+1.

If i>k then we distinguish two cases:

Case 1: STATVS(LOW(i)) is doum when i is visited.

Lines 4-6 imply that i->F(i).

If LOW(i)E V(i) then lines 9-11 imply that LOW(i)->i.

If LOW (i)", V(i) then i is not a leaf and at least one of its children (say, j) has

LOW(j)=LOW(i). Whenj is visited, STATVS(LOW(j)) is still dDum and therefore

lines 4-6 imply that j ->i.

Case 2: STATUS(LOW(i» is up when i is visited.

Lines 4-6 imply that F(i)->i.

If LOW(i)EV(i) then lines 9-12 imply that i->LOW(i).

If LOW(i)", V(i) then i is not a leaf and at least one of its chidren (say, j) has

LOW(j)=LOW(i). When j is visited, STATVS(LOW(j» is still up and therefore

lines 4-8 imply that i-+j.

This completes the proof of Lemma 4.•

Lemmas 3 and 4 imply the following

Theorem 5 Let G be a biconnected undirected graph. and let sand t be distinct

vertices of G. It is possible to orient G in time O(n +m) such that the resulting

digraph is acyclic. rooted at s. and has t as its only sink.
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3. Orienting a Connected Graph

Let G=( V,E) be a connected, -undirected graph. In this section we give an

O(n+m) algorithm for orienting G.so that the resulting .digraph is acyclic. has a

root and has as few sinks as possible. Before presenting the algorithm. we need

a few preliminary definitiorn; and observations.

Since G is connected, everyone of its biconnected .components (or bicom

ponents) contains one or more articulation points (or cutnodes). If a bieom

panent contains exactly one cutnode then we say (as in [ET]) that it is pendant.

Theorem 6 Let G be a connected undirected graph and let p be the number of

pendant bicomponenls of G. Let D be a rooted acyclic digraph obtained by

orienting the edges of G. Then D has at least Max(l,p -1) sinks.

PrOD!: Any acyclic digraph must have at least one sink. If G is not biconnected.

let Go be a pendant bicomponent of G that does not contain the root r of D. let

% be the cutnode in Go. and let Do be the sUbdigraph of D induced by the ver~

tices of Go· Do is acyclic and therefore must contain a source y and a sink z.

Since r is the only source in D. it must be the case that y:::.z since otherwise y

would be a source in D, a contradiction. This implies that z is also a sink in D.

Since there are at least p -1 bicomponents like Go, D has at least p -1 sinks.•

We now give a linear time algorithm which achieves the bound of Theorem 6:

Step 1: Identify the bicomponents of G.

Step 2: If there is just one bicomponent (i.e. G is biconnected) then choose

arbitrarily two vertices sand t as the desired root and sink (respectively), and

then use the linear time algorithm of Section 2 to produce the desired digraph

D, then Halt.
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Otherwise proceed to Step 3 (G has'more than one bicomponent).

Step 3: Identify the pendant bicomponents of G and call them GIl' •• ,e; (note

that p~2). Let Wi be the cutnode in G, (l~i~p).

Step 4: Choose a vetlex:- in G1 as the desired root of D (r'!w 1). Use the algo

rithm of Section 2 to orient G1 so that T is the root and WI is the sink in the

digraph D1 resulting from the orientation of G1.

Step 5: For every ~ (2:S;i~p), use the algorithm of Section 2 to obtain an acy

clic dig~aph D;, in which Wi is the root and an' arbitrarily chosen node (call it Vi)

is the sink.

Step 6: Determine the distance between r and every other vertex in G (this can

be done by a breadth-first search starting atr).

Step 7: For every non-pendant bicomponent of G (call it H), do the following:

Let x be the cutnode in H which is closest to T. and let y be any other cutnode.

Then use the algorithm of Section 2 to obtain an acyclic digraph in which z is

the root arid y is the sink.

(End of Algorithm)

The above algorithm can easily be implemented to run in O(m+n) time

using the techniques described in [T,AHU]. We still have to prove correctness,

Le. that the resulting digraph D is acyclic and has one root and Ma.x(l,p-l)

sinks.

If G is biconnecte'd then correctness follows from Theorem 5, so assume

from now on that G has more than one bicomponent. First, note that D is acy

clic because everyone of the digraphs resulting from the orientation of a bicorn

ponent of G is acyclic.' It suffices to show that, in D, T is the only source (and
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hence the root, since G. is connected) and 'll2' ••• ,'llp the only sinks. Steps 4,5

and 7 of the algorithm imply that any additional source or sink in D is a cutnode

in G. and therefore it suffices to show that no cutnode of G is a source or a sink

in D. Let z be a cutnode. and assume that the distance between z and T is the

t(h. smallest among the distances between cutnodes and r (ties are broken arbi

trarily). We now prove that z is neither a source nor a sink in D.

If l=l then z is actually the cutnode in GIl i.e. Z=W 1. WI has at least one incom

ing arc in D because it is a sink in D1 (Step 4). It also has at least one outgoing

arc in D because, in every bicomponent other-than G1 and containing WI. Wi is a

source in the oriented version of that bicomponent (by Step 5 or Step 7).

If l>l .then two of the bicomponents to which 2: belongs (say, bicomponents A

and B) are such that A contains a cutnode x such that T is closer to z than to 2:,

while in B there is no such cutnode (B may be pendant and contain no cutnode

other than 2:). Now, Step 7 and the fact that T is closer to cutnode x than to 2:

imply that 2: is not the root of the oriented version of A, and therefore 2: has an

incoming arc in D. We still have to show that 2: has an outgoing arc in D.. If B is

pendant then Step 5 implies that 2: is the root of the oriented version of B, and

therefore 2: has an outgoing arc in D. If B is not pendant then Step 7 and the

fact that no other cutnode in B is closer to 7' imply that 2: is the root of the

oriented version of B. and therefore 2: has an outgoing arc in D.

This completes the correctness proof. We therefore have shown the follOWing

Theorem 7 Let G=( V,E) be a connected, undirected graph. Then it is possible

to orient the edges of G in linear time in such a way that the resulting digraph is

acyclic. rooted, and has as few sinks as possible.

4. The Ueighted Version of the Problem
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In this Section we consider the weighted version of the problem, where a

cost is associated with every vertex of G. The problem then is that of orienting

the edges of G so that the resulting digraph is acyclic, rooted. and has the sum

of the costs of its sinks as small as possible (from now on we refer to the sum. of

the costs of the sinks of. ,an acyclic, rooted digraph slmply as the cost of that

digraph).

4.1 Nonnegative Costs

Suppose that the cost of every vertex is a nonnegative number, and let C'l

denote' the cost of a smallest-cost vertex in G, -fwd (l:=;i:Sp). The algorithm: of

Section 3 can be modified to produce an optimal orientation. as follows:

In Step 2. if G is biconnected, rather than choosing an arbitrary vertex as the

desired sink, select instead the lowest-cost vertex.

In Step 3, G1 is such that c 1= Mr;..x Ci'
l,s:;u::p

In Step 5, rather than choosing Vt arbitrarily, select Vi to have cost equal to Ci.

The modifications outlined above do not change the time complexity of the

algorithm. which still results in an acyclic, rooted digraph. To see that the

resulting digraph has minimum cost, note that in any acyclic, rooted digraph D

resulting from the orientation of G, every G, -fwd must either contain the root

of D or contain a sink of D (see the proof of Theorem 6). Therefore the lowest

cost we can hope to achieve is c 1+ ' .. cp - Ma:c c" which is precisely the cost of
l:s;i-sp

the digraph resulting from the modified algorithm. This completes the proof of

the following

Theorem B Let G be a connected, undirected graph. If a nonnegative cost is

associated With every vertex of G, then the problem of orienting the edges of G

so that the resulting digraph is acyclic. rooted. and has minimwn cost can be

solved in linear time,
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4.2 Negative Costs

We now show that if the costs of vertices are allowed to be negative then the

problem is NP-hard.

Theorem 9 Let G be a connected. undirected graph. A (possibly negative) cost

is associated with every vertex of G. Given G and a number a, the problem of

determining whether it is possible to orient the edges of G so that the resulting

digraph is acyclic, rooted, and has cost no greater than C( is NP-complete.

Proof: It is easy to see that the problem is in NP. We now show that the

INDEPENDENT SET problem [GJ] is polynomially reducible to this problem.

Given an undirected graph H and an integer a, whether H contains an indepen-

dent set of size ~a can be determined by solving the follOWing instance of this

problem: Create undirected graph G by adding a vertex Vo to H and joining Vo

to every vertex of H. Assign to every vertex of G a cost of -1. We claim that H

has an independent set of size ~a iff G has an orientation whose cost is =:=-a. To

prove this claim, let x be the size of the largest independent set in H. and let y

be the cost of the optimal directed version of G. It clearly suffices to show that

y=-x.

If G has an optimal orientation of cost y then the resulting digraph has _y

sinks. If Vo is a sink then y=-l (i.e. Vo is the only sink) and in this case x~-y.

since H trivially has an independent set of size 1. If Vo is not a sink then the -y

sinks form an independent set in H, and again we have x~-y.

Now, let S denote the largest independent set in H (I S I=x). Note that G'=G-S

is connected (since V o is joined to all the other vertices) and therefore can be

oriented so that the resulting digraph is acyclic and rooted, say, at vo. Note also

that every vertex of G' is joined in G to at least one vertex of S. Now, orient the

edges of G so that those edges that also belong to G' are oriented as in the -'C,
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above-mentioned orientation of G', The remaining edges are assigned a direc-

Uan into the set S. It is easy to see that the digraph resulting from this orienta-

lion of G is acyclic and rooted at vo, and that its sinks are precisely the vertices

in S (i.e. it has cost =-x). This implies that y:50-x I and since we have already

shown that y~-x it follows that y =-x .•

5. Conclusion

We gave an linear time algorithm for orienting the edges of a connected

undirected graph so that the resulting digraph is acyclic, rooted, and has as few

sinks as pOSSible. We also considered the weighted version of this problem,

where a cost is associated with every vertex and we want to minimize the sum of

the costs of the sinks in the resulting digraph. We showed that a linear time

solution is possible if the weights are nonnegative, and that the problem is NP-

hard if negative weights are allowed.
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