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Abstract

There is a large and growing body of literature concerning the solutions of geometric
problems on mesh-connected arrays of processors. Most of these algorithms are optimal
(i.e. tun in time D(n l

/
d

) on a d-dimensiona.l a-processor array), and they all assume
that the parallel machine is trying to solve a problem of size n on an n-processor array.
Here we investigate tne situation where we have a mesh of size p and we are interested
in using it to solve a problem arsize n > p. The goal we seek is to achieve, when solving
a problem of size n > p, the same speedup as when solving a problem of size p. We show
that for many geometric problems, the same speedup can be acnieved wnen solving a
problem of size n > p as wnen solving a problem of size p.

Key Word. Computational geometry, Mesh-connected arrays of processors, Paral
lel algorithms.

1 Introduction
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n > p, then it is not clear how it should use the p-processor array to achieve the factor of

s(p) speedup and obtain O(n log nj.s(p» time performance. Actually, it is not even clear

whether it is at all possible to maintain the s(p) speeedup, Le., whether the problem can

be decomposed into p-sized subproblems in a way that maintains the .s(p) speedup. When

this is possible for a certain problem, we say that the problem is fully pamllel-decomposable

for the RAMjARRAY(d). Identifying the problems for which this optimal O(nlognjs(p»

time can be achieved is an interesting question that has been answered in the affirmative

for the problem of sorting [AFK88, AV88, BG90, LCW81] when d = 1. This result imme

diately implies an affirmative answer on a RAMjARRAY(l) for some geometric problems

that can be solved in linear time after a pre-processing sorting step, like the planar convex

hull and maximal elements problems (this implicitly assumes that the p-processor array can

be used for sorting, i.e., it is not restricted to just solving size-p instances of the problem

considered). In this paper, we show that the answer is also affirmative for many geometric

problems that are not known to be reducible to sorting. More specifically, we show that the

O(n lognjs(p» time bound can indeed be achieved on a RAMjAItRAY(I) for the problems

of computing the following:

• all nearest neighbors of a planar set of points,

• the measure and perimeter of the union of rectangles,

• visibility of a set of non·intersecting line segments from a point,

• J·dimensional maxima,

• dominance counting between two sets of points (and hence the related problem of

counting intersections between rectilinear rectangles).

(Note that, for d = 1, s(p) ::= logp.) Essentially the same method as for the

RAMjAItItAY(l) establishes that all these problems can be solved in O(n log njs(p») on a

RAMj ARRAY(d), with s(p) = pI-lid logp.

Recall that in a mesh-connected processor array, each of the p processing elements

has only 0(1) storage registers. This is a standard assumption in the literature of mesh

connected arrays and we shall not tamper with it. Allowing more memory in each array

element gives rise to interesting issues that are not within the scope of this paper.

Let us remember that many existing parallel machines have a "front end" that is a

conventional sequential computer and that the number of processors in the parallel machine
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RAM~"·-BJI
Linear array of processors

Figure 1: a RAM/ARRAY(l) machine

itself is typically the fixed number purchased rather than a. function of the problem size n.

This provides a justification for the model used in this paper.

This paper is organized as follows. Section 2 gives some preliminaries, Section 3 gives

the detailed algorithms for all the problems we consider on a RAMIARRAY(l), Section 4

gives a general approach to extend all the algorithms to a. RAMIARRAyed), and Section

5 concludes.

We use p throughout to denote the number of processors of the attached processor array.

2 Preliminaries

In this section, we introduce some notation and definitions and review some known results

w rueh will be used later in our algori thms.

2.1 Notation

For any point q in the plane, we use :c(q) (resp., y(q)) to denote the:c (resp., y) coordina.te

of q. If the point q is in three dimensional space ;n3, we then use z(q) to denote the z

coordina.te of q. For any rectangle r in the plane, whose edges are parallel to the two axes,

we use left(r) (resp., righter), bottom(r), top(r)) to denote the left (resp., right, bottom,

top) edge of r. We say that aline 1 in the plane is horizontal (resp., vertical) if it is para.llel to

the:c (resp., y) axis. For any horizontal (resp., vertical) line segment u, we use x(u) (resp.,

y(u)) to denote the:c (resp., y) coordinate of u. Two line segments are said to intersect

properly iff they intersect at other than their endpoints. In ap, a horizontal (resp., vertical)
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plane is one which is parallel to the zy (resp., yz) plane. For a set 5 = {SI' 52, ... , 5 n } of

geometric objects (e.g., line segments or rectangles) in the plane, we say 5 is monotone with

the:J: (resp., y) direction if, for any vertical (resp., horizontal) line I, 1 properly intersects

at most one object in 5. If 5 is a set of geometric objects in !R3 , we say 5 is monotone with

the z direction if, for any vertical plane E, E properly intersects at most one object in 5.

2.2 Some useful known results

In [FJ82], Frederickson and Johnson established the following result. Given an a x b

matrix whose columns are sorted, the kth smallest element can be selected in time

O(b + mlog(k/m)), where m = min{k,b}, if the matrix is already in the memory, or if

any element of the matrix can be produced in constant time. This implies that the bth

element can be selected from the matrix in O(b) time. This selection algorithm has been

used in [AFK88], and in the present paper too it is a crucial ingredient. However, the

algorithms of this paper are far more intricate, and must use different partitioning and

combining schemes than [AFK88].

Suppose we have pl/k sets Sl,52,. .. ,5pl/. of line segments in the plane, where k;:;: 1

is some constant. Each set 5, is monotone with the x direction and sorted by increasing

:J: coordinate. For example, in Figure 2,51 = {UI,U2,U3,"'}' 52 = {VI,V:2,V3,"'}' and

,"~53 = {Wl,W2,W3,"'}' Let n be the total number of line segments in Uf=:l 5t . Define a

total order between the line segments by the z coordinates of their right endpoints, that

is, for any two line segments U and v, U < v iff the z coordinate of the right endpoint of

u is less than that of the right endpoint of v. Let lj be the vertical line defined by the z

coordinate of the right endpoint of the {jp)th line segment in uf::t5;. In this paper, we

frequently need to partition the set Uf~/,·5i into sets G1 ,G2 ,. •• , Gn /
p

and to create sets C
l

,

C2 , ..• ,Cn / p _ l , such that Gj consists of the line segments whose right endpoillts are to the

right of line lj_l and are on or to the left of line ij, and Cj consists of the line segments

which properly intersect line lj (Le., intersect it at ather than their endpoints). In Figure

2, G l = {ut,vI,wd and CI = {V2, W2}' Nate that the size of each Cj is at mast pI/k _ 1

since each 5, is monotone with the x direction.

Lemma 2.1 Let the 5j's, G;'s and C;'s be defined as above. Then obtaining the G;'s and

Ci'S from the 5;'s can be done in O(n) time.

Proof: To simplify the explanation, we first assume k = 1 and then extend to the case of
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s,o u, I v,

1s, w,v, Is,
w, w,

u,

I,

k > 1. Assume k = 1. We have p sorted and monotone sets 5',S2,.. ", Sp. (This is the

case which occurs when we solve problems on a RAMI ARRAY(l).) Treat each sorted set

Si as a sorted column and form a matrix of p columns. Then, in turn for j = 1, ... ,nip,

we do the following (i)-{iv): (i) we select the pth smallest element in the matrix, (ii) we

use the element so selected to obtain Gj, (iii) we implicitly delete the elements of Gi from

each column of the matrix, and (iv) we obtain Ci. The selection of step (i) is done in

O(p) time using the algorithm in [FJ82] (it does not matter that the columns as handled

by the algorithm may not be the same length, since the selection algorithm of [FJ82) does

not examine any element beyond the pth smallest in any current column). The element

selected in step (i) is clearly the (jp)th element in the original matrix (the matrix before

any deletion from it). Because of this, performing step (ii) is trivial to do in O(p + IGjl)

time: the contents of Gj are easily identified by examining each column of the matrix in

turn. Step (iii) is done in O(p) time simply by changing the index of the beginning of each

column of the matrix (this implicit kind of deletion is possible because the elements to be

deleted from a given column are contiguous and at the beginning of that column). For step

(iv), note that an element oC Cj coming from a column is necessarily the smallest remaining

element in that column, and hence C j has size at most p and can be constructed in O(p)

time.

If k > 1, then we run the same algorithm as the one for the case k = 1, except that we let

p' = p1lk play the role of p. This gives sets G/" G~, ... ,G~/p' and C~,C4, ... ,C~/P'_l. The
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desired sets G1 ,G2 , ••• , Gn/ p a.nd~\, C2 , •• _, Cn/p __ 1 are easily obtained. with O(n) extra

k · G· - ipl-If~ G' d C· - C'war, Slnc.e I - U i=(i-I)pl-1/k+1 j a.n ,_ ;pI_1 /.' 0

Note that lemma. 2.1 still holds if the geometric object in each Si is an isothetic rect

angle (one whose sides a.re pa.rallel to the coordina.te axes). In next section, we will use

the pa.rtitioning scheme in lemma. 2.1 to design O(nlognj logp) time algorithms for many

geometric problems on a. RAMIARRAY(l). A similar partitioning scheme which takes time

O(n/pl/d) will be presented la.ter when we discuss the algorithms on a RAM/ARRAY(d)

(k = d+ 1).

A similar partitioning scheme has been used in one of the two approaches given in

[AFK88] to merge p sorted lists of size nIp each in O(n) time and hence obtain an

O(n lognj logp) time sorting algorithm on a RAM/ARRAY(l).

Lemma 2.2 [AFI(88} Given a set S of n numbers, we can sort the numbers In S m

O(nlognjlogp) time on a flAMjARflAY(1).

Proof: We sketch the idea of [AFK88\. We first partition S into p subsets of size nip each

and recursively sort each subset one by one. After the recursive calls, we partition the p

sorted lists into nip groups of size p each as in Lemma 2.1 and sort each group in O(p) time,

using the p-processor array. The time complexity T(n) of the a~ove process thus satisfies

the recurrence T(n) ==: pT(nlp) + cln if n > p, and T(n) :::: C2n if n ~ p, where C1>C2 are

constants. This implies that T(n):::: O(n log n/logp). 0

3 RAM/ARRAY(l) algorithms

In this section, we present RAMI ARRAY(l) algorithms for the problems of computing

all nearest neighbors of a set of planar points, the measure and perimeter of the union of

rectangles, the visibility from a point, 3-dimensional maxima, dominance counting between

two sets of points, and hence the related problem of counting intersections between recti

linear rectangles. All of the above problems have sequential time complexity 0(n logn) and

will be solved in O(nlogn/s(p» time on a RAM/ARRAY(l) (for all of the above prob

lems, s(p) ==: logp on a RAM/ARRAY(l». The RAM/ARRAY(l) algorithms which will

be presented Ia.ter follow tIle p-way divide-and-conquer paradigm as described for sorting in

Lemma 2.2. That is, we will partition the problem into p subproblems of size nIp each, and

recursively solve each subproblem one by one. After the p recursive calls, we then combine
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the p BubsolutioIUl in O(n) time to achieve the O(nlog n/logp) time performance. Our main

contribution is in showing that the combining step can be done in O(n) time with efficient

use of the p-processor array. In particular, we will show that the combining step can be

done by plane sweeps which consist of nip sweep steps, each of which uses the p-processor

array a cOIUlta.nt number of times. Let C be the information maintained during the sweep.

Each step of the sweep advances it past the next p elements, as follows: (i) we identify the

group G of the next p elements, (ii) we solve a constant number of O(p)-sized problems,

and (iii) we update G. Step (i) can be done in O(p) time sequentially, using the selection

algorithm of Frederickson and Johnson as in Lemma 2.1 (in order to enable us to use this

selection scheme, a by·product of each recursive caU is to sort its elements). For the various

problems considered, when p = 2, it is usually already known (e.g., [DenBO, Gut84]) that

fCf = 0(1) and hence steps (ii) and (iii) can be done in 0(1) time. In this section, we will

show that step (ii) and (iii) can be done in O(p) time, using the attached p-processor array.

In particular, we show that IGI = O(p) and that each step of the sweep can be rl!duced to

solve a constant number of O(p)-sized problems. In the remainder of this section, we give

the details of the algorithms for the problems considered.

3.1 All nearest neighbors

Given a set S of n points in the plane, the all nearest neighbors problem is to find a nearest

neighbor N(u) of every u E S. This problem has many applications in answering basic

proximity questions of sets of objects, and several authors have addressed the question

of solving this problem on various kinds of parallel machine models [Cha84, CG8S, JL90,

MS89, SCL87, WW88]. Chazelle {Cha84], and, Shih et al [SCL871 gave O(n) time systolic

solutions on a linear systolic array of n processors. Jeong and Lee [JL90j, and, Miller and

Stout [MS89j independently solved the problem in O(Vii) time on a 2-dimensional array

of n processors. Cole and Goodrich [CG8S) and Willard and Wee [WW88j gave O(logn)

time algorithms on an n-processor PRAM. However, a simulation of these algorithms on

our parallel machine, the RAM/ARRAY(d), fails to achieve the optimal O(nlognls(p))

time performance. In this subsection, we give an algorithm for this problem which runs in

O(nlogn/logp) time on a RAM/ARRAY(l). The same idea. can be used in solving this

problem in O(nlognls(p)) time on a RAM/ARRAY(d), for d > 1 (this extension 1s given

in Section 4).

In the remainder of this subsection, we give the algorithm for the all nearest neighbors
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problem on a RAM/ARRAY(l). For simplicity, we assume that the :t coordinates (resp., y

coordinates) of points in 5 and the Euclidean distances between them are pairwise distinct.

(Our algorithm can be easily modified to deal with the general case.) Throughout this

subsection, we use d(u,v) to denote the Euclidean distance between points u and v. Since

sorting can be done in O(nlognjlogp) time on a RAM/ARRAY(l), we assume the points

given in 5 are already sorted by increasing :t coordinate.

3.1.1 Outline of the algorithm

The general idea of the algorithm for the all nearest neighbors problem is as follows. We

first partition the problem into p subproblems of size nip each, and recursively solve each

subproblem one by one. Let us call the nearest neighbor of u returned by the recursive calls

the focal neighbor oflt, and denote it by Nr(u). Thus N1(u) is in the same partition as u

and is closer to u than any other points in that partition. In the combining step, we find

two foreign neighbors for each of the points: the lower (resp., upper) foreign neighbor of u

is the point which is below (resp., above) u, is not in the same partition as u, and is closer

to u than Nr(u) and than any other points below 'It (hence neither foreign neighbor of u

exists if u's nearest neighbor is in the same partition as u). What makes the combining

step difficult is that the (upper or lower) foreign neighbor of a point in one partition is not

necessarily in one of its adjacent partitions. IIow to capture this kind of foreign neighbors

in O(n) time on a RAM/ARRAY(1) is not clear from any of the previous algorithms. Below

is a rough outline of the algorithm. The implementation of its various steps is given in the

subsection that follows.

Algorithm NEAREST-NEIGHBORS

Input: A set S of n sorted points sorted by increasing :c coordinate.

Output: For each u E 5, the point N(u) E S closest to it. Also, the elements of 5 sorted

by decreasing y coordinate.

1. If lSI s 5p then solve the problem in 0(151) time by direct use of the p-processor

array. If lSI> 5p then proceed to Step 2.

2. Partition S into p subsets 5" 52, ... , 5 p in left-to-right order by vertical cut.lines

and recursively solve the problem on each Sj. The recursive call for Si returns, for
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every u E 5tl the point of 5, that is closer to u than any other point in 5i. Call NI(u)

such a restricted nearest neighbor of u. It also returns the elements of 5, sorted by

decreasing y coordinate.

3. Perform a downward sweep of the points in S, during which a point N 2 (u) is found

for each u E 5. N2(u) is defined as follows. Let u E 5,. Then N2(u) is the point

closest to u among all points that are in 5 - Si, are below u, and are closer to u than

the distance d(u,NI(U» (if no such point exists then N2 (u) = 0).

4. Perform an upward sweep of the points in 5, during which a point Na(u) is found for

each U E S. N 3 (u) is defined as follows. Let u E Si. Then N3(U) is the point closest

to U among all points that are in 5 - Si, are above u, and are closer to u than the

distance d(u,N1(u» (if no such point exists then N 3(u) = 0).

5. For each u E 5, compute N(u), the point of 5 closest to u, by choosing one of the

points N 1(u), N2(u) and N3(U) which is closest to u.

6. Sort the elements in S by y coordinate by "merging" the p sorted lists returned by

Step 1 in D(n) time as in [AFI{88J.

End of Algorithm NEAREST-NEIGHBORS

Correctness of the algorithm would immediately follow if Steps 3 and 4 correctly compute

N 2(u) and N 3(u), respectively. In order to achieve the O(nlognjlogp) time performance,

it suffices to perform Steps 3 and 4 in D(n) time, since the time complexity would then

obey the recurrence T(n) = pT(njp) + CIn if n > 5p, and T(n) = C2n if n :::; 5p, where Cl

and C2 are constants. Since Steps 3 and 4 are symmetric, we only give the details of Step 3

and establish ita correctness and its D(n) time complexity.

3.1.2 Finding foreign neighbors

In this subsection, we show that Step 3 of algorithm NEAREST-NEIGHBORS can be

performed in O(n) time on a RAMjARRAY(l). Recall that, at the beginning of Step 3,

each point u knows its local nearest neighbor, N 1 (u). We compute N 2(u), i.e. a lower

foreign neighbor of u, for allu E S by performing a downward sweep, as follows.

In order to sweep the points and find N2 (u) for every u E S, we first partition S into njp

subsets lIlt H 2 , •.• ,Ilnlp in top-to-bottom order by horizontal cut-lines (Le., the points in
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each H; have larger y coordinates than those in H;+1)' It has been shown in [AFK88] and in

our Lemma 2.1 tha.t the partitioning process can be done in O(n) time if the points in each

Si are anilable sorted by decreasing y coordinate (recall that a by-product of our algorithm

is to sort the points by decreasing y coordinate). We then use these horizontal cut-lines

as sweep lines to perform the downward sweep. using the p-processor array to achieve the

O(n) time performance for Step 3. The crucial observation is that, during the sweep, we

only need to maintain a set of O(p) points. Let C; (which will be defined later) be some set

of points which contains at least all the points u E S - H; that have N 2(u) E H;. We will

show later that, if we choose C; in a suitable fashion, then the number of points in each C;

is at most 4p (specifically, at most 4 from each 5,). The downward sweep which finds N
2
(u)

for every u E S consists of solving the all nearest neighbors problem on H; U C;, in turn

for j = 1,2, ... , nip, by direct use of the p-processor array O(n/p) times at a cost of O(p)

time each. (It takes time O(p) for each II; U Gi' since there are at most 5p points in each

II; U G;.) We still ha.ve to define G;, and to show that the C;'s can indeed be computed in

O(n) time.

We choose set Ci as follows. Let lines la, ll, ... , Ip be the vertical cut-lines in left-to

right order (i.e., x(ll1) < X(/6) if a < b) used in Step 2 to partition 5 (thus the points in 5,

are to the right Off;_l and ta the left aUi)' Let ho, hit .. _, hn / p be the horizontal cut-lines

in top-to-bottom order (i.e. y(ha ) > y(h6) if a < b) used in Step 3 to partition S (thus the

points in H; are below h;_l and above hJ-). Let point qi,; denote the intersection of lines li

and hi' We define C; to be the set of points u such that u is above line hi-l and, if u E Si,

then the smaller of d(u, q'-I,i-l) and d(U,qi.;_l) is less than d(u, N1(u)). In other words:

C; = uf=:, (u E 5i I y(u) > y(h;_d and d(u,N1(u)) > min{d(u,qi_l,i_tl, d(u,q;,i_d}}.

In the following two lemmas, we show that C; contains at least all the points u E 5 _ Hi

that have N 2( u) E H;, and that the cardinality of G; is at most 4p. Furthermore, we show

that C;+I can be computed from Cj U II; in O(p) time. Note that hI, 11 2 , ••• , hn/ p were

obtained in O(n) time while we pa.rtitioned 5 into HI, Ih, ... , H n/
p

•

Let the Si'S, Hi'S, Ci's and qi.;'S be defined as above.

Lemma 3.1 If U E 5, - IIi is a point with N2(u) E 1Ij, !hen u is in Cj.

Proof: Supposeu E 5i-Hi is a point with N 2(u) E Hj. Sinceu It H j and y(u) > y(N'2(u)),

y(u) is larger than y(h;_d. WLOG, assume that N2(u) E II; is to the left of Ii_I. Consider
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the triangle formed by points'll., N2(U) and qi-l,i-l' The edge with endpoints'll. and N 2(u)

is the longest one in this triangle. Thus, d(u,N1(u» > d(u,N2(U» > d(U,qi-l.i-l) ;?:

rnin{d(u,qi_l,i_l), d(U,qi,i_l)}' Thus, 'II. is jn Gi' 0

Lemma 3.2 The cardinality of each Gi is at most 4p.

Proof: It suffices to prove that every S; has at most four points that are in Gi. Since every

point in Gi is above line hi - lo we first prove that for each S; there are at most two points

U E Si above hi_l and having d( tI, N r('11.» > d( '11., qi-l,i-d. Assume Ul and U2 are two such

points. The angle UlQi_l,i_IU2 must be larger than 1r/3, since otherwise we would have

d(ul,u2) < max.{d(ul,N1(ur),d(U2,N1(U2»)}, contradicting the definition of Nl(ul) and

N 2(U2). This implies that there are at most two such points. Similarly, we can prove that

there are at most two points'll. E Si above hi_l and having d(u,Nl(u» > d(U,qi,i_l)' 0

A lemma to the above one was given in [WW88] to obtain an optimal PRAM algorithm

for the all nearest neighbors problem. In that lemma, they show that when p = 2, IGil s 8.

Lemma 3.3 Gi+I can be computed from Ci V Hi in O(p) time.

Proof: Since d( '11., q;-l,i-r) (resp., d( '11., qi,i-r) is less than d(1£, qi-I,i) (resp., d( u, qi,i»)

for every'll. E Sj and above line hi-I, it is clear that Ci+I ~ Ci V Hi' Thus, we can

identify the points in Ci+1 by compa.ring d(u,N1(u» to min{d(u,qi_l,i), d(U,qi,i)}, for

every'll. E Hi U Gi, jf u E Si, and this can be done in O(p) time sequentially since there are

only O(p) points in Ci V Hi' Note that Gr = 0. 0

We therefore perform Step 3 in O(n) time by doing the following for j = 1,2, ... , nip in

turn: first, identifying the points in Gi, and then solving the all nearest neighbors problem

on HiVej by direct use of the p-processor array. Step 4 ca.n be done in O(n) time similarly.

This completes the sketch of the O(nlog n/logp) time algorithm on the RAMIARRAY(l).

Theorem 3.1 Given a set S ofn points in the plane, for every'll. E 5, we can find a nearest

neighbor N(u) olu in O(nlogn/ logp) time on a RAM/ARRAY(!).

3.2 The measure and perimeter of the union of rectangles

Problems involving rectangles have many applications in VLSI design and pattern recog

nition. An important class of the rectangles are the isothetic ones, which are rectan

gles with sides parallel to the two coordinate axes. One of the most extensively studied
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problems concerning isothetic rectangles is to compJ1te the measure, Le. the area, of the

union of n isothetic rectangles. Many optimal O(n logn) sequential algorithms are known

[Ben77, GutB4, LWBO], and an optimal O( y7i) time 2-dimensional mesh algorithm was

given by Miller and Stout [MS89]. A linear time systolic solution on a linear array can be

derived from a quadratic sequential algorithms which basically scans the rectangles from

left to right. However, it is not clear whether or not any of the above algorithms can be

implemented on a. RAMjARRAY(1) in O(nlognjlogp) time. In this section, we present an

O(n lognjlogp) time algorithm on a RAMjARRAY(l) to compute the measure of the union

of n isothetic rectangles. Our algorithm can be easily modified to compute the perimeter,

Le. the length of the boundary, of their union.

3.2.1 Definitions and overview

Define a left (resp., right) representative of an isothetic rectangle to be its left (resp., right)

vertical edge. Assume that a rectangle is "attached" to each of its two representatives,

so that we can retrieve all the information about this rectangle from either of them. For

any representative r, define REeT(r) to be the isothetic rectangle attached to it. For any

set R of representatives, define HEeT(R) to be the set {REeT(r) IrE R}. Note that

[Rlj2 :5 IREeT(R)1 :5 IRI since every rectangle has at most tw~ representatives. Define

a frame to be an isothetic rectangular region in the plane. A representative r is contained

in a frame f if the vertical edge r is contained completely in f. When we say that R is

sorted from left to right, we mean that the vertical "edges" in R are sorted by increasing x

coordinate.

To compute the area of the union of n isothetic rectangles, we first form a set R of N = 2n

representatives, consisting of both the left and right representatives of each given rectangle.

We also select a. frame f which encloses all the given rectangles (thus all the representatives

in R). The problem then becomes that of computing the area of the intersection between

the frame f and the union of rectangles in REeT(R). Our algorithm actually has f and R

as input. To simplify the exposition, we assume that the x coordina.tes (resp., y coordinates)

of the vertical edges (resp., horizontal edges) of the rectangles in REeT(R) are pairwise

distinct.

To compute the intersection between the frame f and the union of rectangles in

RECT(R), we will partition the frame f into a collection SfeR) = {$I' S2, ••• , sw} of w
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(w:s 21RI + 1) rectangular horizontal stripes and, for each stripe 5i in StCR), we compute

the intersection between 3; and the union of rectangles in REeTeR) (see Figure 3). The

partition is determined by the rectangles in HEeT(R) as eiI.Ch horizontal stripe boundary

is along one horizontal edge, and each horizontal edge is contained in one horizontal stripe

boundary. Note that the intersection between any stripe 3, E SJCR) and the union of rect

angles in REeT(R) is defined by a set of disjoint x-intervals. For every 5, E SfeR), we use

lenR(si) to denote the total length of the x-intervals which define the intersection between

stripe s, and the union of rectangles in REeT(R). In Figure 3, llmR(sS) = 2 + 2 = 4.

Given SICR) and lenR(si) for every Si E Sf(R), it is obvious that the area of the union of

rectangles can be computed in O(n) time. Our algorithm computes and returns Sf(R) and

lenR(si) for aU Si E Sf(R).

The idea of partitioning an enclosing frame into stripes and computing the intersection

of each stripe and the union of the given rectangles, in order to compute the measure of their

union, was first used by Giiting in [Gut84] to develop the flrst optimal divide-and-conquer

algorithm for this problem. OUt algorithm involves substantially different techniques in

the combining step. We next show how to construct SJ(R), and compute lenR(si) for all

Si E SJ(R) in time O(nlognjlogp) on a RAMjARRAY(l).

13



3.2.2 The algorithm

The initial call to the recursive procedure MEASUItE-OF-UNION gives it as input a frame

f containing all of the n rectangles we wish to consider, together with a set R containing

the 2n representatives of these rectangles. Thus initially we have IRI = 2IRECT(R)I, and

every rectangle of RECT(R) is completely contained in f. However, these two conditions

are not maintained through the recursion. What is maintained is the condition that every

rectangle in RECT(R) has at least one representative contained in f, and that R contains

all the representatives of RECTeR) that are enclosed in f (thus a. rectangle of RECTeR)

can have one of its representatives outside of f, in which case that representative is not in

H). Thus the relationship IRECT(R)I :s IR! :s 2IRECT(R)1 is maintained. Our measure

of problem size shall be IHI rather than IRECT(R)I. Let IRI = N.

Since sorting can be done in time O(N log Nflog p) on a RAMIARRAY(1), we assume

the input representatives H are already sorted by increasing x-coordinate. For every rep

resentative r, we use lelt(r) (resp., righter), top{r), bottom(r)) to denote the left (resp.,

right, top, bottom) edge of the rectangle attached to r. Since RECT(r), for reI, need

not be contained in I, the definition of Sj(R) needs a minor modification: the stripes in it

are now defined by the horizontal lines through the endpoints of the vertical edges in R.

Algorithm MEASURE-OF-UNION

Input: A frame f (a rectangle) and a. collection R of vertical line segments contained in

f· To each such line segment r is "attached" a rectangle RECT(r) such that r is one

of the two representatives of RECT(r), and the other representative of RECT(r) is

also in the set R iff that representative is also contained in f. Let IRI = N.

Output: The set of stripes Sj(R) sorted by y coordinates, and arrays rectR and lenR such

that, for any 8 E Sj(R), rectR(s) is the rectangle in REeT(R) whose bottom edge

coincides with the bottom boundary of s (if any), and lenR(s) is the length of the

x-intervals formed by the intersection of s and the union of rectangles in REeT(R).

1. If N :s lOp then solve the problem in O(N) time by direct use of the p-processor array

[MS89].

2. Take p vertical lines such that there is exactly one of them between the Nilpth and

(Nilp + 1)th representatives in R, for i = 1,2, ... , p. These vertical lines induce a

14



partition of the set R into sets Rio R2 , ••• , Rp of size Nip each, and of the frame I
into frames il, 12, ... , Ip, in lert-to-right order. Note that the representatives in Rj

are contained in frame Ij, but the rectangles of REeT(Rj) may extend outside of Ii.
Solve each subproblem defined by Rj and Ij recursively. The recursive call for Rj and

Ii returns SJi(R;) sorted by increasing y coordinate, and arrays rectni and lenni.

3. Perform an upward "sweep" of the stripes in uj=ISJi(Rj) (and hence the rectangles

in RECT(R» with jumps of p stripes at a time, to construct SJ(R), and compute

rectn(8) and lenn(s) for every S E SJ(R). The details of this are explained below.

End of Algorithm MEASURE-OF-UNION

To establish the correctness and O(N 10gN/logp) time complexity of the above algo

rithm, we show how to perform the upward sweep of Step 3 in O(N) time. The idea is that,

in the itb jump of the sweep, we construct Xi C SJ(R), and compute rectn(s) and lenR(8)

for every 8 E X;, where Xi is the set of stripes in S J(R) corresponding to that ith jump (Le.

between the (i - l)th and ith sweep lines). Meanwhile, we maintain the set Ci of stripes

in uj=lSJj(Rj) which intersect the ith sweep line properly, and an array span.(l: p) where

Ilpan i(j) is the maximum y coordinate of the top edges of the rectangles which intersect

properly the ith sweep line and span subframe Ij (a rectangle r spans a frame Ij if the

x-interval of r contains completely the x-interval of Ij). We next give the details of the

sweep.

We define a total order among stripes by the y coordinates of their bottom boundaries

in increasing order. Let m be the cardinality ofUj=lSJj(Rj). Let I; be the horizontal line

coinciding with the bottom boundary of the (ip)th stripe in uj=lSJj(Rj) (Le. ii is the ith

sweep line). The lines fo, flo ... , lm/p, Im / p+1 partition the set U'J=lSJi(Rj) into sets GlJ

G2 , .• " Gm/p such that G i is the group of stripes in U'J=l Sli(Rj) whose bottom boundaries

are on or above line ii_l and below line Ii. (Assume fo is the line y = -00 and lm/p+1 is

the line y = y(top(f».) In Figure 4, G'J = {t2,t3,t7,tll}. Since each SJi(Rj) is sorted and

monotone (i.e. for any horizontal line, there is at most one stripe in Sli(Rj) which intersects

this line properly), the partitioning process can be done in Oem) = O(N) time as in lemma

2.1. We then perform the upwa.rd sweep using lines II, i2•... , imlP+1 as sweep lines. When

we move the sweep line from ii_I to I;, we compute Xi. Gi , and lenR(s) and rectR(s) for

every SEX;, where X; is the set of stripes in SJ(R) which are between lines fi_1 and 1;,
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c; is tne set oC stripes in U)=lGj which intersect line Ii properly (hence IGd:::; pl. We also

maintain an array spani(1 : p) such that the value of apan;(j) is the maximum y coordinate

of the top edges of rectangles which intersect line Ii properly and span the x-interval of the

frame Ii- In Figure 4, X 3 = {S3,S4"SS}, C3 = (t3,ld and span3(2) is the y coordinate of

the top edge of the rectangle spanning h. Note that IX;I ::; p + 1 and IGd :5 p - I, for

1 :5 i :5 mfp· Since IG, U C,._II :5 2p, it is clear that set C j and array spaniel : p) can

be computed in OCp) time sequentially or using the attached array constant times. In the

following lemma, we show that, given Gil C._1 and array spani_I(I : ]l), we can compute

set Xi and lenR(s), Cor every s E Xi, in O(p) time on a RAMjARRAY(l). Once Sf(R) is

computed, we can easily compute rectn(s) for every s E SJ(R).

Lemma 3.4 Given Gi, Ci_1 and array spani_l(l: p), we can compute set Xi and lenn(s)

for every s E Xi, in O(p) time on a RAM/ARRAY(J).

Proof: To construct Xi and compute lenn(s) for every s E Xi, we solve an instance of the

measure of union problem of O(p) rectangles. These O(p) rectangles are defined as follows.

1. Consider the rectangles in RECT(R) which have one of their horizontal edges between
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hi and h2 • For each of these rectangles, we exclude its portions which are not between

li_I and I, and its portions which do not (horizontally) span any subframe (the portions

so excluded have already been taken care of by the recursive calls). There are no more

than 2p rectangles so created.

2. We then consider the stripes in G; n C;-I. For each such stripe 05, we create a new

rectangle r which is a portion of 05, shares the horizontal boundaries with 05, and

has"its width equal to lenR;(s) (it can be located anywhere in 05, and its purpose is

to encapsulate the portions taken care of by the recursive calls). For each created

rectangle, exclude its portions which are not between 1;_1 and I;. There are no more

than 2p rectangles so created.

3. We then create p rectangles from array spani_I as follows. For each Spani_I(j), we

create a new rectangle whose x interval is the same as that of subframe 1;, and wnose

y interval is from y(li_t) to min{span;_l (i), y(/i)}. There are p rectangles so created.

Let R' be the set the representatives of the rectangles created as above and l' be tne

portion of f between li_l and 1;. It is clear tnat Xi = Sf'(R'). We next show that, for

every 05 E Xi, lenR(s) = (enR'(s). Let lenR(s n Ij) represent the intersection of 05 n Ii with

the union of the rectangles of RECT(R), and lenR_Rj(S n Ij) r.epresent the intersection

of S n fj with the union of the rectangles of RECT(R) _ RECT(Rj). Let us consider

lenR_R,(sn/j). If lenR_Rj(sn1;) = 0, Le. sn/i does not intersect the union of the rectangles

of RECT(R) - RECT(Rj), then lenR(s n Ii) = lenRj(s n fj) and hence lenR(s n Ii) is

defined by the intersection of snfj with the rectangle of RECT(R') that is created from the

stripe of S]j(Ri) containing s n Ii. If lenR_Rj(s n Ij) > 0, tlten 05 n Ii is covered completely

by at least one rectangle of RECT(R) - RECT(Rj) since none of its representatives is in

Rj. Since that rectangle must intersect the region between 1'_1 and h and must span the:I;

interval of lit sn/j is covered completely by the one of RECT(R') created either from that

rectangle or from the value of spani_l(j). Thus, lenR(s n Ii) = 1enn'(s n Ij). Therefore,

1enn(s) = lenRI(s) for every 05 E Xi. We thus compute X,, and lenR(s) for every 05 E Xi

by computing the measure of the union of rectangles of RECT(R'). Sjnce IR'I :5 lOp, the

measure of the union of rectangles of RECT(R') can be computed in O(p) time, using the

p-processor array a constant number of times. 0

Therefore, the overall time complexity, T(N), ofalgorithm MEASURE-OF- UNION sat

isfies the recurrence T(N) = pT(Njp) +CtN if N > lOp, and T(N) = C2 N if N .$ lOp,
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where Ct and C2 are constants. This implies T(N) = O(NlogN/logp) = O(nlogn/logp).

We therefore have the following theorem.

Theorem 3.2 Given a sel R of N representatives of isothetic rectangles and a frame f

containing these given representatives, algorithm MEASURE-OF- UNION computes the area

of the intersection between the union of rectangles in REGT(R) and the frame f in time

O(NlogN/logp) on a RAM/ARRAY(I).

3.3 3-dimensional maxima

Let P = {PltP2, ... ,Pn} be a set of points in !JP. For simplicity, we assume the x coordinates

(resp., y, z coordina.tes) of the points in P are pairwise distinct. For any two point p; and

Pj, Pi is dominated by Pj if X(Pi) < :c(p;), Y(Pi) < yep;) and Z(Pi) < z(p;). A point Pi E P

is said to be a maximum if it is not dominated by any other point in P. The 3-dimensional

maxima problems, then, is to compute the set, M(P), of the maxima in P. Define D(p,) as

the region domina.ted by point Pi, i.e. D(Pi) = {(x,y,z) I x < X(Pi),y < Y(Pi),Z < z(p;)}.

M(P) then is the set of points in P which are not in the region D(P) = Ui'=lD(Pi).

Recall that a plane II is horizontal if II is parallel to xy plane. To compute M(P), we

first partition the points in P into subsets Pl , P2 , .•• , Pp of size nip each in top-ta-bottom

order, using horizontal cut-planes IIo, IIl , .•. , IIp (i.e. Pi is the set of points between JIi_1

and IIi). We then solve the subproblem defined by each P; recursively. The recursive call for

Pi returns M(P;) and R(Pi), where R(Pi) is a description of the part of D(Pi) below plane

II; (see Figure 5). Note that R(Pi) may contain points in P but not in Pi. To compute

M(P), we must remove the points in UJ=IM(P;) which are in region UJ=IR(Pj). The idea

for doing thls is based on the observation that each R(P;) can be represented by a monotone

chain of O(IPi !) horizontal. (Le. perpendicular to the yz plane) line segments. The property

of rnonotonicity ensures us that Uf=IR(Pi) can be partitioned Into O(nlp) chunks of size

O(p) each, using nip vertical cut-planes in O(n) time as in Lemma 2.1. (The size of each

chunk is the number of line segments used to describe it).

Observation 3.1 Let IIi, Pi and R(P;) be defined as above. Then, R(Pi) can be represented

by a set of no more than IP;I line segments that form a monotone chain.

Proof: Let Pi = {1I1, V2, .. . , vw }. Let L.. = {II, 12, ... ,11O} where 1; is the projection on Hi

of the horizontal hatf line ((:z:,y,z)! x::; x(vi), Y = y(v;) and z = z(Vj)}. As in Figure
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5, the boundary of the region R(P;) is defined by the boundary of the visible region on Hi

defined by set L, and the point (0, -00, zeH;». Since this visible region can be represented

by a monotone chain, Rep;) can be represented by a monotone chain. The number of line

segments in that chain is no more than IPil. 0

We then have the following O(nlogn/logp) algorithm. Since sorting can be done in

OCn log n/ logp) time, we assume the input points in P are already sorted by decreasing z

coordinate.

Algorithm MAXIMA

Input: A set of points P = {PI, 1'2, .. . , Pn} in 31:3 sorted by de<:reasing z coordinate. For

simplicity, assume the :r: (resp., V, z) coordinates of the points in P are pairwise

distinct.

Output: The set Me p ) = {ql' qz, .. .• qu} of maxima in P sorted by increasing x coordi

nate, and the region R(P) = {St, 52, ... , 5 u} which is sorted and forms a monotone

chain.

1. If n S 3p then solve the problem by direct use of the p-processor array in O(n) time.

2. Partition the set Pinto p subsets Ph P2 • ••• , Pp of size nip each in top-to-bottom

order, using horizontal (i.e. parallel to the xy plane) cut-planes. Note that the points

in Pi have larger z coordinate than those in in Pj if i < j. Recursively solve the
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•Figure 6: G1 = {Sl,S2,S:I}, C1 = {S4,SS} and Q1 = {Pl,P';l,P3,P4}

subproblem defined by each Pi ane by one. The recursive call for each Pi returns

M(P,) and R(P,).

3. Partition the space into D(n/p) chunks using Oen/p) vertical (Le. parallel to the

yz plane) cut-planes such that the part of the region U~=lR(Pj) in each chunk is

represented by O(p) line segments. For each chunk, do the following two steps: (i)

identify those line segments in UJ=lR(Pj) and points in UJ=lM(Pj) which are in that

chunk, (ii) compute M(P) and Rep) by computing the subsolutions in each chunk (Le.

the portion of M(P) and Rep) in that chunk). The details of this step is explained

below.

End of Algorithm MAXIMA

The details of Step 3 are as follows. We define a total order among the line segments in

Uj=lR(Pj) by the x coordinates of their right endpoints. Let m = IUj=l R(Pj)l, and note

that m :S n. Let v,. be the vertical plane defined by the x coordina.te of the right endpoint

of the (ip)th line segment in U7=1R(Pj ) (Vo = {(x, y,z) I x = -co}). Given vertical planes

Vo, VlJ ." , Vm/p, we pa.rtition tlte set uj=l R(Pj) into sets G I , G2 , ••• , Gm1p and create sets

C 1, C2 , • ", Cm / p such that Gi consists of the line segments whose right endpoints are to

the right of plane Vi-I and on or to the left of plane V,',.and Cj consists of the line segments
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that intersect plane Vi properly. In Figure 6, Gl = {81,82,83} and G t = {84,8S}' Since

each R(Pi) is sorted ~nd monotone, all the Gi'S and Ci'S can be obtained in O(m) = O(n)

time as in lemma. 2.1. Note tha.t jGil = p and IGil S p, and Gi U Gi contains all the lines

segments which represent the part of U}=IR(P;) between planes Vi-I and Vi. We next

identify the subset Qi of U}=IM(P;) that is between Vi_l and Vi for i = 1,2, ... , njp, and

then for each Qi, we form f1Q;jjpl instances of O(p)-sized problems (each instance consists

of Gi U Ci and no more than p points from Qi). Each such instance is solved in O(p) time,

using the p-processor array a constant number of times. To partition U~=IM(P;) into QI,

Q2, "', Qm/p, we do the following: (i) form a sorted list Q by merging M(PI ), M(P2),"".,

M(Pn/p), (ii) view Q as a sequence of blocks of size p each, and, for each block of Q, do

binary searches to partition that block if its points belong to more than one QiS. The total

time (or (i) is O(n) by Lemma 2.1, and the total time for (ii) is O«nlogp)jp) since there

are only O(n/p) binary searches and each of them takes O(logp) time.

Therefore, the time complexity of algorithm MAXIMA is O(nlogn/ logp).

Theorem 3.3 Given P = {PitP2, .. ",Pn} of points in if/::J, algon"thm MAXIMA computes

the maxima in P in lime O(nlognjIogp) on a RAM/ARRAY(J)"

3.4 Visibility from a point

Given a. set of line segments S={SI, 52, 53,' .. , 5 n}, which are opaque and do not intersect

except possibly at their endpoints, and a point v in the plane, the visibility problem is to

determine the region of the plane visible from v. WLOG, we assume v is the point (0, -00).

Optimal mesh algorithm for this problem can be easily derived and is omitted. In this

section, we show how to to solve a problem of size n > p in time O(n log n/ logp) on a

IlAM!AIlIlAY(I).

Observe that the upper boundary of the visible region of Sis a chain monotone with the

x direction. In algorithm VISIBILITY, a visible region will be represented by a sorted and

monotone set of line segments which describes the upper boundary of this visible region.

Algorithm VISIBILITY

Input: S = {51, 52,·" " ,5 n} is a set of nonintersecting line segments except possibly a.t

their endpoints. For simplicity, we assume the x coordina.tes of distinct endpoints are

pairwise dis tint.
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Output: A sorted a.nd monotone set R = {tItt2•... , tw } of line segments which describes

the upper boundary of the visible region, where 1 S w S 2n.

L If n S 2p then solve this problem in O(n) time by direct use of the p-processor array.

2. Partition the set 5 into sets 51, 51., ... , 5p of size nip each and recursively solve

the visibility problem defined by each S •. The recursive call for Si returns R,., the

visibility of S,.. Note that IR,.I .$ 2nlp.

3. Partition the set Uj=lRp into O(nlp) subsets of size O(p) each using O(nlp) vertical

lines. (A line segment may be in severa! subsets if it crosses several regions separated

by these vertical lines.) The part of R between two consecutive vertical lines is com

puted by solving the visibility problem defined by the set of lines segments between

them, by using the p-processor array a constant number of times, as explained below.

End of Algorithm VISIBILITY

To establish the O(n log n/log p) time complexity of the above algorithm, we show how

to perform Step 3 in O(n) time on a RAMIARRAY(1). The idea is based on the property

of the monotonicity of each Ri. Let m = L~=l IRd, and note that m :$ 2n. Define a total

order between line segments by the x coordina.tes of their right endpoints. Let 1, be the

vertical line defined by the x coordinate of the right endpoint of the (ip)th line segment

in U~=IRj, for i = 1,2, ... ,mlp. We then compute the visible region R by computing the

part of R between (i-1 and Ii, for i = 1,2, ...• mlp, as follows. Given lines II ,f] •. .. ,Im/p,

we partition the set Uj=lRj into sets G l , G], "', G=/p and create sets Ct. C2 , •.• , Cm/p,

such that G. is composed of the line segments whose right endpoint is to the rigllt of line

Ii-I and on or to the left of line i;, and C; is composed of the line segments which properly

intersect line i;. (Assume fo is the line x = -co and Cm/p = 0.) The monotonicity of each

sorted set R; implies that the partitioning and creation can be done in O(m) = O(n) time

as in lemma 2.1, and that ICd :$ p for each 1 :$ i :$ nip. Note that G .. U C.. contains aU

the line segments in U~=lRj which intersect the region between lines /;-1 and Ii. We then

compute the part of R between lines li_l and I; by solving the visibility problem defined by

Gi U Ci in O(p)" time on the p-processor array. Step 3 of algorithm VISIDILITY therefore

takes O(n) on a RAM/ARRAY(l). Therefore, the overall time complexity of algorithm

VISIBILITY is O(nlogn/logp).
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Theorem 3.4 Given a set of line segments S = {St,S2, .... Sn} in the plane, which are

opaque and do not intersect except possibly at their endpoints, algorithm VISIBILITY com

putes the visibility ofS from p = (0,. - 00) in time O(n log n/logp) on a RAM/ARRA Y(l).

3.5 Dominance counting between two sets

Given two seta of points P = {Px,P2, ... ,Pm} and Q = {qt,Q2, ... ,qn} in the plane, the

dominance counting problem is to determine, for every point Pi E P, the number of points

in Q which are dominated by Pi. (Recall that, for any two points u and v, 1£ is dominated

by v if x(u) < xCv) and y(u) < y(v).) In the algorithm DOMCOUNT, we show how to

solve the problem in O(N log NI logp) time on a RAMIARRAY(I), where N = m +n. For

simplicity, we assume the x (resp., y) coordinates of points in P U Q are pairwise distinct.

Since sorting can be done in O(NlogN/logp) time, we assume also that the points in P

(resp., Q) are sorted by increasing x coordinate.

Algorithm DOMCOUNT:

Input: Two sets of points P = {Pl,P2, ... ,Pm} andQ = {QI,q2, ... ,qn} in the plane sorted

by increasing x coordinate. For simplicity, we assume the x (resp., y) coordinates of

points in P U Q are pairwise distinct.

Output: A list of points X = {Ul' U2, •.. ,um+n}, which are the points in P U Q sorted by

increasing y coordinates. For each point u E X, we also have a count C(u), which is

the number of points in Q dominated by u.

1. Merge the points in P and Q into one set V = {Vi, V2, .•. ,VN} I sorted by increasing

x coordinate, where N = m + n. Also, we "mark" each point in V if it carne from Q.

The count C(v), Cor every v E V, is initialized to o.

2. If N :$ P then solve the problem in D(N) time by direct use of the p-processor array.

This is straightforward and omitted.

3. Using p vertical lines, partition the points in V into sets Vi, V2 , ••• , V
p

of size NIp

each in left-to-right order. The points in If; are to the left of those in Vj if i < j.

For each i, recursively solve the problem on Vi. The recursive call for V; returns a

sorted list Xi and a count Ci(U) for every 1£ E Xi, where Xi is the list of points in Vi

sorted by increasing y coordinate, and C;(u) is the number of points in Q n Vi that

are dominated by u.
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4. Compute X and-C(u) for every 1L E X by using the information returned by the p

recursive calls of Step 3. The details of this step are explained below.

End of Algorithm DOMCOUNT

The details of Step 4 are based on the following observation. Let Hj be the subset of

points of V whose y coordinate is larger than the (j - l)pth and less than or equal to the

(jp)th y coordinate of points in V. Suppose v is a point in Vi n Hj and let D(v) denote the

set of points in Q which are dominated by v. The set D(v) is the union of three disjoint sets

D(v) n Vi, D(v) n (Hj - Vi) and D(v) n (U~-::ll Vk ) - IIj (see Figure 7). Let S(v), W( v) and

SW(v) denote the respective cardinalities of these three sets D(v) n Vi, D(v) n (Hi - Vi)

and D(v) n (Ut.:,11Vk ) -lIj. Note that S(v) was already computed by the recursive call for

Vi. In the combining step, we need to compute W(v) and SW(v), for every point v E V.

In order to compute W(v) and SW(v), we do the following operations. As in lemma 2.1,

in D(n) time, we partition the set Uf=:lXi into sets Hit [h, ... ,Hn / p , using the horizontal

lines defined by the pth, 2pth,... ,nth smallest y coordinates of points in Uf=:l Xi. Note that

the points in Hi are above those in Hj if i > j. For each point v E Hj, we also mark it with

the index of the set Xi (hence the set Vi) which v came from. Let Counti(i) be the number

of points in Q n Vi which are below all the points in.Hj. The array Countj(l : p) can be

computed while the set of points in Hj are identified in the partitioning step. Observe that,

if v is a point in Hj n Vi, SW(v) is the value l:i-::1l Counti(k). Given array Counti(1 : p),

the value of SW(v) for all points v E IIj can be computed in O(p) time, by using the p"

processor array to computel:t:11 Countj(k) for all t, 1 :s; l:S; p. Thus, the value of SW(v)

for all v E V can be computed in O(p(n/p» = O(n) time totally.

To compute W(v) for all v E [[j, we use the p-processor array to solve the dominance

counting problem on Hi where Hi is the union, over all i E {I, 2, ... , p}. of the projections

of all u E Hj n Vi on the (i - l)th vertical cut·line (separating Vi-I from Vi). This can be

done in O(p) time since IHil = IHjl = p.

To sort the points of PU Q, we sort each II; in O(p) time, for i = 1,2, ... , nip, using the

p-processor array. Therefore, the total combining time of algorithm DOMCOUNT is O(n)

time. The overall time complexity of algorithm DOMCOUNT thus is O(nlogn/logp).

Theorem 3.5 Given two sets of points in the plane, P = {Pll.P'2 •.. . ,Pn} and Q =

{ql,q2'" ·,qm}, algorithm DOMCOUNT computes, for every point v E P, the number
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F;gu,e 7, D(v) ~ (D(v) n Vi) U(D(v) n (Hi - Vi)) U(D(v) n (Ui;;',V.) - Hi)

of poirds in Q which are dominated by v, in OeN logN/logp) time on a RAM/ARRAY(l),

whereN=n+m.

There a.re several problems can be reduced to this problem. The multiple range counting

and intersection counting of rectilinear segments are two examples [GoeS7]. Thus, we have

the following corollaries.

Corollary 3.1 Given a set P olm points in the plane and a sel R ofn isothetic rectangles,

we can compute, lor each rectangle, the number of points interior to it, in OeN log N /logp)

time on a RAM/ARRAY{1), where N = m + n.

Corollary 3.2 Given a set S of 11 rectilinear segments in the plane, we can compute, for

each line segment, the number of segments intersecting it properly, in O(n log n/logp) time

on a RAM/ARRAY!J).

4 Generalization to a RAM/ARRAY(d)

In this section, we show how to design O(n log n/(pl-1Id logp» time algorithms on a

RAM/ARRAY(d) for all the problems we already solved in O(nlogn/logp) time on a

RAM/ARRAY(l). Instead of giving the detailed algorithms for each problem, we sketch

the general approach. We assume a d-dimensional array of p processors can solve a problem
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of size pin O(pl/d), an assumption that is true for all the problems we considered. We as

sume also that the input/output of p elements into/from the array can be done in O(pl/d)

time (this is a. standard assumption in literature of mesh-connected array of processors and

we shall not tamper with it).

Recall that in all of our O(nlogn/logp) algorithms on a RAM/ARRAY(1), we parti.

tion the problems into p subproblems and recursively solve each problem and then com.

bine the subsolutions in 0(11.) time. IT we want to use the same paradigm to design

0(11. logn/(pl-1/d logp)) algorithm on a RAM/AR.RAY(d) (d > 1), the combining step has

to be done in 0(n/pl-1/d) time. We give a general approach as follows. Instead of parti

tioning the problem into p subproblems, we partition the problem into pl/(d+l) subproblems

and recursively solve them. To show how to combine the subsolutions in O(n/pi-l/d) time,

we show that, given pl/(d+l) sorted lists, the group of the first p elements in their union can

be identified and transferred to the array in O(pl/d) time.

Recall that the selection algorithm in [FJ82) selects the pth element from an m x pl/{t+d)

column 60rted array in time O(pl/{d+l) +pl/(d+l) log(p/pl/(d+l))), which is O(pl/(<I+l) logp).

This implies that the pth elements in the given pl/(d+l) sorted lists can be selected in 0(p1/d)

time. Given the pth element, we identify and transfer the group of the first p elements to

the array in O(pl/d) time as follows. We do a binary search in each of the pl/(d+l) sorted

lists to identify the group of the first p elements. This takes O(1ogp) time for each sorted

list. We then can identify the group of the first p elements in O(pl/{d+l) logp) time. The

RAM then issues pl/(d+1) 1/05 (one for each sorted list) to send the identified p elements

to the array. Thus, the decomposition as in Lemma 2.1 can be done in O(n/pl-lld) time

on a RAM/ARRAY(d).

This gives us a general approach to generalize our O(nlogn/logp) time algorithms on

a RAM/ARRAY(1) to a RAM/ARRAY(d) (d > 1). And the resulting recurrence for the

time complexity T(n) is:

T(n) == pl/(d+I)T(n/pl/{t+d)) + Cl n /pl-1/d,
T(n) == C2n1/d,

ifn > p

ifn ~ p,

where Cr.C2 are constants. Therefore, T(n) == 0(dnlogn/(pl-1/dlogp)), which is

O(n logn/(pl-l/d logp)) when d is a constant.
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5 Further Remarks

The question of whether the speedup of pl-l/dlogp, that the d-dimensional array makes

possible for a problem of size p, can be carried over to larger problems is really dealing with

the fundamental issue of the parallel-deromposability of the problem at hand: given tha.t a

problem of size p can be solved on a parallel machine P faster by a factor of (say) s(p) than

on a RAM alone, then that problem is s(p)-parallel.decomposable for P if the problem can be

decomposed in such a. way that the s(p) speedup also holds when the 'RAMIP combination

is solving a. problem too large to fit in P. Mueller's paper [Mue87] was a pioneering one

in that respect. This paper is another step in tha.t direction, in that we were able to show

that some geometric problems are 3(p)-parallel.decomposable for a. d-dimensional array of

p processoI'B where s(p) = pl-I/d logp. This question remains open for many other classical

geometric problems, in particular, the general trapezoidal decomposition, Voronoi diagram

and three dimensional convex hull problems. All of them can be solved optimally on an

n-processor array [JL90, TA90].

It is well known that there are close connections between the work on parallel

decomposability and the work on I/O complexity [AVSS, IlKSl]. In the study of I/O

complexity, we are given a sequential computer which has a small main memory and a large

secondary storage, and we are interested in solving problems of arbitrarily large size. The

input of the problem is initially stored in the secondary storage and the output has to be

written in the secondary storage. The limitation that the size of the main memory is small,

is similar to the limitation that the size of the attached parallel machine is small. The

major concern in the study of I/O complexity is to minimize the amount of I/O between

the main memory and the secondary storage. To achieve the best I/O performance, the

algorithm is allowed arbitrarily long computation times for scheduling the I/Os (only the

amount of I/O matters). On the other hand, the time to decompose the computation into

subcomputations and to schedule the subcomputations must be counted in the study of the

parallel-decomposability (Le., it has to be of O(Seq(n)/s(p))). In [Tsa90], we have shown

that techniques presented in this paper for the study of parallel-decomposability can be used

to achieve I/O performance which is known to be optimal for sorting [AVS8J. The tech

niques can also be used to achieve linear speedup for the geometric problems we considered

here, on several Hypercube related computers which consist of p processors each containing

O(n/p) local memory, provided that n > pl+~ for some constant ( > 0 (see [Tsa901 for the
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details). The same speedup has been previously achieved for sorting [AH88, CS88].
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