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On Parallel Rectilinear Obstacle-Avoiding Paths*

Mikhail J. Atallaht Danny Z. Chent

Abstract

We give improved space and processor complexities for the problem of computing,
in parallel, a data structure that supports queries about shortest rectilinear obstacle­
avoiding paths in the plane, where the obstacles are disjoint rectangles. That is, a query
specifies any source and destination in the plane, and the data structure enables efficient
processing of the query. We now can build the data structure with O(n2 / log n) CREW
PRAM processors, as opposed to the previous O(n2 ), and with O(n2 ) space, as opposed
to the previous O(n 2 (log n)2). The time complexity remains unchanged, at O((log n)2).
As before, the data structure we compute enables a query to be processed in O(log n)
time, by one processor for obtaining a path length, or by O( rk/ log n1) processors for
retrieving a shortest path itself, where k is the number of segments on that path. The
new ideas that made our improvement possible include a new partitioning scheme of the
recursion tree, which is used to schedule the computations performed on that tree. Since
a number of other related shortest paths problems are solved using this technique as a
subroutine, our improvement translates into a similar improvement in the complexities
of these problems as well.

1 Introduction

Let P be a rectilinear convex polygon having O(n) vertices and inside which lie n pairwise

disjoint rectangular obstacles that are rectilinear (Le., whose edges are parallel to the co­

ordinate axes). We are interested in computing, in parallel, a data structure that supports

queries about shortest rectilinear obstacle-avoiding paths in P. That is, a query specifies a

source and a destination, and the data structure enables efficient processing of the query.

For any pair of query points, the data structure computed in [3] enables, in o(log n) time,

one processor to obtain the path length, or o(fkflog n1) processors to retrieve the shortest

path itself, where k is the number of segments of that path. Here we construct the same

data structure as in [3], but by using O(n2 / log n) CREW PRAM processors rather than

O(n2 ), and with O(n2 ) space rather than O(n2(logn)2). The time complexity of the algo­

rithm for constructing the data structure remains O((log n )2). The new ideas that made
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our improvement possible include a new partitioning scheme of the recursion tree, and the

careful use of this partitioning to schedule the computations performed on T. This results

in a smaller processor complexity, and also in a saving in space made possible by the fact

that we can now throwaway information almost immediately after using it (whereas the

scheme in [3] was forced to keep that information).

We refer the reader to [3] for a more detailed discussion of such path problems and for

a review of the previous work on such problems. The next section reviews the definitions

and features of the algorithm in [3] that are needed to comprehend the improvement which

will be given later, in Section 3.

Recall that the CREW PRAM is the synchronous shared-memory model where concur­

rent reads are allowed, but no two processors can simultaneously attempt to write in the

same memory location (even when they are trying to write the same thing).

Throughout, we assume that all geometric objects (segments, polygons, paths, rect­

angles, convex hulls, etc.) are rectilinear (that is, each of their constituent segments is

parallel to one of the two coordinate axes), and that all paths (shortest or otherwise) are

obstacle-avoiding.

2 A Review of the Previous Algorithm

Polygon P is specified by a circular sequence of vertices Vb V2, ••• , Vm , as encountered by

a counterclockwise walk along the boundary of P starting at VI, where m is the number of

vertices of P. A circular ordering of the points on the boundary of P is defined by the order

in which they are encountered in the walk along the boundary of P that follows the circular

sequence of vertices of P. The set of rectangular obstacles contained in P is denoted by R.

The vertex set of R is denoted by VR (hence IVRI = 4n).

A rectilinear convex polygon Q is a rectilinear simple polygon such that every line

segment which joins two points of Q and is parallel to a coordinate axis is contained in Q.

The rectilinear convex hull of a set of objects in the plane is a (rectilinear) convex polygon

that contains the set of objects and has minimum area.

For a set of obstacles S, it is possible that the convex hull of S does not exist (see [12] for

example). Let CH(S) denote the convex hull of S (if CH(S) exists). Let R' be a subset of

R, and without loss of generality assume that CH(R') exists (Section 2 of [3] shows how to

handle the case where CH(R') does not exist). Furthermore, we assume that CH(R') does
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Figure 1: illustrating the definition of B(R').

not intersect the interior of any obstacle in R - R' (the way in which the algorithm in [3]

partitions obstacles into subsets guarantees that this assumption holds for all the subsets of

R generated by the algorithm). In the following definition, when we talk about "visibility",

we are assuming that the obstacles as well as CH(R') are opaque objects.

Definition 1 Let B(R') be the set of points p on CH(R') such that either (i) p is a vertex

of CH(R') or (ii) p is horizontally or vertically visible from a vertex in VR' (see Figure 1).

Obviously, IB(R')I = O(IR'I). That B(R') can be computed in O(1ogn) time using O(n)

processors follows from [4]. We assume that B(R') is sorted according to the order in which

its points are visited by a counterclockwise walk around CH(R'), starting at some vertex of

CH(R'). The next lemma shows the importance of B(R').

Lemma 1 For a vertex p E VR' and a point q not in the interior of CH(R'), there exists a

shortest p-to-q path that goes through a point of B(R').

Proof. See the proof of Lemma 13 in [3]. 0

As in [3], an important method used by the algorithm involves multiplying special kinds

of matrices. All matrix multiplications in the algorithm are in the (min, +) closed semi-ring,

i.e., (M' * M")(i,j) = mink{M'(i,k)+ M"(k,j)}. A matrix M is said to be Monge [1] iff

for any two successive rows i, i + 1 and columns j, j + 1, we have M(i,j) + M(i + 1,j + 1) ~

M(i,j + 1) + M(i + 1,j). For two point sets A and B in the plane, let matrix MAE contain

the lengths of shortest paths between the points in A and the points in B. Now, consider
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two finite point sets X and Y, each totally ordered in some way (so we can talk about the

predecessor and successor of a point in X or in Y), and such that the rows (resp., columns)

of the path lengths matrix Mxy are as in the ordering for X (resp., Y). Matrix Mxy is

Monge iff for any two successive points p, p' in X and two successive points q, q' in Y, we

have Mxy(p, q) + Mxy(p', q') :s; Mxy(p, q') + Mxy(p', q). The next lemma characterizes

the Monge matrices of path lengths used in the algorithm.

Lemma 2 Let CP be a convex polygon that contains a subset R' of R and whose boundary

does not intersect the interior of any obstacle in R. Let X and Y be finite sets of points on

the boundary of CP, such that the portion of that boundary spanned by X is disjoint from

that spanned by Y. Then the matrix Mxy of path lengths between X and Y is Monge.

Proof. See Lemma 1 of [3].

The following well-known lemma [1, 2] is useful.

o

Lemma 3 Assume that matrices Mxz and Mzy are Monge, with IXI = cIIZI :s; c2IYI for

some positive constants Cl and C2. Then M xz *Mzy, which is also Monge, can be computed

in o(log JZI) time and O(IXIIYI) work in the CREW PRAM model.

The next lemma is also needed in the algorithm.

Lemma 4 Let X, Y, and Z be finite point sets such that for any p E X and q E Y, a

shortest p-to-q path can be chosen to go through Z, where IXI :s; a, IYI :s; {3, and IZI :s;

I, such that a = Cll :s; C2{3 for some positive constants Cl and C2. Assume that X (resp.,

Y, Z) can be partitioned into a constant number of subsets Xi, 1 :s; i :s; lx (resp., l'j, Zk,

1 :s; j :s; ly, 1 :s; k :s; lz) such that all MXiZ" and MZ"Yj are Monge. Given Mxz and Mzy,

the matrix Mxy can be computed in O(log,) time and O(a{3) work in the CREW PRAM

model.

Proof. See Lemmas 4 and 5 in [3]. 0

The algorithm in [3] is based on the two-way divide-and-conquer strategy. For the case

of computing the matrix of the B( R)-to-B( R) path lengths, the algorithm uses the following

divide-and-conquer overall scheme:

(i) It partitions the obstacle set R into two subsets R 1 and R2 of relatively balanced sizes by

using a "staircase" separator (such a staircase separator is computed in [3] in O(log n)

time using O(n) processors).
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(ii) It solves recursively the two subproblems in parallel, that is, it computes the matrix of

the B(Rt}-to-B(Rt} path lengths and the matrix of the B(R2)-to-B(R2) path lengths.

(iii) It performs 0(1) Monge matrix multiplications to obtain, from the output of the two

recursive calls (i.e., the matrix of the B(RI)-to-B(Rt} path lengths and the matrix

of the B(R2)-to-B(R2) path lengths), the desired matrix of the B(R)-to-B(R) path

lengths.

The above procedure obtains the matrix of the B(R)-to-B(R) path lengths in O((log n)2)

time and using 0(n2j(logn)2) processors (see Section 5 of [3J for a more detailed descrip­

tion). Now, the algorithm in Section 5 of [3J can actually be used to compute much more

information than the matrix of the B(R)-to-B(R) path lengths. Stage (iii) of that proce­

dure can also compute the matrix of the B(Rt}-to-B(R) path lengths and the matrix of the

B(R2)-to-B(R) path lengths within the same complexity bounds as those for computing

the matrix of the B(R)-to-B(R) path lengths. In addition, that algorithm creates (as in [3])

a recursion tree T, in 0((logn)2) time and using 0(n2j(logn)2) processors. Each node v

of T is associated with a subproblem (call it Pv ; note that Pv is a subset of R generated by

this algorithm) and the information (call it Iv) associated with Pv: Specifically, Iv consists

of (1) a description of all the B(Pv)-to-B(Pv) path lengths and (2) a description of all the

B(Pv)-to-B(Pparent(v)) path lengths (if v is not the root of T). Based on this algorithm,

[3J computed the matrix of the VR-to-VR path lengths in O((logn?) time using 0(n2
) pro­

cessors. That computation of the VR-to-VR path lengths is the most difficult part of the

algorithm for building the data structure, and it is in fact this computation that caused the

space and processor complexities of [3J to be 0(n2(1ogn)2) and (respectively) 0(n2). The

next section describes our new approach to this computation. We do not go into the other

aspects of the solution given in [3], since they are not directly relevant to what follows.

3 The Improvement

We assume that we haye already executed the algorithm in Section 5 of[3], as reviewed in the

previous section, and obtained Iv for each node v in T. We now give a high-level description

of our new method for computing the desired matrix of the VR-to- VR path lengths. We focus

only on the computation of this matrix because, once that matrix is available, the same

method as in [3J can be used to obtain, in O(1og n) time and O(n2/log n) processors, the

description of the 4n shortest path trees, each rooted at one of the 4n vertices of YR. It
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Figure 2: illustrating the wavefronts of T.

suffices to give an O((logn)2) time, O(n2 log n) work, and O(n2 ) space algorithm for the

computation of the matrix of the VR-to- VR path lengths; this would imply the claimed

o(n2I log n) processor bound because of Brent's theorem [6].

We next describe a partition of the nodes of T that will play an important role in guiding

the computations that will later be performed in T. Let the i-th wavefront in T (denoted as

WFi) be the subset of nodes v in T such that n·S- i - 1 < IPvl ~ n·S- i . Let 0,1, ... , h be the

indices of the nonempty wavefronts in T (clearly, h = O(logn)). Let P be any root-to-leaf

path in T. The following statements are easy consequences of the definition of wavefronts:

1. P goes through the wavefronts in sorted order - first through WFo, then WF}, etc.

2. The wavefronts form a partition of the nodes of T.

3. The last wavefront, WFh, contains all the leaves of T.

4. P nWFi ~ 16. This is because if u is a child of win T, then IPwl/S ~ IPul ~ 7IPwI/S,
and 16 is the smallest integer k such that (718)k ~ (1/8).

5. LVEWFi JPvl ~ 64· n. This one follows from the previous one - an obstacle vertex

can belong to at most 16 nodes of a wavefront, and since there are 4n of them the

relationship follows.

Figure 2 illustrates the wavefront concept. Note that the last wavefront contains all the

leaves.
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Remark: The reader may be wondering why we partition the nodes of T in this way and

not in a more "natural" way such as, for example, defining WFi to be the vertices at the

i-th level of T. The reason for partitioning the nodes of T in this way is that it is crucial

that the nodes in the same wavefront have the same associated problem size, to within a

constant factor of each other (as required by lemmas 3 and 4). A partition by levels would

fail to satisfy this requirement because two nodes that are at the same level of T can have

very different associated problem sizes, e.g., it could be 0(1) for one node and O(nt
) for

another node, 0 < f < 1. In other words, we would be unable to use lemmas 3 and 4.

Let Mi, 0 ~ i ~ h, be the collection of all the B(Pv)-to-B(Pw) path lengths information

for nodes v, w E WFi. We compute M o, ... , Mh in that order. We will show that Mo can

be obtained in 0(n2
) work and O(1ogn) time and that, once we have any Mi, we can obtain

Mi+l also in O(n2 ) work and O(log n) time. A proof of the previous statement would clearly

imply a total O(h . log n) time bound and O(h . n2 ) work bound for the computation of all

the Mi'S.

The next lemma is a simple but important building block in what will follow later.

Lern rna 5 Let nodes v, wET be such that:

1. cli PvI ~ IPwI ~ c21 PvI for some positive constants Cl and C2·

2. The B(Pparent(v»)-to-B(Pparent(w») path lengths matrix is already available.

Then we can compute, in logarithmic time and O(!Pvl·IPwl) work, the following quantities:

1. The lengths of the B(Pv)-to-B(Pparent(w») paths and of the B(Pw)-to-B(Pparent(v»)

paths.

2. The lengths of the B(Pv)-to-B(Pw) paths.

Proof. See Subsection 6.1 of [3]. 0

We now explain how to use Lemma 5 to obtain Mo. We start at the root and proceed

down the tree, using Lemma 5 as we go along. We do not enter any node in WF1 until

we are done with WFo. While processing WFo, there are actually two types of usages of

Lemma 5 that take place, as follows. Suppose we have completed the computation of the

B(Pparent(v»)-to-B(Pparent(w») path lengths information for parent(v),parent(w) E WFo. In

the case where both v and ware in WFo, we use the lemma to compute the B(Pv)-to-B(Pw)

path lengths. In the case where only one of v, w is in TVFo (suppose v E WFo, w E vVFI) ,
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we use the lemma to compute the B(Pv)-to-B(Pparent(w») path lengths. In the case where

both v and w are in WFl, nothing is done for the pair v, w until the processing on all the

nodes in WFo is completed.

Note: The rule "do not start WF i+1 until we are done with WF;" requires synchronization

that can easily be done in logarithmic time after each usage of Lemma 5. (There are in fact

ways to avoid this synchronization, but since we can afford the obvious logarithmic time

synchronization we choose to use it, in order not to unnecessarily clutter the exposition.)

Once done with Mi, we move down and process Mi+t, again by repeatedly using

Lemma 5.

We claim that the total work done by the above scheme is O(n 2
) for the computation

of Mo, and also O(n2) for the computation of any Mi+l given Mi. To see this, observe that

this work is proportional to:

L IPvI .1Pwi =( L IPvI) . ( L
v,wEWFi+l vEWFi+l wEWFi+l

which is O(n2 ) because:

L IPvl = O(n).
vEWFi+l

The above analysis also implies an O(n 2 ) space complexity for the algorithm, because

once we are done with processing wavefront WEi+t, we can discard the Mi information,

since the computation of Mi+2 will only need Mi+t. We ultimately need only keep Mh,

which contains the desired matrix of the VR-to-VR path lengths: If p (resp., q) is a point

that is a vertex of the rectangular obstacle associated with leaf v (resp., w) of T, then both

v and ware in WFh and hence the shortest p-to-q path length is already available in Mh

(by definition, Mh contains the B(Pv)-to-B(Pw) path lengths for all v, w E WFh, and in

this case each of Pv and Pw consists of a single rectangle).

4 Conclusion

Although the algorithm given here brings the space complexity down to an optimal O(n 2
),

the work complexity is still a factor oflog n away from the optimal O(n 2 ) (recall that the se­

quential complexity of this problem is O(n2) time [3]). Whether there is an 0((1ogn)2) time,

O(n2j(logn)2) processor algorithm for this problem remains an interesting open question.

Acknowledgement. Professor Hosam ElGindy [lOJ has claimed similar bounds but by
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using a very different approach, one that is based on using the Pan-Reif techniques rather

than the methods based on Monge matrices that we used.
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