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EFFICIENT PARALLEL ALGORITHMS FOR STRING EDITING AND
RELATED PROBLEMS·

ALBERTO APOSTOLICO', MIKHAIL J. ATALLAH', LAWRENCE L. LARMORE' AND

SCOTT MCFADDIN'

Abstract. The string editing problem for input strings x and y consists of transforming x into y
by performing a series of weighted edit operations on x of overall minimum cost. An edit operation
on x can be the deletion of a symbol from x, the insertion of a symbol in x or the substitution of a
symbol of:c with another symbol. This problem has a well-known OClxlJyl) time sequential solution.
Efficient PRAM parallel algorithms Cor the string editing problem are given. If m = min(lxj, Iyl) and
n = max(lxl,lyl), then the CREW bound is O(logmlogn} time with G(mn/lagm) processors. The
CReW bound is O(logn(loglogm)2) time with O(mn(loglogm) processors. In all algorithms, space
is O(mn).

Key words. String-to-string correction, edit distances, approximate string searching, spelling
correction, longest common subsequence, shortest paths, grid graphs, analysis of algorithms, parallel
computation, cascading divide-and-conquer

AMS(MOS) subject classifications. 68Q25

1. Introduction. One of the major goals of parallel algorithm design for PRAM
models is to come up with parallel algorithms that are both fast and efficient, i.e. ,
that run in polylog time while the product of their time and processor complexities
is within a polylog factor of the time complexity of the best sequential algorithm for
the problem they solve. This goal has been elusive for many simple problems that are
trivially in the class NC (recall that NC is the class of problems that are solvable in
O(logO(l) n) parallel time by a PRAM using a polynomial number of processors). For
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example, topological sorting of a DAG and finding a breadth-first search tree of a graph
are problems that are trivially in NC, and yet it is not known whether either of them
can be solved in polylog time with n2 processors.

This paper gives parallel algorithms for the string editing problem that are both
fast and efficient in the above sense. We give a CREW-PRAM algorithm that runs
in O(logmlogn) time with O(mn/logm) processors, where m (respectively, n) is the
length of the shorter (respectively, longer) of the two input strings. We also give a
CRCW-PRAM algorithm that runs in O(logn(loglogm)') time with O(mn/ loglogm)
processors. In both algorithms, space is O(mn).

In related work, Ranka and Sahni [22] have designed a hypercube algorithm for m =
n that runs in O( ..jn log n) time with n2 processors, and have considered time/processor
tradeoffs. In independent work, Mathies [20] has obtained a CRCW-PRAM algorithm
for the edit distance that runs in O(logn log m) time with O(mn) processors if the weight
of every edit operation is smaller than a given constant integer. Also independently,
Aggarwal and Park have, in [3J and [4), given an O(logm logn) time, O(mn/ logm) pro
cessor CREW-PRAM algorithm, and an O((log 10gm)'log n) time, O(mn/(logJogm)')
processor CRCW - PRAM algorithm. The basic structure of their algorithms is similar
to ours, but they use different methods for the "conquer}! stage (in particular I they do
not use the cascading divide·and-conquer scheme). In the terminology of [3] and [4],
the "conquer" stage corresponds to the problem of computing the "tube maxima of a
totally monotone n x n x n matrix." Within the "conquer" stage, the computation of
a single row (as in §6.1) corresponds in [3] and {4] to the problem of "computing the
row maxima of a totally monotone n x n matrix." We refer the reader to [2]-[4J for
the myriad of other applications of the "tube maxima" and "row maxima" problems.

Recall that the CREW - PRAM model of parallel computation is the synchronous
shared - memory model where concurrent reads are allowed but no two processors can
simultaneously attempt to write in the same memory location (even if they are trying
to write the same thing). The CRCW - PRAM differs from the CREW - PRAM in
that it allows many processors to write simultaneously in the same memory location:
in any such common-write contest, only one processor succeeds, but it is not known in
advance which one.

The rest of this Introduction reviews the problem, its importance, and how it can
be viewed as a shortest-paths problem on a special type of graph.

Let x be a string of Ixl symbols on some alphabet f. We consider three edit
operations on x, namely, deletion of a symbol from x, insertion of a new symbol in x
and substitution of one of the symbols of x with another symbol from I. We assume that
each edit operation has an associated nonnegative real number representing the cost of
that operation. More precisely, the cost of deleting from x an occurrence of symbol a

is denoted by D(a), the cost of inserting some symbol a between any two consecutive
positions of x is denoted by lea) and the cost of substituting some occurrence of a in
x with an occurrence of b is denoted by S(a,b). An edit script on x is any consistent
(i.e., all edit operations are viable) sequence u of edit operations on x, and the cost of
u is the sum of all costs of the edit operations in u.
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Now, let x and y be two strings of respective lengths Ixl and jyl. The siring editing
problem for input strings x and y consists of finding an edit script a' of minimum cost
that transforms x into y. The cost of a' is the edit distance from x to y. In various
ways and forms, the string editing problem arises in many applications, notably, in text
editing, speech recognition, machine vision and, last but not least, molecular sequence
comparison. For this reason, this problem has been studied rather extensively in the
post, and forms the object of several papers (e.g., [18], [19], [21], [23), [25], [241, [30],
to list a few). The problem is solved by a serial algorithm in 8(lxllyD time and space,
through dynamic programming (d., for example, [30]). Such a performance represents a
lower bound when the queries on symbols of the string are restricted to tests of equality
[1],[31]. Many important problems are special cases of string editing, including the
longest common subsequence problem and the problem of approximate matching between
a pattern string and text string (see [16],[26], and {28] for the notion of approximate
pattern matching and its connection to the string editing problem). Needless to say,
our solution to the general string editing problem implies similar bounds for all these
special cases.

The criterion that subtends the computation of edit distances by dynamic program
ming is readily stated. For this, let C(i,j)' (0 $ i $ lxi, 0 $ j .$ Iyl) be the minimum
cost of transforming the prefix of x of length i into the prefix of y of length j. Let Sk

denote the kth symbol of string s. Then C(O, 0) = 0, and

C(i,j) = min{C(i -I,j -I) + S(x;,Yj), C(i -I,j) + D(x;), C(i,j -I) + I(y;)}

for all i,j, (1 $ i :S Ixl; 1 :S j .$ lyD. Hence C(i,j) can be evaluated row-by-row or
column-by-column in 0(lxllyl) time [30]. Observe that, of all entries of the C-matrix,
only the three entries C(i - l,j - 1), C(i - I,j), and C(i,j - 1) are involved in the
computation of the final value of C(i,j). As was observed in [14], such interdependencies
among the entries of the C-matrix induce an (Ixl + I) x (lyl + I) grid directed acyclic
graph (grid DAG for short) associated with the string editing problem.

DEFINITION 1. An II x /2 grid DAG is a directed acyclic graph whose vertices are
the 1112 points of an II x 12 grid, and such that the only edges from grid point (i,j) are
to grid points (i,j + I), (i + I,j), and (i + I,j + I).

Figure 1 shows an example of a grid DAG and also illustrates our convention of
drawing the points such that point (i,j) is at the ith row from the top and jth column
from the left. Note that the top-left point is (0,0) and has no edge entering it ( i.e., is
a source), and that the bottom-right point is (m,n) and has no edge leaving it (i.e. is
a sink).

We now review the correspondence between edit scripts and grid graphs that was
observed in [14J. We associate an (Ixl + I) x (Iyl + I) grid DAG G with the string
editing problem in the natural way: the (Ixl +1)(lyl + 1) vertices of G are in one-to-one
correspondence with the (Ixl + 1)(lyl + I) entries of the C-matrix, and the cost of an
edge from vertex (k, I) to vertex (i,j) is equal to I(Yj) if k = i and I = j -I, to D(x;) if
k = i -1 and I = j, to S(Xi, Yi) if k = i-I and l = j -1. We can restrict our attention
to edit scripts which are not wasteful in the sense that they do no obviously inefficient
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FIG. 1. Example of a 5 x 10 grid DAG.

moves such as: inserting then deleting the same symbol, or changing a symbol into a
new symbol which they then delete, etc. More formally, the only edit scripts considered
are those that apply at most one edit operation to a given symbol occurrence. Such
edit scripts that transform x into y or vice versa are in one-to-one correspondence to
the weighted paths in G that originate at the source (which corresponds to C(O,O))
and end on the sink (which corresponds to C(lxl, Iy!)). Thus, in order to establish the
complexity bounds claimed in this paper, we need only establish them for the problem
of finding a shortest ( i.e' l least-cost) source-to-sink path in an m x n grid DAG G.

Throughout, the left boundary of G is the set of points in its leftmost column. The
right, top, and bottom boundaries are analogously defined. The boundary of G is the
union of its left, right , top, and bottom boundaries.

The rest of the paper is organized as follows. Section 2 gives a preliminary CREW 
PRAM algorithm for computing the length of a shortest source-to-sink path, assuming
m = n. Section 3 gives an algorithm that uses a factor of log m fewer processors than
the previous one and that will be needed later in our best CREW algorithm (given in
§6). Section 4 sketches how to extend the previous algorithm to the case m ::s n. Section
5 considers computing the path itself rather than just its length. Section 6 gives our
bf'.st CREW-PRAM algorithm, which is the main technical result of this paper. Section
7 gives the CRCW-PRAM algorithm. Section 8 concludes the paper.

2. A preliminary algorithm. Throughout this section, m = n, i.e., G is an
m x m grid DAG. Let DISTG be a (2m) x (2m) matrix containing the lengtbs of all
shortpst paths that begin at the top or left boundary of G, and end at the right or bottom
boundary of G. In thjs section we establish that the matrix DISTa can be computed in
O(log3 m) time, O(m') space, and with O(m'jlogm) processors by a CREW-PRAM.
The preliminary algorithm that achieves this is intended as a "warm-up" for the better
algorithms that follow in later sections. The preliminary algorithm works as follows:
divide the m x m grid into four (m/2) x (m/2) grids A,B,C,D, as shown in Fig. 2. In
parallel, recursively solve the problem for each of the four grids A,B,C,D, obtaining
the four distance matrices DISTA , DISTB , DISTe , DISTD . Then obtain from these
four matrices the desired matrix DISTa. The main problem we face, and the main
cont.ribution of this paper, is how to perform the "conquer" step efficiently, in parallel.

The performance bounds we claimed for this preliminary algorithm would imme
diately follow if we can show that (i) DISTa can be obtained from DISTA , DISTB ,
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A C

B 0

FIG. 2. Ilfustrat1ng how the problem is partitioned.

DISTc • DISTD in parallel in time O«(q + log m) log m) and with O(m' /q) processors,
where q ::; m is an integer of our choice, and (ii) the whole problem can be solved
sequentially in O(m2 1ogm) time. This is because the time and processor complexities
of the overall algorithm would then obey the following recurrences:

T(m) S T(m/2) + c, (q + logm) log m,

P(m) S max(4P(m/2),c,m'/q),

with boundary conditions T(Vii) = C3Q log q and P(..fij) = 1, where el, &.! I C3 are con
stants. The solutions are T(m) ~ O«(q+log m) log' m) and P(m) ~ oem' /q). Choosing
q = log m would then establish the desired result.

A sequential O(m2 1og m) time bound follows from the parallel algorithm we give
in §3: it does that much work and hence also translates into a sequential algorithm
with this time bound (there is no circularity in the logic: Section 3 is self-contained).
Therefore in the rest of this section, we merely concern ourselves with establishing (i),
that is, showing that DISTG can be obtained from DISTA, DIST8l DISTe , DISTv
in time O(q+logm)logm) and with O(m'/q) processors.

Let DI8TAuB be the (3m/2) X (3m/2) matrix containing the lengths of shortest
paths that begin on the top or left boundary of A U B and end on its right or bottom
boundary. Let D1STeuv be analogously defined for CU D. The procedure for obtaining
DISTG performs the following steps 1-3:

1) Use DISTA and DI8TB to obtain DISTAuB .

2) Use DISTc and DI8TD to obtain DI8TcuD .

3) Use DISTAuB and DISTcuD to obtain DISTa.
We only show how step 1 is done, since the procedures for steps 2 and 3 are very

similar. First, note that the entries of DISTAuB that correspond to shortest paths that
begin and end on the boundary of A ( respectively, B) are already available in DISTA

(respectively, DISTB), and can therefore be obtained in O(q) time. Therefore we need
only worry about the entries of DISTAuB that correspond to paths that begin on the
top or left boundary of A and end on the right or bottom boundary of B. Assign to
every point v on the top or left boundary of A a group of m/q processors. The task
of the group of m/q processors assigned to v is to compute the lengths of all shortest
paths that begin at v and end on the right or bottom boundary of B. It suffices to
show that it can indeed do this in time O((q +log m) log m). Observe that:
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(1)

FIG. 3. Illustrating the procedure jor computing the Junction ().

DISTAuB(v,w) = min{DistA(v,p) +DistB(p,W) I

p lies on the boundary common to A and B.

Using (1) to compute DISTAUB(V,W) for a given v,w pair is trivial to do in time
O(q+log(m/q)) by using O(m/q) processors for each such pair, but that would require
a.n unacceptable O(m3 /q) processors. We have only m/q processors assigned to v for
computing DISTAuB(v,w) for allw on the bottom or right boundary of B. These m/q
processors are enough for doing the job in time O«q+log(m/q)) logm). The procedure
is given below.

DEFINITION 2. Let v be any point on the left or top boundary of A, and let w
be any point on the bottom or right boundary of B. Let O(v,w) denote the leftmostp
which minimizes the right-hand-side of (1). Equivalently, O(v, w) is the leftmost point
of the common boundary of A and B such that a shortest v-to-w path goes through it.

Define a linear ordering <B on the m points at the bottom and right boundaries of
B, such that they are encountered in increasing order of <B by a walk that starts at the
leftmost point of the lower boundary of B and ends at the top of the right boundary
of B. Let LB be the list of m points on the lower and right boundaries of B, sorted by
incrf'..asing order according to the <8 relationship. For any Wl , W2 E LB , we have the
following:

(2) If W, <B w, then O(v,wrJ is not to the right of O(v,w,).

A similar property was proved in [11], and in fact Aggarwal and Park [3] have traced
this simple observation back to G. Monge, in 1781. It helps the comprehension of this
paper to review the proof of property (2). But before doing so, we sketch how property
(2) is used to obtain an O(q + log(m/q))log m) time and O(m/q) processor algorithm
for computing DISTAuB(V,W) for all w E LB. We henceforth use O(w) as a shorthand
for O(v,w), with v being understood. It suffices to compute O(w) for all wE LB' The
procedure for doing this is recursive, and takes as input:
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FIG. 4. Illustrating the proof of properly (2).

• A particular range of r contiguous values in LBI say a range that begins at
point a and ends at point c, a <B C,

• The points O(a) and O(c),
• A number of processors equal to max{!, (p + r)jq) where p is the number of

points between D(a) and D(c) on the boundary common to A and B. (See Fig.
3.)

The procedure returns 0(1.0) for every a <B 1.0 <B c. If r = 1 then there is only one
such 1.0 and there are enough processors to compute 0(1.0) in time O(q+log(pjq». !fl' > 1
then all of the maxi!, (p+r)j q) processors get assigned to the median of the a-to-c range
and compute, for that median (call it point b), the value 0(6) in time O(q + log(p(q)).
Because of (2), it is now enough for the procedure to recursively call itself on the a-to-b
range and (in parallel) the lJ..to-c range. The first (respectively, second) of these recursive
calls gets assigned max{I, (PI + T(2)(q) (respectively, max{l, (P2 + T(2)(q}) processors,
where PI (respectively, P2) is the number of points between 8(a) and 8(b) (respectively,
between 8(b) and 8(e)). Because PI +P2 = P, there are enough processors available for
the two recursive calls. (See Fig. 3.) In the initial call to the procedure, it is given (i)
the whole list LB , (ii) the 8 of the first and last point of L B , and (iii) 3m/2q processors.
The depth of the recursion is log m, at each level of which the time taken is no more
than O(q+log(m(q)). Therefore the procedure takes time O«(q+log(m(q)) logm) with
O(m/q) procesRors. We conclude that the preliminary solution follows from (2).

We now review the proof of property (2). It is by contradiction: Suppose that,
for some WllW2 E LB , we have WI <B W2 and 8(wd is to the right of 8(W2)' as shown
in Fig. 4. By definition of the function 8 there is a shortest path from v to WI going
through O(w,) (call this path a), and one from v to W2 going through O(W2) (call it {3).
Since WI <B W2 and 8(wd is to the right of O(W2), the two paths nand (3 must cross
at least once somewhere in B: let z be such an intersection point. See Fig. 4. Let
prejix(n) (respectively, prefix({3)) be the portion of n (respectively, 13) that goes from
v to z. We obtain a contradiction in each of two possible cases:

Case 1. The length of prefix(a) differs from that of prefix({3). Without loss of
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generality, assume it is the length of prefix(fJ) that is the smaller of the two. But then,
the v-tO-Wl path obtained from a by replacing prejix(a) by prefix(fJ) is shorter than
0, a contradiction.

Case 2. The length of prefix(a) is same as that of prejix(fJ). In 0', replacing
pl'ejix(a) by prejix(fJ) yields another shortest path between v and Wll one that crosses
the boundary common to A and B at a point to the left of O(Wl), contradicting the
definition of the fundion O.

This completes the review of the proof of (2).

3. Using fewer processors. This sedion gives an algorithm that has the same
time complexity as that of the previous section, but whose processor complexity is
a fador of log m better. This is more than a mere "warm-up" for our best CREW
algorithm of §6: the algorithm of §6 will actually use the technical result, given in this
section, that DISTAUB can be obtained from DISTA and DISTB with O(m2 ) total
work.

We establish the following lemma.
LEMMA 1. Let G be an m X m grid DAG. Let DISTG be a (2m) x (2m) mat•.;,;

containing the lengths of all shortest paths that begin at the top or left boundary of G
J

and end at the right or bottom bounda7'Y of G. The matrix DISTa can be computed in
O(log'm) time, O(m') space, and with O(m'j log'm) processors by a CREW-PRAM.

We prove the above lemma by giving an algorithm whose processor complexity is a
log m factor better than that of the preliminary solution of §2. We illustrate the method
by showing how DISTAUB can be obtained from DISTA and DISTB in O(log2 m ) time
and O(m2

/ log2 m) processors. The preliminary procedure for computing DI STAUB can
h~ seen to do a total amount of work which is O(m210g m). Our strategy will be to first
give a procedure which has same time and processor complexities as the preliminary
OIle, but which does a total amount of work which is only O(m2 ). Our claimed bounds
for the computation of DISTAUB from DISTA and DISTB will then follow from this
improved procedure and from Brent's theorem [8] as follows.

THEOREM 1 (BRENT). Any synchronous parallel algorithm taking time T that
consists of a total of W operations can be simulated by P processors in time O((W/ P) +
T).

Proof See [8] for the proof. 0
There are actually two qualifications to Brent's theorem before we can apply it to

a PRAM: (i) at the beginning of the ith parallel step, we must be able to compute the
amount of work Wi done by that step, in time O(WdP) and with P processors, and (ii)
we must know how to assign each processor to its task. Both (i) and (ii) will trivially
hold in our framework.

Let LA and <A be defined analogously to LB and <B, respectively. In other words,
LA is a list of the m points on the left and top boundaries of A, sorted in the order
in which they are encountered by a walk that starts at the lowest point of the left
boundary of A and ends at the rightmost point of the top boundary of A (i.e., sorted by
increasing order according to the <A relationship). A symmetric version of (2) holds,

8



i.e., for any w E La and any two points VI and V2 of LA, we have the following:

(3)

The proof of (3) is identical to that of (2) and is therefore omitted.
Let P be the m X (m/2) submatrix of DISTA containing the lengths of the shortest

paths that begin at the top or left boundary of A, and end at its bottom boundary. Let
Q be the (m/2) x m submatrix of DISTB containing the lengths of the shortest paths
that begin at the top boundary of B, and end at its bottom or right boundary. By
definition, the rows of P are indexed by the entries of LA, the columns of Q are indexed
by the entries of L B , and the columns of P (hence the rows of Q) are indexed by the
m/2 points at the common boundary of A and B, sorted from left to right. The problem
we face is that of "multiplying" the m x (m/2) matrix P and the (m/2) x m matrix Q
in the closed semiring (min, +). In matrix terminology, 9(v, w) is the smallest index k,
1 ~ k ~ m/2, such that PQ(v,w) = P(v,k) + Q(k,w). We give the procedure helow
for the (more general) case where P is an I! x h matrix, and Q is an h x ematrix, e:s 2h.
The only structure of these matrices that our algorithm uses is the following property
(4), which is merely a restatement of properties (2) and (3) using matrix terminology:

(4) V(l ~Vt <v, ~e,l ~w ~e), O(v,"w) ~O(v"w), and O(W,Vl) ~O(w,v,).

To compute the product of P and Q in the closed semiring (min, +), it suffices to
compute 9(v, w) for aliI :5 v, w 51!. To compute the product PQ (i.e., the function 9),
we use the following procedure which runs in O(log Clog h) time, o(f.h/ log h) processors,
and O(lh) total work:

1) Recursively solve the problem for the product P'Q' where pi (respectively,
Q') is the (l/2) x h (respectively, h x (l/2)) matrix consisting of the odd
rows (respectively, odd columns) of P (respectively, Q). This gives 9(v,w)
for all pairs (v,w) whose respective parities are (odd,odd). If Work(I!,h) and
T(f., h) denote the total work and time for this procedure, then this step does
Work(l/2,h) work in T(l/2,h) time.

2) Compute O(v,w) for all pairs (v,w) of parities (even,odd). This is done as
follows. In parallel for each odd w, assign h/ log h processors to w, with the
task of computing O(v, w) for all even v. The fact that we already know 9(v, w)
for all odd V, together with property (4), implies that these h/ log h processors
are enough to do the job in O(logh) time. The work done is then O(h) for
each such w, for a total of O(l!h) work for this step.

3) Compute O(v,w) for all pairs (v,w) of parities (odd,even). The method used
is identical to that of the previous step and is therefore omitted.

4) Compute 9(v, w) for all pairs (v, w) of parities (even,even). The method is very
similar to that of the previous two steps and is therefore omitted.

The time, processor, and work complexities of the above method satisfy the recurrences:

T(l,h) ~ T(l/2,h) + Ct1ogh,

9



G

FIG. 5. Illustrating Lemma 2.

p(e, h) 0; max{p(ej2, h),ehj log h},

Work(e,h) 0; Work(ej2,h) + c,eh,

where Cl and C2 are constants. These recurrences imply that T(f, h) = o(log €log h),
p(e,h) ~ O(ehjlogh), and Work(l,h) ~ O(eh). This, together with Theorem 1
(Brent's theorem) in which T = log elog h, P = f.h/q, and W = fh, implies that the
above algorithm can be simulated by RhJq processors in O(q + log flog h) time. In our
case, we have I! = m and h = m/2, implying that PQ (and hence DISTAuB ) can be
obtained from P and Q in O(q + log'm) time with O(m'jq) processors.

The above method enables us to obtain DISTa from DISTAl DISTa, DISTe,
DISTD in O(q + log2 m) time and O(m2 /q) processors. This implies that the overall
divide-and-conquer algorithm runs in O«q + log2 m) lagm) time with O(m2 jq) proces
sors. Choosing q = log2 m establishes Lemma l.

4. The case m .$ n. This section generalizes the algorithm for the case m ::; n.
The main result is the following.

THEOREM 2. Let G be an m X n grid DAG 1 m ::; n. The length of a shortest
source-lo-sink path in G can be computed by a CREW-PRAM in O(lognlog2 m) time,
O(mn) space, and with O(mnflog2 m) processors.

Note that, if G is m x n with m ::; n, then using the same idea as in §3 would result
in an unacceptable (m+n)(m+n)/ log2(m+n) processor complexity, the DISTa matrix
we are computing now being (m +n) x (m + n). In order to prove our claimed bounds,
we shall abandon the goal of computing such a matrix DISTa and settle for computing
a Da matrix that contains less information than DISTa, but enough to obtain the
desired quantity: the length of a shortest source-to-sink path in G.

DEFINITION 3. For any m x n grid DAG G, m ::; n, let Da be the m X m matrix
containing the lengths of all the shortest paths that begin at the left boundary of G,
and end at the right boundary of G.

Note that Da is a submatrix of DISTG .

The following lemma is another ingredient that we need.
LEMMA 2. Let G be an m x m' grid DAG that is partitioned by a veriicalline into

G1 and G2. (See Fig. 5.) Then, given DG
1

and DG~, the matrix DG can be computed by
a CREW-PRAM in O(log' m) time, O(m') space, and with O(m' j log' m) processors.

Proof The algorithm proving the above lemma is similar to the procedure we used
in Section 3 to obtain DISTAuB from DISTA and DISTE, and is omitted. 0
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FIG. 6. Illustrating the partitioning o/G.

We are now ready to prove Theorem 2.
Proof of Theorem 2. Without loss of generality, assume that m divides n (if

not then G can always be "paddedll with extra vertices and zero-cost edges so as to
make it m x n' where m divides n' and n' - n ::::; m). Partition G by vertical lines
into n/m grid DAGs GI ,'" ,Gn / m , where each Gi is m x m (see Fig. 6). In parallel
for each i E {I", ·,n/m}, use Lemma I to obtain the DISTG, matrices. This takes
O(log'm) time with a total of O((m'flog'm)(n/m)) = O(mn/log'm) processors.
From each DISTG; matrix, extract its submatrix DG;. We are now left with the task of
combining the DG; 's into a single DG . In parallel, we recursively obtain the D-matrix
of the union of the Jeftmost n/2m G;'s, and similarly the D-matrix of the union of
the rightmost n/2m Gi's, We then combine these two D matrices into DG by using
Lemma 2. This recursive combining procedure takes a total of O(log2 mlog(n/m)) time
with O(mn/ log2 m) processors. The overall time compJexity is therefore o(log3 m +
log'mlog(n/m)) = O(lognlog'm). 0

In view of the remarks made in §1, the following is an immediate consequence of
the above theorem.

COROLLARY 1. Let x and y be two strings over an alphabet I, Letm = min(lxl, Iyl),
11. = max(lxl, Iyl). For edit operations of arbitrary nonnegative costs, the edit distance
fl'Om x to y can be computed by a CREW-PRAM in O(log nlog2m) time, O(mn) space,
and with O(mn/ log2 m) processors.

5. Computing the actual path. In this section we sketch a modification of the
algorithm given in the previous sections which enables us to compute an actual shortest
source-to-sink path in G within the same time, space, and processor bounds as in the
length computation.

THEOREM 3. Let G be an m x n grid DAG) m $ n. A shortest source-to-sink path
in G can be computed by a CREW-PRAM in O(lognlog2 m) time, O(mn) space) and
with O(mn/ log2 m) processors.

The rest of this section proves the above theorem.
We begin with the case m = n, i.e., an m x m grid DAG. We cannot afford to

let the matrix DISTa of §3 be a matrix of paths instead of lengths, because that
would take m3 space, killing any hope of a polylog time algorithm that does not use
an almost cubic number of processors. Instead, we modify the algorithm of §3 so
that it also has the "side effect" of computing two (2m) x (2m) matrices HCUTG and
VCUTG (mnemonics for "horizontal cut" and "vertical cut," respectively) having the
same index domain as DISTa _ These two matrices are global in the sense that they
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FlO. 7. Illustrating the computation afthe actual path.

remain even after the recursive call returns, and their significance is as follows. Let
H be the horizontal boundary between AU C and BUD, and let V be the vertical
boundary between AU Band CUD (see Fig. 7). Let PATH(x,y) be tbe lowest
x·to-y path of cost DISTG(xly); i.e., no other x-to-y path of length DISTa(x,y) goes
through any vertex that is below a vertex of PATH(x, y). It is easy to prove that there
is a unique such path PATH(x, y) (the proof is straightforward and is omitted). Then
HCUTa(x,y) is tbe leftmost intersection of PATH(x,y) with H, and VCUTa(x,y)
is the lowest intersection of PATH(x,y) with V. If the intersection of PATH(x,y)
with H (respectively, V) is empty, then HCUTa(x,y) (respectively, VCUTa(x,y)) is
undefined. Because these additional matrices are global, after the algorithm terminates
it leaves behind N(m) of them where

N(m) = 4N(m/2) +2 = O(m').

Fortunately, even though there are O(m2) such HCUT and VCUT matrices that re
main, the total storage space they take is S(m) where

S(m) = 4S(m/2) + em' = O(m'log m).

Before showing how S(m) is decreased to O(m2
), we show how the matrices HCUT

and VCUT are used to retrieve the shortest source-to-sink path in G. It suffices to
output the points on this path as a set (i.e., in arbitrary order), since a postprocessing
sorting step puts them in the right order in O(log m) time and O(m) processors [9]. Let
sand t denote the source and sink of G, respectively. We first print HCUTG(s, t) and
VCUTG(s, t), and then we recursively print the three portions of the shortest s-to-t path
determined by its two intersections with H and V (this involves three (m/2) x (m/2)
grid DAGs; see Fig. 7). The procedure can be implemented to run in O(h + logm)
time and 2m/h processors, where h ::; m is an integer of our choice, by maintaining
the property that each recursive call of size m' 2: h gets assigned 2m'/ It processors (the
bottom of the recursion is when problem size m' becomes :5 h, at which time a single
processor finishes the job sequentially, in O(m') time). (We would, of course, choose
h = logm.)
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We bring the space complexity S(m) down by storing each row (say, row p) of
the HCUT (or VCUT) matrix in an O(m)-bit vector ROW(p) that is "packed" in
O(m/logm) registers of size logm bits each. (The assumption that word size is a
logarithmic function of problem size is a standard one [5].) Let us inunediately point
out that a consequence of this encoding scheme is that we now have S(m) = O(m2).

To see this, let BITS(m) be the total number of bits used by the encoding scheme, and
note that S(m) = O(BITS(m)jlogm), since each register contains logm bits. Thus it
suffices to show that BITS(m) = 0(m2 10gm). But this trivially follows from the fact
that BITS(m) = 4BITS(mj2) +O(m').

We now describe the encoding scheme used for storing row p of (e.g.) HCUT in
the O(m)-bit vector ROW(p). We exploit the fact that the contents of row p happen
to be sorted by the left-to-right linear ordedng of the points on H. More precisely,
if the points of H are denoted by 1,·· ·,m in left-to-right order, then row p contains
a nondecreasing sequence of O(m) integers between 1 and m. Instead of storing the
entries of row P, we therefore store the sequence of differences between the consecutive
entrie..5 of row p. This sequence of differences is stored in unary in the O(m)~bit vector
ROW(p), with as many consecutive l's as needed to encode a particular difference, and
using a 0 as a separator between consecutive nonzero entries. For example, if row p

contains the sequence (3,3,5,7,9,11) then the sequence of differences is (3,0,2,2,2,2)
and ROW(P) = (11100110110110110). We can actually obtain ROW(p) without going
through the intermediate step of computing the sequence of differences: simply observe
that if the ith entry of row p is k then the (i + k)th entry of ROW(P) is a 0 (in our
example, the fourth entry is 7 and hence the eleventh entry of ROW(p) is a 0). This
observation implies that we can obtain ROW(p) in O(q + logm) time with O(m/q)
processors by first initializing all the entries of ROW(p) to I, and then changing some
of these into O's according to the observation. Reading the kth entry of row p is now done
by computing the sum of all the entries of ROW(p) that precede its kth leftmost zero;
i.e. it requires a parallel prefix computation [15] on ROW(p) and hence O(logm) time,
so that extracting the s-to-t path now takes o (log2 m) time rather than the previous
O(logm). This fact is of no consequence, however, since the bottleneck in the time
cOll1pl~xity comes from the computation of the DISTG matrix.

This completes the proof of Theorem 3 for the case m = n.
It. is not hard to see that, so long as m = n, the above procedure actually works

when sand t are arbitrary points on the boundary of G. This observation implies
that, for the case m::; n , it suffices to find for every i E {I", ·,(n/m) -I} the lowest
point (call it CROSS(i» at which a shortest path from s to t crosses the boundary
between Gj and Gi+I. Once we have these CROSS(i)'s, we can use the procedure of the
previous paragraph to obtain the actual path joining each CROSS(i) to CROSS(i + 1)
in time O(log3 m), space O(m'nlm) = O(mn), and with O((m'jlog'm)(nlm)) =
0(111.11./ log2 m) processors. We obtain the CROSS(i)'s as follows. Refer to §4, the
proof of Theorem 2: We modify that procedure so that, as the procedure computes
the D-matrix, it now also produces as a side effect a global m x m matrix CUTG .

The significance of this matrix is that CUTG(x,y) is the lowest point of intersection
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of any shortest x-to-y path with the boundary separating the two recursive calls. The
total number of such CUT matrices is O(nlm), and their total storage is O(mn).
We use these CUT matrices to output the CROSS(i)'s as a set (i.e., unordered) by
first printing CUTG(s,t), and then recursively printing the CROSS(i)'s that are to
the left of CUTG(s, t), and simultaneously (i.e., in parallel) those to its right. It is
easily seen that the GROSS(i)'s are produced in time O(log(n/m)), and that there are
enough processors to carry out the procedure. A post-processing sorting step orders
the GROSS(i)'s. This completes the proof of Theorem 3. 0

An immediate consequence of Theorem 3 is the following.
COROLLARY 2, Letx andy be two strings over an alphabet I. Letm = min(lxl, Iy!),

n = max(lx[,lyl). For edit operations of arbitrary nonnegative costs) an optimal edit
script from x to y can be computed by a CREW-PRAM in O(1ogn log2 m) time, O(mn)
space, and with O(mnl log2 m) processors.

6. A faster CREW-PRAM algorithm. This section gives a CREW algorithm
that is faster by a logm factor and uses O(mn/logm) processors. More precisely, we
establish the following.

THEOREM 4. Let G be an m X n grid DAG, m ::; n. A shortest sou7'ce-to-sink path
in G can be computed by a CREW-PRAM in O(lognlogm) time, O(mn) space, and
wifh O(mnl log m) processors.

COROLLARY 3. Let x andy be two strings over an alphabet I. Letm = min(lxl, Iyl))
n = max(lx[, Iyl). For edit operations of arbitrary nonnegative costs, an optimal edit
script from x to y can be computed by a CREW-PRAM in O(logn log m) time, O(mn)
space) and with O(mnl logm) processors,

From the developments of §§2-5, it should be clear that in order to establish the
above theorem, it suffices to show that:

1) The matrix DISTAuB can he ohtained from DISTA and DISTB in O(1ogm)
time, O(m2

) space, and with O(m2I log m) processors, and
2) The matrix DG can be obtained from DG1 and DG2 (see Definition 3 and Figure

.5) in O(logm) time, O(m') space, and with O(m'/logm) processors.
Since the proofs of 1) and 2) are very similar, we only give that for 1). Thus the

rest of this section deals with how to obtain DISTAUB from DISTA and DISTB in
O(logm) time, O(m') space, and with O(m'/logm) processors.

6.1. Obtaining one row of DISTAuB • This section gives an O(logm) time,
O(mlogm) space, and O(mlogm) processor algorithm for obtaining one particular
row of DISTAuB, i.e., computing O(v,w) for a fixed v E LA and all w E LB. The fixed
vertex v is implicit in the rest of this section, so that whenever we refer to a "path to w"
it is understood that this path originates at v. To simplify the exposition, we assume
that m is a power of 2 (the procedure can easily be modified for the general case).

We refer to the vertices on the boundary common to A and B (denoted A n B
for short) as crossing vertices and number them CI,C2," ',Cm/2, where the numbering
is from left to right along the common boundary. We refer to the vertices in LB as
destination vertices and denote them WI, W2, "', Wm , numbered according to <B,
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their order in LB.
DEFINITION 4. A crossing interval is a nonempty set of contiguous crossing vertices

{Cj,Ci+h
... ,Cj}.

We say that crossing interval I is to the left of crossing interval J I and J is to the
right of I, if the rightmost vertex of I is to the left of the leftmost vertex of J.

DEFINITION 5. Let F ~ AnB and wE LEI i.e. F is a set of crossing vertices (not
necessarily an interval) and w is a destination vertex. Let Op(w) denote the leftmost
crossing vertex in F incident to a (v,w) path that is shortest among all (v,w) paths
constrained to pass through F. (If there is no such (v,w) path, then this is denoted by
Op(w) = 0.)

Note that OF(W) may differ from O(v,w), but that OAnB(W) = O(v,w).
The following lemma is the analogue, for constrained paths, to property (2) of §2.
LEMMA 3. LetF~ AnB andwt,w2 E LB. Ifwl <B W2/ thenOF(wd is not to

the '·;9ht O!OF(W,).
Froof The proof is identical to that of property (2). 0
We now give an informal description of the algorithm.
If U is any set of destination vertices and I is any crossing interval, then we will

define O/(U) to be a data structure that contains enough information to determine 0/(w)
for all w E U. The details of that data structure will be explained later.

H is useful to think of the computation as progressing through the nodes of a tree
T which we now proceed to define.

We define a crossing interval to be diadic if it is either An B (i.e., it consists of all
crossing vertices), or if it is the the left or right half of a diadic crossing interval. Note
that there are exactly m -1 diadic crossing intervals, which form a complete binary tree
T rooted at AnB, and whose m/2leaves are the m/2 crossing vertices (the ith leaf of T
containing Gi, the ith leftmost crossing vertex). Thus the diadic crossing interval at an
interior node of T is simply the union of the diadic crossing intervals of its two children
in T. We can talk about the height and the children of a diadic crossing interval (= its
height and cbildren in T).

Since the m - 1 diadic crossing intervals are the only crossing intervals we shall
be interested in, from now on we simply say "interval" as a shorthand for "diadic
crossing interval." Thus whenever we refer to an interval I we are implicitly assuming
that lET, i.e., that I is one of the m - 1 diadic crossing intervals. We use III to
denote the size of the interval, i.e., the number of crossing vertices in it. Observe
that L,/ET III = O(mlogm). Thus we have enough processors to associate III of them
with each interval I (i.e., node 1) of T. Similarly, we can afford to use 0(111) space per
interval I. The computation proceeds in 2 log m-l stages, each of which takes constant
time. The ultimate goal is for every interval I to compute 01(LB). The structure of
the algorithm is reminescent of the cascading divide-and-conque7· technique [9],[7]: each
lET will compute lh(U) for progressively larger subsets U of LB , subsets U that
double in size from one stage to the next of the computation. We now proceed to state
precisely what these subsets are.
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DEFINITION 6. A k-sample of LB is obtained by choosing every kth element of LB

(i.e., every element whose rank in L B is a multiple of k). For example, a 4-sample of
L B is (W4,W8,···,Wm ). For k E {O,l,···,logm}, let Uk denote an (m/2k )-sample of
LB·

For example:
Uo = {wm },

Ut = {Wm /2'Wm },

U2 = {Wm /4,Wm /2,W3m/4,Wm },

U3 = {Wm /8' W m /4, W3m/8, W m /2, wSm /8, w3m/4, W1m/8, wm },

Ulogm = {Wl,W2,"',Wm } = LB·
Note that IUd = 2' = 2IU,-d.
At the tth stage of the algorithm, an interval I of height h in T will use its III

proceRsors to compute, in constant time, lh(Ut_ h ) if h ::; t ::; h + logm. It does so with
the help of information from 0I(Ut _ 1_ h ), OLeHChild(I)(Ut - h ), and ORighlChild(l)(Ut - h), all of
which are available from the previous stage t -1. If h > t or t > h + log m then interval
I does nothing during stage t. Thus before stage h the interval I lies "dormant," then
at stage t = h it first "wakes up" and computes OI(UO)' then at the next stage t = 11. +1
it computes OI(Ud, etc. At step t = h + logm it computes OI(U1ogm ), after which it
is done. The details of what information I stores and how it uses its III processors to
perform stage t in constant time are given below. First, we observe the following.

LEMMA 4. The algorithm terminates after 2 log m - 1 stages.
Proof After stage h+logm every interval I of height h is done, i.e., it has computed

O/(LB ). The root interval has height logm -1 and thus is done after stage 2log m - 1.
o

Thus to establish the main claim of this section, it suffices to prove the following
lemma.

LEMMA 5. With III processors and O(III) space assigned to each interval lET,
every stage of the algorithm can be completed in constant time.

The rest of this section proves the above lemma.
We begin by describing the way in which an interval I at height h in T stores

O'(U'-h) using only III space. Rather than directly storing the values O,(w) for all
tv E U/_ h (which would require IUt-hl space), we store instead the inverse mapping,
which turns out to have a compact 0(111) space encoding because of the monotonicity
property guaranteed by Lemma 3. In other words, for each eEl, let

",(c, t) = {w E U'_h!O,(W) = cJ.

Then Lemma 3 implies that the elements of 'n"I{c, t) are contiguous in the list Ut_h. More
specificaUy, the sets 1r/(c, t), c E I, form a partition of the set Ul_h into III subsets each
of which is either empty or contains contiguous elements in Ut-h. Therefore I does not
need to store the elements of 1r/(c,t) explicitly, but rather by just remembering where
they begin and end in Ut_ h , i.e., 0(1) space for each eEl. Of course Ut_ h is itself not
stored explicitly by I, since the height h and stage number t implicitly determine it.
Thus O(III) space is enough for storing ",(c,t) for all eEl.
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Interval I stores the sets 1lAc, t), c E I, in an array RANGEf , with entries
RANGEf(c) = (w;,wj) such that Wi (respectively, Wj) is the first (respectively, last)
element of U'_h that belongs to ",(e,t). If ",(e,t) is empty then RANGE{(e) equals 0.
At stage t of the algorithm, I must update the RANGE] array so that it changes from
being a description of the 11'[(C, t - 1) 's to being a description of the 1l'1 (c, t) 's. The rest
of this section needs only to show how such an update is done in constant time by the
III processors assigned to I. Of course, since we are ultimately interested in OAnB(W)
for every W E L Bl at the end of the algorithm we must run a postprocessing procedure
which recovers this information from the RANGEAnB array available at the root of T,
i.e., it explicitly obtains OAnB(W) for all W E U\ogm. But this postprocessing is trivial
to perform in O(log m) time with O(m) processors, and we shall not concern ourselves
with it any more.

In the rest of this section, intervals Land R are the left and (respectively) right
children of I in T. Observe that, for any destination w, OI(w) is one of OL(W) or On(w).
Furthermore, if O[(w) = OL(w) then O[(w/) E L for every Wi smaller than w (in the <B
ordering). Similarly, if O{(w) = OR(W) then O,(w') E R for any w' larger than w. (These
observations follow from Lemma 3.)

The RANGE] array alone is not enough to enable I to perform the updating
required at stage t. In addition, at each stage t, I must compute in a register called
CRITICAL, an entry Gritieal,(t) defined as follows.

DEFINITION 7. At each stage t, let the critical destination for I, denoted Criticah(t),
be the largest w E U'_h such that O,(w) = Odw). If there is no such w (i.e., if
O{(w) = OR(W) for all w E U,_h), then Gritieah(t) = 0.

Note that Lemma 3 ensures that Griticah(t) is well defined. We shall later
show how stodng and maintaining this critical destination enables I to update the
RANGE] array in constant time. Of course it also places on I the burden of updat~

ing its CRITICAL] register so that after stage t jt contains Critical](t) rather than
C7'iticah(t - 1). We shall later show that updating the GRITlCAL] register can be
done in constant time as well.

We now complete this section by explaining how I performs stage t, i.e. how it
obtains Criticah(t) and the 11'](c, t)'s using the 1I'L(c, t - 1) 's, the 1I'R(c, t - 1)'S, and its
previous critical index Critical](t - 1). The fact that the II] processors can do this in
constant time is based on the foHowing three observations:

(5) Critical](t) is either the same as Gritical](t -1), or the successor
of Griticah(t - 1) in Ut _ h .

(6) If eEL then ",(e, t) = "dc, t - 1) - (the elements of "dc, t - I)
that are larger than Criticah(t) in the <B ordering}.
(7) If e E R then ",(c,t) = "R(e,t -1) - {the elements of "R(e,t -I)
that are less than or equal to Griticah(t) in the <B ordering}.

Correctness of (5)-(7) follows from the definitions. Their algorithmic implications are
discussed next.

Updating the GRITIGAL, register. Relationship (5) implies that in order to
update GRITIGAL{ (i.e., compute Gritieah(t) all I has to do is determine which of
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Criticah(t -1) or its successor in Ut _ h is the correct value of Criticah(t). This is done
as follows. If Critica1[(t - 1) has no successor in Ut_h then Criticah(t -1) =- W m and
hence Critical](t) = Critica1[(t - 1). Otherwise the updating is done in the following
two steps. For shorthand, let r denote Critica1[(t -1), and let s denote the successor
of r in VI_h'

• The first step is to compute O£(s) and On(s) in constant time. This involves a
search in L (respectively, R) for the crossover c in L (respectively, R) whose
rrL(c, t - 1) (respectively, 7rn(c, t - 1» contains s. These two searches in Land
R are done in constant time with the III processors available. We explain how
the search in L is done (that in R js similar and omitted). I assigns a processor
to each c E L, and that processor tests whether s is in 71"£(c, t - 1) i the answer
is "yes" for exactly one of those IL I processors and thus can be collected in
constant time. Thus I can determine lh(s) and On(s) in constant time.

• The next step consists of comparing which of the following two paths to s is
better: the one througb Ods), or tbe one tbrough OR(S). If tbe path tbrough
OR(S) is the better of tbe two tben Criticalj(t) is tbe same,", C,-iticah(t-l) and
the CRITICAL] register stays the same (containing r). Otherwise Criticah(t)
is s, and we set CRITICALI equal to s. This comparison of the two paths
and resulting update are done in constant time (by one processor, in fact).

We next show how the just computed Criticall(t) value is used to compute the
llAc, i.) 's in constant time.

Updating the RANGEl array. Relationship (6) implies the following for each
c E L:

1) If ~dc,t -1) is to the left of Criticalj(t) then ~j(c,t) = ~dc,t -1).
2) If 1fdc,t -1) is to tbe rigbt of Criticah(t) tben ~j(c,t) = 0.
3) If 7rL(c, t -1) contains Criticah(t) then it consists of the portion of 1l'L(c, t -1)

up to (and including) Criticalj(t).
The above facts 1)-3) immediately imply tbat 0(1) time is enough for ILl of the III
prOCP.'~flors assigned to I to compute 1l'1(C,t) for all c E L, by adjusting the RANGEI(c)
va.lue according to rules 1)-3) above (recall that the 1l'L(c,t -1)'s are available in L
from the previous stage t -I, and C7'iticall(t) has already been computed and is in the
CRITICAL j register).

A similar argument shows that relationship (7) implies that IRj processors are
enough for computing 1l'](c,t) for all c E R. Thus I can update its RANGEL array in
constant time with III processors. This completes the proof of Lemma 5.

The result of this section is easily seen to provide an O(1ogm) time, O(mlogm)
processor CREW~PRAM solution to the problem commonly called [2],[3] "computing
the row maxima of an m x m totally monotone matrix" (we refer the reader to [2] and
[3] for some of the many applications of this problem, for which alinea.r·time sequential
solut.ion is known [2]).

6.2. Obtaining all rows of DISTAuB' This section shows that O(m2jlogm)
proce.<;sors and O(m2 ) space suffice for computing in O(logm) time all the O(v,w)'s
(hence for computing the DISTAuB matrix). Let LA and LB be as in previous sections.
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FIG. 8. Illustrating the second stage o/the computation.

Our task is Lo compute 9(v, w) for all v E LA and all w E LB. We use S(L, k) to denote
the k~sampleof a list L.

In the first stage of the computation, we assign m log m processors to each v E
S(LA ,log2 m). Then, in parallel for all v E S(LA ,log2 m.), we use the method of the
previous section to obtain 9(v,w) for all wE LB' This first stage of the computation
ta.kes O(1ogm) time, O(m2) space, and O(m2jlogm) processors, and obtains 9(v,w)
for all v E S(LA,log'm) and W E LB.

In the second stage of the computation, we assign 2m processors to each w E
S(LB,logm), with the task of computing 9(v,w) for all v E LA. These 2m processors
perform this computation for their particular w in O(1ogm) time, as follows. The set of
m/log2m values {9(v,w) I v E S(LA ,log2 m )} partitions the common boundary of A
and B into m/ log2 m pieces JI, J2 ,'" (see Fig. 8). Let 11 ,12 ,'" be the m/ log2 m pieces
(of size log2 m each) into which S(LA ,log2 m ) partitions LA (see Fig. 8). Partition the
group of 2m processors assigned to w into m/ log2 771. subgroups, where the ith subgroup
contains log2 m +IJd processors whose task is to compute, for all v E I,., which element
of Ji equals 9(v,w). This subgroup of log2 m + IJd processors does this as follows.

1) It gives each of the log m elements of S(Ii, log m) (say, to element v) 1 +
IJi 1/ log m processors that v uses to find out, in O(log m) time, which element of
Ji equals 8(v,w). The set of logm values {O(v,w) Iv E S(Ii,logm)} partitions
J,. into logm pieces J"b Ji ,2,···. Let 1",1,1;,2,'" be the logm pieces (of size
logm pach) into which S(hlogm) partitions I,..

2) It partitions its log2 m+ IJil processors into log m subsubgroups, where the kth
subsllbgroup contains log m + IJi,k Iprocessors whose task is to compute, for all
v E Ii,k> which element of Ji,k equals 9(v, w). This subsubgroup of logm +IJi,kl
processors does this in O(logm) time by giving to each of the logm elements
of Ii,k (say, to element v) 1+ IJ",kl! logm processors that v uses to find out, in
O(logm) time, which element of Ji,k equals O(v, w).

In the third stage of the computation, we assign 2m/JIog m processors to each v E
8(LA,JIOgm), with the task of computing 8(v,w) for all wE LB. These 2rn/..;Iogm
processors perform this computation for their particular v in O(log m) time, as fol-
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lows. The set of m/logm values {O(v,w) I W E S(LB,logm)} partitions the common
boundary of A and B into m/logm pieces Jt,J2 ,···. Let [1,[2,'" be the m/logm
pieces (of size lagm each) into which S(LB,logm) partitions LB' Partition the group
of 2m/ v'Iog m processors assigned to v into m/ lagm subgroups, where the ith subgroup
contains JIog m+ IJil1V10g m processors whose task is to compute, for all 10 E Ii, which
element of Jj equals O(v,w). This subgroup of JIogm + IJd/v'logm processors does
this as follows.

1) It gives each of the VIogm elements of S(Ii,JIogm) (say, to element w) 1 +
IJill lagm processors that w uses to find out, in O(logm) time, which element
of J, equals O(v,w). The set of ,jIogm values {O(v,w) I wE S(I;,,jIogm)}
partitions Jj into Jlogm pieces J i,l,Ji ,2,···. Let Ji,l,li,2,'" be the Jlogm
pieces (of size Jlog m each) into which S(Ii, v'JOgm) partitions h

2) It partitions its Jlogm + ]Jd/v"logm processors into Jlogm subsubgroups.
The kth subsubgroup contains 1 + IJ;,kl/v"logm processors whose task is to
compute, for all w E Ii,k, which element of Ji,k equals O(v, w). This subsubgroup
of 1 + IJi,kl/v"logm processors does this in O(logm) time as follows:
(a) If 1];..1 2: log m, hy giving to each of the ,jIog m elements of I;" (say, to

element w) IJ;,k Iflog m processors that w uses to find out, in O(log m)
time, which element of Ji,k equals O(v,w).

(b) If IJ;,d < logm, by partitioning I;" into I + IJ;,.I/v'logm equal pieces
I i ,k,lJi,k,2,'" (each of size at most logm/IJi,kl) and giving each Ii,k,1 one
processor. This processor sequentially finds O(v,w) for all w E Ii,k,1 in
O(logm) time, since II;",dIJ;,.1 = O(logm).

The fourth stage of the computation "fills in the blanks" by actually computing
O(v,w) for all v E LA and w E LB. It does so with only m 2/logm processors by
exploiting what was computed in the previous stages. Partition LA into m/ V10g m
contiguous blocks Xl, X 2 ,'" of size y'log m each. Similarly, partition LB into m/Jlog m
contiguous blocks Yl, Y2"" of size JIogm each. Let Zij be the interval on the boundary
common to A and B that is defined by the set of O(v,w) such that v E Xi and w E}j.
Of course we already know the beginning and end of each such interval Zii (from the
third stage of the computation). Furthermore, we have the following lemma.

m/Vlogm m/ylogm 2 ~
LEMMA 6. L;=l Lj=l IZ;jl = O(m Iv,ogmJ.
Proof First, observe that Zii and Zi+l.i+I are adjacent intervals that are disjoint

except for one possible common endpoint (the rightmost point in Zij and the leftmost
point in Zi+I.i+l may coincide). This observation implies that for any given integer
8 (0 :'0 181 :'0 m/v'JOgm), we have (it is understood that IZ;j! = 0 if j < I or j >
ml,jIogm}

m/Vlogm

~ IZ;,;+61 = O(m).
i=l

The lemma follows from the above simply by re-writing the summation in the lemma's
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statement:

m/Vlogm m/V1ogm

L L IZ",..I
6=-m/Jlogm 1=1

. 0
The above lemma implies that with a total of m 21logm processors, we can afford

to assign a group of 1 + IZijl/Jlogm processors to each pair Xi,lj. The task of
this group is to compute O(v,w) for all v E Xi and w E lj (of course each such
O(v,w) is in Zij). It suffices to show how such a group performs this computation in
O(logm) time. If IZijl $ Jlogm then a single processor can solve the problem in
0« Ilog m)') = O(logm) time, by the quadratic work method of §3. If IZ'jl > IIog m
then we partition Zij into IZij IIJ!og m pieces J1 , J2 , ••• of size Jlog m each. We assign
to each Jk one processor which solves sequentially the subproblem defined by Xi, Jk , Yj ,

i.e., it computes for each v E Xi and w E 1j the leftmost point of Jk through which
passes a path that is shortest among the v-to-w paths that are constrained to go through
J k • This sequential co.mputation takes O(1ogm) time (again, using the method of §3).
It is done in parallel for all the Jk's. Now we must, for each pair v,w with v E Xi
and wE lj, select the best crossing point for it among the IZijl/JIogm possibilities
returned by each of the above-mentioned sequential computations. This involves a total
(i.e" for all such v,w pairs) of O(IXoiIYiIIZ,jl/lIogm) = O(lZ'jl/logm) comparisons,
which can be done in O(logm) time by the IZijl/J!ogm processors available (Brent's
theorem).

7 . CReW-PRAM algorithm. This section briefly sketches how the partitioning
schemes of §6.2 translate into a CReW-PRAM algorithm of time complexity o(log n(log log m)2)
and processor complexity O(mnjloglogm). Again, it suffices to show how DISTAuB
can be obtained from DISTA and DISTB in O«log logm)') time and with m' /log log m
processors.

We first describe a preliminary procedure that has the right time complexity but
does too much work: O(m2 10gm) work. The procedure is recursive, and we describe
it for the more general case when DISTA is ex hand DISTB is h x £, (that is, ILAI =
ILBI = eand the common boundary has size h). It suffices to show that we can, in
O(logloghloglog£) time and £hlog£ work, compute O(v,w) for all v E LA and wE LB.

The first stage of the preliminary algorithm partitions LA into Vi. contiguous blocks
Xl,X21 ··· of size Vi. each. Similarly, LB is partitioned into Vi. contiguous blocks
Yi, Y2'··· of si7.e Vi. each. In parallel for each pair v, w such that v is an endpoint of
an Xi and w is an endpoint of a li, we compute, in O(log log h) time and O(h) work,
the point O(v,w). Thus, if we let Zij denote the interval on the boundary common to
A and B that is defined by the set 8(v, w) such that v E Xi and w E lj, then after this
stage of the computation we know the beginning and end of each such interval Zjj.

The second stage of the computation "fills in the blanks" by doing, in parallel, e
recursive calls, one for each Xi, Yj pair. The call for pair Xi, Yj returns 8(v, w) for all
v E Xi and wE Yj (of course each such O(v,w) is in Zij).
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The time and work complexities of the above method satisfy the recurrences:

T(l,h) :s T(v'e,h) + c,loglogh,

W(l,h) :s max {e,fh,2:W(v'e, IZ;jllJ,
iJ

where Ct and ~ are constants. The time recurrence implies that T(f, It) = o(log log h log log f).
That the processor recurrence implies W(f, h) = O(fh log f) becomes apparent once we
observe that Ei,j IZiil :$ 2hVl. The proof of this last fad is similar to that of Lemma
6: Li,i IZiil is rewritten as Li,6IZi,i+51 :$ E6 h :$ 2hVl. This completes the proof of
the preliminary CRCW-PRAM bound.

To decrease the work done from O(m2 Iogm) down to O(m2 log logm) (which would
imply the bound we claimed in the abstract of this paper), we use a partitioning scheme
similar to the ones we used in the CREW-PRAM method, in §6.2. We partition the
conunon boundary into log m contiguous blocks lb···' Jlogm of size m/ logm each,
then we create logm subproblems where the ith one consists of computing 8J;(v,w) for
all v E S(LA,logm) and w E S(LB,logm). We solve in parallel all such subproblems
using the preliminary scheme of the previous paragraph, then we "collect answers":
for each v E S(LA,logm) and W E S(LB,logm) we compute the correct 8(v,w) from
among 8it (v, w),··· ,8J,o,m (v, 10). As in Subsection 6.2, the 9(v, W)'S so computed define
a partition of the common boundary into Zi;'S whose corresponding subproblems we
solve as in the schemes of Subsedion 6.2: if a Zji is "small" (i.e., :$logm) then we solve
it using the preliminary algorithm otherwise we partition it into small pieces, solve each
of them using the preliminary algorithm, and then collect answers. An analysis like
those of §6.2 reveals that the work done is O(m2 log logm), while the time complexity
remains O( (log log m)').

Of course the same algorithm as above yields different complexity bounds when we
use in it other CRCW-PRAM methods for computing the min of h objects.

8. Conclusion. We gave a number of PRAM algorithms for the string editing
problem. The algorithms were fast and efficient, but the best time x processors bound
still did not match the time complexity of the best serial algorithm for the problem
[191,[30).
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A referee pointed out that ideas similar to those in §2 were independently found by
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