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Abstract — This article presents a GPU adaptation of a specific 
Monte Carlo and classification based method for pricing 
American basket options, due to Picazo. Some optimizations are 
exposed to get good performance of our parallel algorithm on 
GPU. In order to benefit from different GPU devices, a dynamic 
strategy of kernel calibration is proposed. Future work is geared 
towards the use of distributed computing infrastructures such as 
Grids and Clouds, equipped with GPUs, in order to benefit for 
even more parallelism in solving such computing intensive 
problem in mathematical finance. 

Keywords-component; Distributed and parallel computing, 
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I.  INTRODUCTION: HIGH PERFORMANCE COMPUTING IN 
FINANCE 

A growing number of problems can benefit from High 
Performance Computing. In nuclear physics, for example HPC 
and Monte Carlo (MC) methods are combined to simulate 
radiation interaction. In market finance, HPC becomes 
unavoidable in arbitrage trading or hedging. In 2009, 10% of 
Top500 supercomputers are employed for financial calculus 
[1]. Many financial measures are stochastic calculus and 
require a high number of simulations. High dimensional option 
pricing with fine time discretization quickly becomes a 
challenging problem that is suitable to MC methods. Value at 
Risk calculation for instance may cope with large number of 
sophisticated assets. Hedging strategies require rapid 
adaptation and automated trading algorithms need fast 
execution to make gain opportunities. Code optimization 
techniques improve program performance such as algorithm 
improvement, code vectorization for vector processor. 
However this is not sufficient and adequate for one or many 
GPU usage for high parallelization degrees. Besides, Cloud 
usage can be a good reason to outsource technology-intensive 
trade processing to larger financial company to take benefit 
from new developments [2]. In other cases, some financial 
establishments using grid computing with CPU pointed out 
excessive cost in hardware and electricity consumption. This is 
the case of Aon Benfield, a world's leading insurance company 
which for a bond pricing service spent $4 million in a grid 
architecture using CPUs and $1.2 million in electricity a year 
[3]. On the contrary, a GPU based pricing engine will only cost 
$144,000 and $31,000 in electricity a year. For instance, for 
J.P. Morgan's Equity Derivatives Group, the equity derivative-
focused risk computation is performed on hybrid GPU-based 
systems, increasing performance by 40x compared to only 
CPU-based systems, for the same electric power [4]. Exploiting 

heterogeneous CPU and GPU resources tend to be a topical 
problem for intensive financial activities. 

 

Machine learning covers many scientific domains (image 
processing, particle physics...) and was introduced in option 
pricing problems by Picazo [5] giving then a powerful and easy 
way to parallelize algorithm for distributed architectures such 
as computing Grids [6]. However, particularity of GPU 
implementation is that all cores in the same block execute the 
same instruction at the same time (Single Instruction, Multiple 
Thread model). The main goal of our present work is to define 
and implement a GPU approach for this option pricing 
algorithm based upon the Picazo method, keeping in mind that 
our future goal is to further parallelize the pricing by relying 
upon distributed GPUs nodes acquired from computing grids or 
Clouds. As such, heterogeneity in acquired GPU devices will 
have to be addressed. We explain in this paper how we handle 
this heterogeneity requirement within the proposed GPU 
implementation. 

In section II we will present a CPU/GPU implementation of 
Picazo method and explain our adaptation to tackle the warp 
divergence of loop condition at the algorithmic level. In section 
III, we will consider more technical aspects and propose a 
solution that enables to adapt our code to any NVIDIA GPU 
device. We will also suggest portability to AMD GPUs. 
Evolution over heterogeneous distributed Cloud/GPU 
architectures will be discussed in section IV and some related 
works presented in section V before concluding. 

II. A GPU BASED ALGORITHM OF PICAZO PRICING METHOD 
Here we describe Picazo algorithm before focusing on our 

GPU adaptation. Last section shows experiments which prove 
benefits of our strategy to tackle the warp divergence of loop 
condition. 

A. Pricing Algorithm 
Forecasting financial instrument prices is a challenging task 

in market finance. High dimensional American basket call/put 
option is a contract allowing you to buy/sell at a specified 
strike price K, a possibly high size, (e.g. 40) set of underlying 
stocks Si

t at any time until a maturity date T. So a call owner 
expects underlying asset prices to rise over strike. American 
basket option pricing is a typical problem requiring a lot of 
time and memory resources for resolution. There is no analytic 
solution and some numerical methods such as finite difference 
methods cost too much computational time to get accurate 



2012 IEEE 4th International Conference on Cloud Computing Technology and Science

978-1-4673-4510-1/12/$31.00 ©2012 IEEE  
724

results. Monte Carlo methods, based on the law of large 
number and central limit theorem, allow a simplified approach 
for high complex problems, reaching good accuracy in 
reasonable time. Consider St

(s) as independent trajectories of an 
underlying asset price following Black and Scholes model, 
Ѱ(f(St

(s),t)) as the option pay-off, N as the discrete time number, 
r as the risk free rate. American option price V at time zero can 
be estimated as follows: 
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As opposed to European option price, American option price 
must reflect all possible opportunities to exercise option until 
maturity date. This possibility is reflected in the mathematical 
definition as follows: 
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value. Some methods compute directly a boundary exercise 
line to decide to continue or not to hold the option [7], before 
performing final MC simulations as sketched in FIGURE I 
[phase 2]. Instead of computing an explicit boundary exercise 
line, Picazo method relies upon continuation/exercise regions. 
It exposes an efficient way to define these regions by 
combining a machine learning technique with MC methods 
(FIGURE I [phase 1]). Consider Si

t as asset prices with i = 
1..d, d as the asset number, δi as dividend rates, σi as volatility 
rates, nb_class is the number of training instances per 
classifier, nb_cont is the number of MC simulations to 
compute the continuation values. 
 

FIGURE I.  PICAZO ALGORITHM RELYING UPON CLASSIFICATION 

 
 

To compute the final option price using MC simulations in 
[phase 2], a classifier for each discrete time is needed to ensure 
the algorithm can decide if the running simulation must be 
stopped or not, i.e. given simulated asset prices, it forecasts if 
an exercise opportunity will come. We create all the classifiers 
during [phase 1]: for every time (line 2), we generate a set of 
training instances (line 5) to train a new classifier. Each 
training instance is composed of simulated asset prices and a 
sign according resulting payoff is over (+1) or not (-1) the 
continuation value (line 7). Because continuation values 
require relying upon classifiers during Monte Carlo simulations 
in [phase 1] [step 1], Monte Carlo simulations are backward 
computed: at time (T-1), classifiers are not needed because 
simulations reach instantly maturity, and by this way last 
classifier can be trained (line 6.). Then starting from (T-2), 
simulated asset prices at (T-1) can be classified, and so on 
backward N times, until T=1. 

B. Algorithm Parallelization for a GPU 
We now consider the critical sections of the algorithm to 

parallelize. Backward loop cannot be parallelized because 
classifier at time m is used to train classifier at time (m-1). Our 
previous work [6] proposed however a distributed 
implementation upon Clouds relying upon a set of a moderate 
number of slave nodes (up to few hundreds) and one master 
node. The training instance computations are performed 
through independent simulations. As a result at every discrete 
time, each node asynchronously can handle a set of training 
instances, storing their results back to the master node before 
going on with new computations if needed. By this way, the 
nodes having a task completed earlier need not wait for the 
others, reducing the bottleneck effect. The parallelization 
degree depends on the number of nb_class training instances 
which is clearly several orders of magnitude lower than the 
amount of required MC simulations (thousands, millions) for 
one training instance computation. Simply applying this same 
design in the context of a single GPU would not allow us to 
benefit from the GPU high thread number, as this thread 
number can be much larger than nb_class. 

A single GPU offers more cores than a common distributed 
architecture (more than a thousand for NVIDIA Kepler or 
AMD Tahiti architecture) and MC simulation numbers must be 
large enough to get a good approximation of the expected 
value. Thus we propose a new design along the following main 
idea: the nb_cont MC simulations to compute a single training 
instance are parallelized on the GPU threads. More precisely, 
each thread performs at every discrete time (during its 
simulations) the following operations: generates random 
uniform variables, applies Gaussian transformation, correlates 
them if specified, simulates asset prices, predicts exercise 
situation through a classify function, stores actualized payoff. 
Contrary to a distributed architecture, all cores on the GPU are 
identical and no load balancing is needed. The main difficulty 
to adapt American option pricing problem to SIMT architecture 
comes from the variable length of simulations amongst all the 
nb_cont ones. It prevents to ask each thread to perform 
predefined number of trajectories that would be fixed at the 
beginning of line 6. A warp (for NVIDIA architecture or a 
wavefront for AMD) is the smallest quantity of threads that are 
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issued with a SIMT instruction. Threads of the same warp 
cannot perform at the same time different instructions, resulting 
in implicit synchronization barriers. Consider we distribute the 
same number of simulations per thread, those performing 
short-length simulations (requiring less time steps because of 
the American option behavior which dictates to exercise the 
option as soon as possible) would wait for the others of the 
same warp. This leads to unwanted synchronizations and low 
occupancy. Occupancy is the ratio of active warps per 
multiprocessor (per Compute Unit i.e. CU) to the maximum 
number of possible active warps. We need to consider 
performance degradation that occurs if the occupancy is not 
high enough to hide memory latencies, even if increasing it 
brings no more performance at a certain level [8]. A way to 
avoid this termination divergence is to apply a suitable 
behavior in our design (FIGURE II). Threads inside a warp 
work synchronously. To reduce internal block (composed of 
warps) waiting time, we compute after 
nbStepsBeforeReduction time steps and with an intermediate 
reduction, how many MC simulations have been achieved. This 
is repeated until at least the total number of MC simulations 
needed for getting a continuation value has been achieved 
(FIGURE II 2). Obviously the value of 
nbStepsBeforeReduction is different for each nb_class 
continuation value computation. 

FIGURE II.  BEHAVIOR OF A WARP IN A BLOCK: 1. WITHOUT INTERMEDIATE 
REDUCTIONS. 2. WITH INTERMEDIATE REDUCTIONS 

 
 

nbStepsBeforeReduction is computed at runtime as follows: 
after the very first parallel simulations for a given continuation 
value, each thread of the block provides its  stopping time (i.e. 
given the initial asset prices, at which time the decision to 
exercise the option is taken). For the subsequent batches of MC 
simulations to run, we set nbStepsBeforeReduction as being the 
maximum of these stopping times. Indeed, as to compute the 
continuation value all threads start from same simulated asset 
prices, we can notice that each thread is more or less as far as 
the others from exercise regions. This is more significant with 
bigger drift part than martingale part. So there is no need to 
perform early intermediate reductions although they are 
quickly achieved through dynamically allocated shared 
memory. We have conducted specific tests that reveal that even 
a high number of reductions do not impact global execution 
time. 

C. Performance Evaluation 
The exposed approach targets American options that 

exhibit fine time discretization, and whose pricing features 
large classification parameters. Indeed coarse discretization 
does not exhibit strong differences between simulation lengths 
among threads. So, in the sequel, we only plot some 
experiments conducted with a fine time discretization (N=100). 

Option pricing is typically a stochastic problem, so, for 
same parameters, computation time can vary significantly. Our 
strategy rounds up time step numbers to complete simulations 
(FIGURE II 2) because we insure a fixed number of 
simulations is at least performed per block before stopping 
reductions. So overall we may run more MC simulations than 
needed. However we reduce time peaks due to bottleneck 
effects of random simulation sizes and we are able to smooth 
the effects of randomness when calculating each continuation 
value. As illustrated by FIGURE III, our implementation  
allows decreasing the stochastic impact on classification 
durations (i.e. the whole [phase 1] of our algorithm): this is a 
concrete proof of the effectiveness of our strategy, and more 
importantly in real situations it could allow to better foresee the 
total amount of option pricing computation time. 

FIGURE III.  TOTAL CLASSIFICATION TIMES IN SECONDS FOR 14 EXPERIMENTS 
NVIDIA Quadro 600 
Arithmetic average  
call option 
6 blocks x 192 threads 

100
0
i

tS
 

d = 10 
K = 100 
N = 100 
T = 1 
r = 3% 
δi = 5% 
σi = 40% 
nb_class = 100 
nb_cont = 10^5 
nbMC = 10^6 
AdaBoost/DecisionStump 
100 boosting iterations 
 

III. GPU SPECIFIC IMPLEMENTATION 
Unlike CPUs, GPUs do not allow to work with advanced 

libraries. This firstly section aims at explaining how to cope 
with this constraint. Because this work is ultimately dedicated 
to distribute GPUs which might be heterogeneous, we propose 
then a strategy to dynamically calibrate kernel parameters. 

A. OpenCL implementation details 
In order to classify values, we aim to rely as much as 

possible upon an existing Java machine learning library (Weka 
library [10]). Thus we require that all the non-GPU sequential 
part of our pricing algorithm be expressed in Java. However we 
intend to exploit most popular graphic cards (NVIDIA, AMD, 
Intel) though OpenCL (Open Computing Language [9]), a C-
derived language interfaced with the C++ language. So we 
decided to use OpenCL through JOCL [11] which itself is a 
JNI wrapper around OpenCL keeping readable end-user Java 
code on the CPU side (without explicit JNI calls). 

We could not however rely upon all the needed Java 
methods provided by Weka, because a GPU thread is not able 
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to call a method of an external library. So we had to mimic the 
behavior of some of the needed Weka methods directly in 
OpenCL as explained below.  

The Weka library allows us to create AdaBoost (Adaptive 
Boosting) or SVM (Support Vector Machines) based 
classifiers, by training them with training instances. This 
allows the pricing algorithm to subsequently make classify 
calls onto a previously built classifier to predict new instances. 
Indeed, during the computation of continuation values and final 
option price, we must know at every time until maturity, giving 
simulated asset prices, if it is suitable or not to exercise option 
contract, therefore stop or not the current MC simulation. 
Taking the decision is easy as soon as the code can access to 
the already trained classifier. Weka allows both to build a 
classifier (as an object), and subsequently to call a specific 
method (named classify) upon it for the decision making. 
However making such a call from a GPU thread is impossible. 
The solution we have developed consists in (a) making a copy 
of the required classifiers hold by Weka in the GPU global 
memory at the beginning of each new loop, which requires to 
use an adequate data structure to represent the classifiers; (b) 
providing a function in OpenCL which mimics the behavior of 
the classify Weka method on a classifier, and have GPU 
threads use this function and not the one provided by Weka in 
the parallel phase of the algorithm. The classifier training 
cannot be delegated to the GPU due to the lack of memory 
resources. Once trained, the classifiers instances hold at the 
Weka side are the ones that are serialized and injected in the 
GPU memory as described in (a). OpenCL does not allow 
complex structure usage such as multidimensional arrays. So, 
we defined the serialization output of the object instances 
representing the needed Weka classifiers as simplified data-
structures (1-dimensional arrays) filled with only the data 
members of the Weka objects that will be necessary in running 
the classification function defined in (b). Getting access to 
these data members required us to slightly modify the Weka 
open source code. There are as many classifiers as discrete 
times, and to store all of them, we work with 1-dimensional 
arrays grouping all same data members of all classifiers in the 
same array. This means we work with position indexes to 
access to data of a specific classifier. Notice that it is 
impossible to make sure member accesses from threads of a 
same warp are done in the same global memory segment, 
because threads are not necessary simultaneously at the same 
discrete time. 

In order to perform global memory accesses in one memory 
transaction, we store simulated prices of each asset of the 
basket in a contiguous manner. Thus threads perform coalesced 
accesses for each to simulate their Si

t before simulating St
i+1. 

There are as many kernel launches as training instances 
(nb_class) per classifier. To overlap the overhead of launching 
a kernel, the loop at line 5 is reduced to (nb_class/2), and at 
every turn we manage two kernels with separate command 
queues: while one kernel executes the other gets launched. This 
allows overlapping kernel executions with data transfers 
between the host and the device as highlighted in the best 
practice document [8]. The overlapping is only possible with 
page-locked allocations, and our data transfers are not large 
enough to benefit much from it. So overlap performance gain 

happens but is limited: for instance, an American basket option 
pricing takes 2073s against 2146s for a non-overlap 
implementation. 

We use the OpenCL Mersenne Twister method 
implementation to generate inside the kernel uniform pseudo-
random numbers (high quality and fast generation). We 
compute and transfer a global seed from host to global memory 
at every kernel launch. These seeds are fixed as 
currentTimeMillis() * 1000 + nanoTime(). 

B. Kernel adaptation 
Kernel parameter calibration is an essential step in our 

optimization. On mid-term, we aim at exploiting distributed 
GPUs in a Cloud and consequently coping with a wide range of 
GPUs. This parameterization can be achieved through several 
benchmarks to find the best kernel configuration. However, to 
perform best fit values at run-time and for a single GPU, time 
spent at start for benchmarks is not suitable in HPC. This 
strategy must also be avoided for many heterogeneous GPUs 
even if distributed. 

Because size of fast access memories is limited, our 
implementation requires many accesses in global memory. 
Furthermore many branch conditions encountered by threads 
depend on random asset prices leading to warp divergences, 
and we also use explicit barriers for computing the intermediate 
reductions, both of these introducing some wasted time. In our 
case to improve time execution, we need to hide latencies and 
keep hardware busy, which requires setting up kernel 
parameters in a way that will lead to the best multiprocessor 
occupancy when running the pricing algorithm. To perform a 
run-time kernel parameter calibration, we developed a 
dedicated Java class which imitates the NVIDIA occupancy 
calculator spreadsheet (this tool can be extended to AMD 
GPUs with occupancy formula given at [12]). With regards to 
the multiprocessor limitations (maximal warp number, shared 
memory, registers), the occupancy calculator computes number 
of active warps while taking into account program memory 
usage and block size. Statically just from the source code, we 
inform the calculator about registers and shared memory 
program usage, from which it computes at program start 
multiprocessor occupancies for all possible block sizes, starting 
from warp size to maximum block size allowed. 

The occupancy calculator computes active block number 
per CU before deducting active warp number. FIGURE IV 
shows occupancy evolution over all possible block sizes and 
deducted active block numbers. Increasing block size will fall 
number of active blocks per CU. Shared memory usage input 
parameter changes with block size because it is used for block 
reductions. A given peak of occupancy is reached for every 
different active block number with maximal threads number. 
Given our program memory usage, the calculator deducts that 
the execution can benefit from a maximal occupancy 
(~33.33%) with blocks of 64, 128, 256 and 512 threads. Block 
size of 64 threads offers more active blocks per CU than others 
(8 against 4, 2 and 1). This occupancy does not take into 
account program the behavior, and we know from our 
algorithm behavior that maximizing the number of active 
blocks per CU could reduce waiting time between blocks (as 
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each block would be given a smaller simulations number to 
perform). 

FIGURE IV.  CU OCCUPANCIES OVER KERNEL CONFIGURATIONS (NUMBER OF ACTIVE 
BLOCKS PER CU X BLOCK SIZE) 

NVIDIA Quadro 600 
Arithmetic average 
American call option 
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d = 5 
K = 100 
N = 50 
T = 1 
r = 3% 
δi = 5% 
σi = 40% 
nb_class = 50 
nb_cont = 10^4 
nbMC = 10^6 
SVM/linear PolyKernel 
 

We confirmed the relevance of occupancy when choosing 
block size by comparing the results given block sizes for 
16.67%, 25% and 33.33% occupancy rate (FIGURE V). The 
NVIDIA Visual Profiler does not reveal increasing block 
number over active block number improve effective 
occupancy, and the total thread number has been set to 
nbActiveBlockPerCU * blockSize * nbCU. Such 
knowledge is taken into account to help decide at start time of 
the complete kernel parameters (block size and total thread 
number), given the output of the occupancy calculator. 

FIGURE V.  TOTAL CLASSIFICATION TIMES IN SECONDS OVER 20 PROGRAM 
LAUNCHES PER KERNEL CONFIGURATION. PROGRAM PARAMETERS ARE THE SAME THAN 

PREVIOUSLY 

 
 

The GPU adaptation allows performing American basket 
option pricing in an acceptable time execution even with 
resources exhibiting moderate performance characteristics: the 
NVIDIA Quadro 600 or NVIDIA GTX 560M we are granted 
access to are not the high-end GPUs. Overall, this 
implementation benefits from a less expensive architecture 
than a distributed infrastructure like a Cloud with many nodes, 
featuring also lower energy consumption. However, GPU does 
not offer as much memory as a CPU, that lead to multiple 
small kernels launches and many data transfers between CPU 
and GPU in order to complete the pricing. In order to spread 
kernel launches among multiple GPUs, we will add in future 
work a new level of parallelism and adapt the parallelization 
strategy accordingly, as sketched briefly in the next section. 

IV. TOWARDS COMBINING CLOUD/GPU TO RESOLVE 
LARGE SIZE PROBLEMS 

We evaluate here the performance of our single GPU based 
approach over the traditional Cloud based approach. This latter 
was tested on ProActive PACAGRID, a computing Cloud 
operated by INRIA. ProActive API provides a job scheduler 
which facilitates the CPU resource allocation. We intend to 
employ it to extend our work over a heterogeneous GPU/CPU 
architecture. We defined an American basket option pricing 
featuring high dimension and high values regarding the 
classification parameters (legend of TABLE I). 

TABLE I. Overall computational time with NVIDIA GTX 560M 
Geometric average American call option 
Si

t0 = 100 d = 40 K = 100 N = 50 T = 1 r = 3% δi = 5% 
σi = 40% nb_class = 5000 nb_cont = 10^4 nbMC = 2*10^6 
AdaBoost/DecisionStump 150 boosting iterations 
 

 

Price for this option is reported (TABLE I) with 95% 
confidence interval (CI). Note that for such problems offering 
many adjustment parameters, CI can be biased by nb_class, 
nb_cont, N, boosting iterations number, and must be only 
considered to fix nbMC. These results reveal the GPU ability to 
resolve non-embarrassingly and large problem in same order of 
time than on a distributed architecture. More than low energy 
consumption and architecture cost, providing the same calculus 
performance level with fewer resources allows easier way to 
extend the architecture. An hybrid architecture seems to be a 
natural way to combine high parallelization of GPU device and 
large memory resources of Cloud, and this is why we plan to 
explore such hybrid combination in the near future. 

To fully exploit any such heterogeneous architecture, we 
must focus on a best fit implementation and a dynamic kernel 
configuration for distributed GPUs. Technically, we can 
parallelize training instance computations among distributed 
CPUs, and keep our GPU implementation to perform Monte 
Carlo simulations (continuation values and final price). Nodes 
with advanced GPUs, offering many CUDA cores can be in 
charge of performing larger packets of training instances. 
Overall the strategy of node acquisition depends on many 
criteria, fixed by user or computed at runtime: energy 
consumption, performance level, delay of accessibility or time 
availability. Some of them need to be evaluated through 
preliminary test phases. We presented static split of our 
algorithm, but considering Cloud architecture with 
heterogeneous nodes, a dynamic split at runtime would be 
suitable to fully exploit Cloud resources according to user 
constraints. Longer term objective will be to generalize this 
pattern to the most popular algorithms in option pricing. 

 64 cores at 2.3GHz from 
AMD Opteron 2356 series  

processors  

(1 Opteron provides 4 cores) 

Tesla M2050 

112 blocks x 64 threads 

[phase 1] Total 
classification time 

7 h 01 min 30 s 9 h 19 min 42 s 

[phase 2] Final 
pricing time 

0 h 53 min 12 s 0 h 00 min 27 s 

Price (~10^-5) 0.70557 ± 0.00135 0.68976 ± 0.00147 
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V. RELATED WORK 
Lokman [13] has proposed numerous mathematical works 

and parallelized implementations related to American option 
pricing, especially with the Longstaff and Schwartz regression 
method. However the main difficulty of our GPU 
implementation comes from the many random size simulations 
involved in the Picazo algorithm. Moreover he does not tackle 
a dynamic parameterization to cope with heterogeneous GPU 
devices. 

Recent works intend to reduce warp divergence in GPU 
programs ([14] [15]). We proposed a new implementation to 
cope with termination divergence. As an alternative, we could 
have combined a basic implementation (same number of 
simulations assigned to every thread, FIGURE II 1) with a 
more generic strategy: in [14] a SIMT micro scheduler is in 
charge of providing new tasks to threads having exited a loop. 
However as required in proposed implementations, we are 
limited in the amount of fast access memory and it can be 
expensive to manage “task pools” for several small kernel 
launches. In [15] are introduced software optimizations. One of 
these targets divergent if-then-else branches in loops: at every 
iteration it groups same execution paths in a warp, delaying the 
others. As a complementary improvement it could be adapted 
to our kernel: in for loop of FIGURE II 2, our classify call 
depends on if threads reach or not maturity and it requires a lot 
of computation time for large classification parameters. 

VI. CONCLUSION 
Our work focusing on an effective but challenging HPC 

problem for market finance reveals we must adapt 
parallelization strategy to SIMT architecture when bringing 
algorithms designed in a parallel but asynchronous and 
distributed way to a GPU. We can benefit from advanced 
libraries at the cost of writing some specific solutions to 
interact with them, taking care of data types exchanged 
between both. Because we intend to exploit an hybrid 
Cloud/GPU architecture possibly featuring heterogeneous GPU 
devices, it is necessary to have a parametric solution to 
configure the kernel depending of each device type: we 
proposed a tool and a dynamic kernel calibration methodology 
applicable to different GPUs. This tool has been evaluated on 
the NVIDIA family and an extension to AMD GPUs has been 
suggested. 

A natural way to extend our work is to consider 
architectures as heterogeneous as possible: distributed 

infrastructures composed of CPU/GPU nodes acquired from 
Clouds. This will require in a future work, an elaborated 
strategy for CPU/GPU nodes acquisition over specific criteria 
such as energy consumption, performance and acquisition cost, 
a new distribution/parallelization, algorithm and a possible 
evolution of our kernel configuration. 
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