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COMPUTING THE CONVEX HULL OF LINE INTERSECTIONS

Mikhail Alallah

Department of Computer Sciences
Purdue University

West Lafayette, Indiana 479f17.

Abstract

We give an O(nlogn) t!me algorithm for computing tbe convex hull of the n(n-1)/2

points determined by the pairwise intersections of n lines in the plane.
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1. IntrodoctIon

Consider the set S of n(n -1)/2 points determined by the pairwise intersections

of n lines in the plane. If tbe input consists of the n lines, then which properties of

S can be computed in time 0 (n2)? Even though we are computing a property of

9(n 2
) points, these points have a ·compact· description, namely the set of 12 straight

lines which define them. In this notc we show tbat the COnvex hull of the set S can

be computed in time O(nlogn). An immediate consequence of our result is that the

farthest pair of points in S, the smallest circle enclosing S. and any other property

which depends only on tbe convex huU of S. can be found in time o (nlogn).

We now introduce some conventions and terminology which will be used

throughout the paper. If W is a any set of points, then we use CH (W) to denote the

convex hull of W. The storage description we use for CH (W) is a list of the points

of W that are on the convex hull, in couDterclockwise cyclic order. A point pew is

a corner iff it belongs to CH (W) and it does not belong to the straight-lice segment

which joins the point preceeding it on CH (W) to the one succeeding it on CH (W).

The result of deleting all the non--corner points from CH (W) is called the t!dgt!.hull

of W and is denoted by ECH(W). U all the points of Ware in general positlon (i.e.

if no three of them are aligned) then every point of the convex hull of W lS a corner,

and therefore in that case ECH (W )=CH (W). HoweverJ the points of the set S

under consideration are certainly not in general position, and therefore ECH (S) and

CH (5) differ.

In order to simplify the presentation, we assume throughout the paper that the

n input lines have distinct slopes (i.e. no two are parallel), that none of them is verti.

cal, and that no three of them meet at a point. (Our discussion can easily be

modified for the general case.)

The paper is organized as follows. Section 2 gives an 0 (n logn) time algorithm
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for compuring ECH (S), Secrion 3 sketches how to obtain CH (S) from ECH (S), Sec­

tion 4 discusses the dual of this problem. and Section 5 concludes.

2. CompoUng ECH(S)

The input to the algorithm described in this ·section are the 11 lines whose pair­

wise intersections define tbe set S. The output of the algorithm is the edge--huU of

s. EeH (S). Since tbe algorithm is supposed to run in time 0 (n logrz). it is obvious

that we cannot afford to explicitly generate the set S. Instead, the algorithm gen­

erates 8 set Q of 11 points which has the pr.operty that ECH{Q)=ECH(S). Once we

have such a set Q. EeH (Q) can be computed in time 0 (n logrz) by usiDg any of the

known convex bull algorithms.

AlIortthm Edge-BoD

St~p 1. Son tbe 11 input straight lines by decreasing slope. Let L o• .•. ,1..,,-1 be the 11

lines listed by decreasing slope, Le. if the equation of L, is y =QjZ +b, then we have

ao>aJ> ···>a,,_l· This Step takes o (nlogll) time.

Step 2. Let point q/ denote tbe intersection of lines L j and Ll+l.-l ". Find tbe set

Q = {qo•... .,qrl-l}· This takes 0 (n) time.

Step 3. Compute ECH(Q) using any of the known o (nlogn) time convex hull algo­

rithms (e.g. [G]). Then output ECH(Q).

End of Aliorflhm Edge-HDll

It is obvious tbat the abOve algorithm runs in 0 (n logn) time. Correctness of

the algorithm would immediately follow if we could prove tbat ECH (Q )=ECH (S).

To prove this, it suffices to show that if p is a corner point of S then p EQ. So let p

be a corner pain t of S. Let L, and LJ • j> i • be the two lines whose intersection is p.

To prove that pEQ, we must sbow tbat eitherj=i+l (i.e.p=q,), or j=n-l and i=O
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(i.e. p =q",-J). We prove this by contradiction: Suppose to the contrary that

p +- q/,qJ. Since p '* qt. there is at least ODC line LI: whose slope is between the slopes

of Lf and L, • l.e. a/ > 01: > GJ. Let v and w be the points of intersection of LJ: with L,

and LJ • respectively (see Figure 1).

, . . ,
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Figure 1

We continue the proof assuming v is to the left of w. as in Figure 1 (tbe argument

when w is to tbe left of l' is entirely srmmetrical). Since p '* 9,,_]. one (or both) of

the following is true:

(i) i+n-l.or

(ii) i" O.

If (i) holds then we obtain a contradiction as follows. Line L
II

-1 must cross line

L, somewhere, say at point s. If s is to the right of p then p is on the straight-line

segment joining s to v. whicb contradicts the fact that p is a corner point. If, on the

other band, s is to tbe left of P. then L II _ 1 intersects LJ at a point I which is to tbe

left of p. This implies tbat p is on tbe straight-line segment joining I to W J whicb

contradicts the fact that p is a a corner point. Therefore (i) cannot occur.
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The argument· for finding a contradiction when (ti) holds is similar to the above

argument for (i). except that L opla)'l the role of L.-1" Since either (i) or (il) leads to

a contradiction, it follows that our original assumption (tbat p '/. Q) was wrong.

This completes tbe proof tbat every corner point belongs to Q, from which

correctness of the algorithm follows. The reader can verify that DOt every point in Q
,

is a corner point, or eyeD belODgs to eH(S) (it is DOt hard to construct 3n example

where some of the points in Q arc in eH(S) but are not corners, while other point.

of Q are in the interior of the polygon eH (5».

3. Compullnc CH(S)

The algorithm for computing eH(S) worb as follows. We compute ECH(S) in

time O(nlogn). using the algorithm of the previous section. Then we mark. every

edge of ECH (5) which is along one of the input lines 85 being sp~cia1. This tUeI>

o(n) time. Then for every line L, we do the following. First we find the intenec-

tion of Lj with the convex polygon ECH (S). This takes 0 (logn) time by using the

Chazelle-Dobkin algorithm for intersecting a line with a convex polygon [CD]. Let Sj

and /, be the points of intersection of L, with ECH (S): If s, (resp. I,) is a corner, or

the edge of ECH (S) to which s, (resp. I,) belongs is special, then add S, (resp. I,) to

a set H (H is initlally empty). Since this is done for every L, the total cost of creat-

ing H is 0 (n logn) time, and IH Is2n. The set H now contains all the points of S

that appear on eH (S), whether they are comers or not, and therefore

CH(H)~CH(S). Computing CH(H) (-CH(S» can now be doue iu time 0(01080)

by using any of the known 0 (n logn) time convex-hull algorithms (e.g. [GD.

4. The dual problem.
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There is a well-k.nown transform .". which maps a point into a line and a line

into a point, in the following way: A point p =(a,b) maps into the line 1T(p) whose

equation is y.=ax +b. and a: line L whose equa.tion is y =cz +d maps into the point

Tr(L )=( -c ,d). The transform 'IT preserves -the 'abovl!' relationship between points

and lines. In other words a point p above a line L maps loto the line '1f(p) which is

above the point 1T(L) (the same is true if the word 'above' is replaced by 'below' in

tbe previous sentence). We refer tbe reader to [B] for a proof of the above­

mentioned property. The line "II'(p) is called the duaJ of point p • and the point w(L)

is called the dual of line L. We use '1'1'(5) to denote the set of lines that are duals of

the points in S .

Before proceeding, we review the de6nitions of the lower and upper envelopes

of a set of lines. The lower envelope of m lines whose equations are f [(x )=«/x +f!"

1:s j :S m, is the piecewise linear function I (x) = min f I (x). The tIp~r t:rrvelo~ is
Is[s..

defined by replacing 'min' by 'max' in the definition of I (x).

Let the lower hull (resp. upper hull) of a set of points denote the lower (resp.

upper) portion of their convex hull. A 'line L which contains an edge of the lower

bull of S has the property that no point of S is below it. The dual of tbe previous

statement is tbat tbe point 'Ir(L) has the property that no line of 'Ir(S) is below it, Le.

'IT(L) is on the lower envelope of 'Ir(S). Actually, the duals of the lines that contain

edges of the lower hull of S are the break points of tbe lower envelope of 'IT(S). A

similar correspondence exists between the, upper hull of S and the upper envelope of

tbe lines in 1f(S).

Given this dUality, it is clear that the problem of computing the convex hull of

S is, in the dual world, that of computing the lower and upper envelopes of the lines

in 1f(S). Therefore our algorithm can also be used for computing, in time o (nlogn),

the upper (or lower) envelope of tbe n(n -1)/2 lines determined by n input points.

, . , .
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s. Condosloa

We gave an 0 (nlogn) time algorithm for computing the convex hull of the

n(n -1)/2 points determined by tbe pairwise intersections of n input lines. Therefore

all tbe properties of these points which depend on their convex hull only can also be

computed within the same time bound. It would be interesting to know which other

properties of the points can also be computed without enumerating tbem. More gen­

erally, what kinds of questions about these points can be answered easier than for an

arbitrary set of 9(n 2) points? One would expect the fact that these points are the

intersections of n lines to be useful, and yet it is often not clear how to exploit this

fact. For example, can the points be sorted according to (say) their z-coordinates in

o (n 2) time?
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