Purdue University

Purdue e-Pubs

Department of Computer Science Technical

Reports Department of Computer Science

1993

Biased Finger Trees and Three-Dimensional Layers of Maxima

Mikhail J. Atallah
Purdue University, mja@cs.purdue.edu

Michael T. Goodrich

Kumar Ramaiyer

Report Number:
93-035

Atallah, Mikhail J.; Goodrich, Michael T.; and Ramaiyer, Kumar, "Biased Finger Trees and Three-
Dimensional Layers of Maxima" (1993). Department of Computer Science Technical Reports. Paper 1052.
https://docs.lib.purdue.edu/cstech/1052

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.


https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

BIASED FINGER TREES AND
THREE-DIMENSIONAL LAYERS
OF MAXIMA

Mikhail J. Atallah
Michael T. Goodrich
Kumar Ramaiyer

CSD TR-93-035
June 1993
(Revised 3/94)
(Revised 4/94)




Biased Finger Trees and Three-Dimensional
Layers of Maxima

Mikhail J. Atallah* Michael T. Goodrich? Kumar Ramaiyer?
Dept. of Computer Sciences Dept. of Computer Science Dept. of Computer Science
Purdue University Johns Hopkins University  Johns Hopkins University
W. Lafayette, IN 47907-1398 Baltimore, MD 21218-2694 Baltimore, MD 21218-2694
nja@cs.purdua. edu goodrich@cs. jhu.edu kumar@cs.jhu.edu
Abstract

We present a method for maintaining biased search trees so as to support [ast finger updates
(i-e., updates in which one is given a pointer to the part ol the tree being changed). We
illustrate the power of such biased finger trees by showing how they can be used to derive an
oplimal O(nlogn) algerithm for the 3-dimensional layers-ol-maxima problem and also obtain
an improved method for dynamic point location.

1 Introduction

Binary search trees are one of the most useful data structures, and are ubiquitous throughout the
design and analysis of efficient algorithms. In some cases they serve as a stand-alone structure
(e.g., implementing a dictionary or a heap), while in many cases they are used in tandem with
other structures, either as primary or secondary structures (or both, as in the range trec [35]). In
many dynamic computational geomelry algorithms they may even be found as tertiary structures.

1.1 Background and Motivation

When a binary search tree T is maintained dynamically as a primary structure it is appropriate to
count, as a part of the update time, the time to perform a top-down search for the node(s) in T being
changed. This may not be appropriate when T is used in tandem with other structures, however,
for one may be given, as part of the input to an update operation, pointers, or “fingers” (19, 24, 21],
directly into the part of T being changed. This may, in fact, have been a prime motivating factor
behind the method of Huddlestor and Mehlhorn [21] for designing a dynamic search tree that has
an O(1) update time performance for insertions and deletions when the search time is not counted,
where we use “O(-) time” to refer to a worst-case time bound that is amortized over a sequence of
updates.

Another important variant concerns the case when each item i in the search tree is given a
weight, w;. This weight may represent an access probability, as in an optimal binary search tree
structure [4, 23]. Or it may represent the size of some auxiliary structure associated with item i, as
in a link-cut structure [41] (which itself has many applications [12, 17, 18]) or in a point location
structure built using the trapezoid method [9, 34, 39]. In cases with weighted items such as these
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one desires a search tree satisfying a bias property that the depth of each item 7 in the tree be
inversely proportional to w;. Bent, Sleator and Tarjan [6] give a method for maintaining such a
structure subject to update operations, such as insertions, deletions, joins, and splits, as well as
predecessor query operations. Most of their update and query operations take O(log W/w;) time
(in some cases as an amortized bound), with the rest taking slightly more time, where W is the
sum of all weights in the tree.

1.2 Our Results

In this paper we examine a framework for achieving (ast finger-tree updates in a biased search
tree, and we refer to the resulting structure as a biased finger tree. We know of no previous work
for a structure such as this. We show that insertions and deletions in a biased finger tree can be
implemented in O(logw;) time, not counting search time, while still maintaining the property that
each item ¢ is at depth O(log W/w;) in the tree. Moreover, we show that, while split operations
will take O(log W/w;) time (which is unavoidable), we can implement join operations in O(1) time.

QOur structure is topologically equivalent to that given by Bent, Sleator, and Tarjan [6]. In
fact, if each item ¢ has weight w; = 1, then our structure is topologically equivalent to a red-black
tree [14, 20, 42]. It is our vpdate methods and amortized analysis that are different, and this is what
allows us to achieve running times that are significant improvements over those obtained by Bent,
Sleator, and Tarjan, even il one ignores the search times in their update procedures. Moreover, we
provide an alternative proof that red-black trees support constant-time amortized finger updates
(which is a fact known to folklore).

We show the utility of the biased finger tree structure by giving an optimal O(nlogn)-time
space-sweeping algorithm for well-known 3-dimensional layers-of-maxima problem (3, 8, 15, 26] and
also give improved methods for dynamic point location in convex subdivision [34, 9]. The space-
sweeping algorithm makes use of restricted dynamic point location in rectilinear subdivision, which
we deal as a special case of point location in convex subdivision.

In the sections that follow we outline our method for maintaining biased finger trees and we
describe how they may be applied for dynamic point location as well as how they lead to an optimal
method lor the 3-d layers-of-maxima problem.

2 Biased Finger Trees

Suppose we are given a totally ordered universe U/ of weighted items, and we wish to represent
a collection of disjoint subsets of I/ in binary search trees subject to the “standard” tree search
queries, as well as item insertion and deletion in a tree, and join and split operations on trees
{consistent with the total order). Aho, Hopcroft, and Ullman [4] refer to these as the concatenable
queune aperations.

In this section we describe a new data structure that efficiently supports all of the these oper-
ations. So as to concentrate on the changes required by an update operation, we will assume that
each update operation comes with a pointer to the node(s) in the tree(s) where this update is to
begin. Formally, we define our update operations as follows:

Insert(i, wi, p;-,T) : Insert item ¢ with weight w; into T, where p;- is a pointer to the predecessor,
i~,of i in T (if ¢ has no predecessor in T, then we let this point to ¢’s successor).
Delete(?,p;, T) : Remove item ¢ from the tree T', given a pointer p; to the node storing <.

Split(4,T) : Partition T into three trees: T}, which contains all items in T less than ¢, the item 7
itself, and T, which contains all items in T greater than i.




Join(Tz,Ty) : Construct a single tree from T and T}, where all the items in 7, are smaller than
the items in 7j,.

Change-weight(i, w!, T, p;) : Change the weight of the item ¢ in T from w; to wj, given the pointer
pi to the node storing the item 1.

Slice(%, T, z,73,%2) : Slice the item < in T into two items ¢; and i; such that ¢~ < i; € 4y <41, and
the weight of item ¢y is  * w; and the weight of item 45 is (1 — z) * w;, where z € IR, and
0.0 < < 1.0, and ¢~ and ¢+ are predecessor and successor items of  in T respectively.

Fuse(iy,42,%,T) : Fuse the items 7; and 5 in T into a single item 7 of weight w;, + w;, such that
t-l S 1 S 1:2 in T,

As mentioned above, our structure is topologically similar to the biased search tree! of Bent,
Sleator and Tarjan [6]. Our methods for updating and analyzing these structures are significantly
different, however, and achieve run times better than those of Bent et al. in most cases (see Table 1).

We assume that items are stored in the leaves, and each internal node stores two values, left and
right, which are pointers to the largest item in the left subtree and the smallest value in the right
subtree, respectively. In addition, the root maintains pointers to the minimum and maximum leaf
items. Every node z of the tree stores a rank r(z) that satisfies the natural extensions of red-black
tree rank [42] to weighted sets [6]:

1. i z is a leaf, then r(z) = |log w;|, where 1 is the item z stores.

2. If node z has parent y, then #(z) < 7(y); if z is a leaf, then »(z) < r(y) — 1. Node z is major
if 7(z) = r(y) — 1 and minerif r(z) < r(y) — 1.

3. If node z has grandparent ¥, then r(z) < r(y) — 1.

In addition to the above rank conditions, we also requite a node be minor if and only if its sibling
or a child of its sibling is a major leaf [6]. We refer to this as the bias property.

We now prove a lemma which relates the depths of the nodes with their ranks. We let dr(v)
denote the depth a node v in the tree 7'.

Lemma 2.1: If u is an ancestor of a node v in T, then dr(u) — dr(v) = O(r(v) — r(u)).

Proof: The ranks along any leaf-to-root path are non-decreasing and also the rank of a node is
strictly less than its grandparent. Moreover, the rank of a minor node is strictly less than the
rank of its parent. But the depth along any leaf-to-root path strictly decreases and the depths of
adjacent nodes differ exactly by one. So, we have dr(z) — dr(v) = O(r(2) — (). n

In the remainder of this section we provide algorithms for various update operations on biased
finger trees and also analyze their amortized complexities.

2.1 Rebalancing a Biased Finger Tree

We begin our discussion by analyzing the time needed to rebalance a biased tree after an update
has occurred. We use the banker’s view of amortization [43] to analyze the rebalancing and update
operations. In each node & of a biased finger tree we maintain? a number, C(z), of “credits”, with
0 £ C(z) £ ¢, for some constant ¢ > 0. We assign three types of credits to rodes of a biased finger
tree as follows:

! Bent, Sleator and Tarjan actually introduce two kinds of biased search irees; our biased finger trees are structurally
equivalent Lo the ones they call locally biased.
2This credit nolion is only used for analysis purposes. No actual credits are stored anywhere.




Update Operation Previous Biased Trees {6] | Biased Finger Trees
Search(i,T) O(log W/ w;) O(log W/w;)

Insert(d, wi, p;—, T) 0 (log En_(i;‘_%m) O(]log v +1)
Delete(i, T, pi) O(log W/w;) O(log w;)

Split(¢, 1) O(log W/w;) O(log W/w;)

Join(Tz, Ty) O(|log W/ Wy) 0(1)
Change_Weight(z, wy, T, p;) O(log(%)) O(| log w;/wyl)

Slice(i, T, 2,4y, 12) — O(log m)
Fuse(y,12,%,T) — O(min(log w;, , log w;, )

Table 1: Summary of Time Bounds for Biased Tree Operations. W and W' are the sum of
the weights of all the items before and after the update operation respectively, Wy (W,) denotes the
sum of weights in T (T}), and ¢~ (i*) denotes the predecessor (successor) of i. The complexities
for update operations only count the time to perform the update, and do not include search times
(even for the previous biased trees).

Twin-node credit : A node « is assigned one twin-node credit, if z and its sibling have the same
rank. This type of credit was suggested by Kosaraju [25]. We use these twin-node credits to
amortize the cost of rebalancing operations.

Spine-node credit : A node u is assigned two spine-node credits, if # occurs along the leftmost
or the rightmost root-to-leaf path of T,;. We use these spine-node credits to amortize the cost
of join operations.

Minor-rode Credit : A node % with parent v is assigned max{r(v) — #(z) — 1,0} minor-node
credits. We note that if % is a major node, then it gets zero credits, and if « is a minor node,
then it gets r(v) — (u) — 1 credits. Bent, Sleator and Tarjan [6] use a similar type of credit
scheme to analyze their implementation of the split and join operations.

We show that each operation starts with certain number of credits equal to our claimed amortized
time and using those credits, it completes the update and rebalancing and also maintains the above
credit invariant.

After an update operation, we do promote or demote operations on the ranks of some of the
nodes of the biased finger tree, which increase or decrease the rank of the nodes, respectively. These
operations locally preserve the rank properties, but may cause violation of the rank property on
other nodes, which may require further promotions or demotions or may even require rebalancing
to globally preserve the rank properties. We show that the total complexity of promotion, demotion
and rebalancing operations due to a single promote or demote operation is O(1). The structure of
our case analysis follows closely that of Tarjan [42].

Consider a promote operation on the rank of a node = with parent v so that r(u) becomes equal
to 7(v) = k (see Fig. 1). Let w be the parent of v and let ¥ be the sibling of v. We may have a
violation of the rank property, if »(v) = r(w). We have the following cases based on the ranks of
the nodes u, v,y and w:
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after increasing the rnk of node w i.c., recurse with u=w.

I'igure 1: Promote operation on the rank of the node .




Case 1. Suppose 7(v) # r(w). This completes the promote operation, as it does not cause any
violation of the rank property.

Case 2. Suppose 7(u) = r(v) = r(w) = k and r(v) # 7(y). In this case we have a violation of the
rank property. But sinee r(y) # r(v), we can do a rotation at w to preserve the property (see
Fig. 1.1). This completes the promote operation. We require 3 new credits to perform the
rotation and also to place one twin-node credit each in « and w, which are new equal rank
siblings.

Case 3. r(z) = r(v) = r(w) = r(y) = k. Since r(y) = r(v), we cannot do a rotation at w. In this
case we increase the rank of w to & + 1 and continue the promote operation with © = w (see
Fig. 1.2). If the old rank of w was equal to the rank of its sibling, say z, we use the twin-node
credits placed on w and =z to charge this operation. If the old rank of w was not equal to the
rank of its sibling, then rank of z must be k + 1 (for z cannot be a minor node as otherwise,
7 would be a leaf of rank £ and w would be a node of rank &£ 4 1 by properties 2 and 4 of
rank, which contradicts our assumption that r(y) = v(w)). But this implies that we are now
in case 1 at w. So, the promote operation terminates at w and, in this case, we place one
twin-node credit each in w and 2.

Analysis: The promote operation does not create any new minor nodes and hence the minor-nade
credit invariant is preserved. In addition, only a rotation can add new spine nodes, and it is easy to
see that at most one node becomes a new spine node which would require 2 new spine-node credits.
So, the promotion operation requires at most 5 new credits; hence, it has complexity O(1).

Let us therefore consider next the demote operation on the rank of a node v with parent v,
with r(z) = k — 1 (see Fig. 2). Let y be the sibling of «. This operation may cause a violation of
the bias property, if % is 2 major node. We have the following cases based on the (new) ranks of
the nodes u,v and y:

Case 1. r(u) = & — 2 and r(v) = k£ — 1. This terminates the demote operation as u remains a
major node in this case.

Case 2. r(v) = k,r(y) = k — 1 and r(u) = k — 2. We have several subcases for this case.

Case 2.1. Both children of y have rank &£ — 2. In this case we decrease the rank of v to k—1,
and continue the rebalancing operation with « = v (see Figure 2.1). The nodes « and
v are no longer equal rank siblings. Thus, we can use the credits placed on « and y to
charge the operation.

Case 2.2. At least one child of ¥ from « has rank £ — 1. In this case we do a single rotation
at v and stop (see Figure 2.2). We place one credit each in equal rank siblings created
during the rotation. This operation requires at most 5 credits.

Case 2.3. The child of % closest® to u has rank & — 1 and the other child has rank & — 2. In

this case we do a left double rotation at v and stop (see Figure 2.3). We place credits in
equal rank siblings, and this case also requires at most 5 credits.

Case 3. 7(v) = k,7(y) = k,7(u) = & — 2 and both children of y have rank less than or equal to
k — 1 (see Figure 2.4). In this case we perform a single rotation at v, and proceed as in case
2 (since the new sibling of « has rank less than or equal to £ — 1), Here case 2 immediately
terminates, as subcase 2.1 is not possible. Hence all subcases in case 2 terminates, and this
case requires at most 7 credits.

*The distance implicitly refered here is with respect to in-order numbering on the nodes.
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Case 4. r(v) = k,r(2) = k — 2 and »(y) < k¥ — 1. This case is not possible. For y to be a minor
node, the old rank of » must be equal to k, or z must be a leaf of rank & — 1, both of which
contradicts our assumption.

Case 5. r(u) < 7(v) — 2. This terminates the demote operation, as u is a minor node before
the demotion, and demotion does not affect the rank properties. This case requires one new
minor-node credit, as rank of % is decreased.

Analysis: The demotion operation creates at most one new minor node. Only rotation can add
new spine nodes, and it is easy to see that at most one node becomes a new spine node due to
rotation, and requires at most 2 new spine-node credits. So, the demote operation requires at most
8 new credits and hence has complexity O(1).

Note that maintenance of left and right values during promote/demote (actually only rotation
requires changes) operations can be done within the time required for rotation. We also note that
during promote/demote operations, only rotation creates equal rank siblings (one pair during the
promotion operation, and at most two pairs during the demote operation), and at most one rotation
takes place during each operation. These observations lead to the following lemma.

Lemma 2.2: The total complexity of promotion, demotion and rebalancing operations on a biased
finger tree due to a single promote/demote operation is O(1) (actually at most 8 credits). Also,
each operation adds at most two pairs of equal rank siblings to the tree.

After various update operations on a biased finger tree, we refer to this lemma to bound the
complexity of the rebalancing operations to O(1).

2.2 Update Operations

We consider insert, delete, split, join and change-weight operations on a biased finger tree and
prove an amortized bound for each of these update operations. Let us begin by observing that the
maintenance of the leff and right values in the internal nodes and also the min and maz pointers in
the root of the tree are quite trivial and can be done within the time bounds. We do not discuss
them further in the paper. We use the same credit invariant as in the previous subsection to analyze
the update operations.

We begin with the join operation. We describe a “bottom-up” strategy, which contrasts with
the “top-down” approach of Bent, Sleator and Tarjan [6].
Join: Consider the join of two biased trees T, and T,. Let « and » be the rightmost leaf and the
leftmost leaf of T; and T}, respectively. Let w and { be the parent of 4 and v respectively (see Fig. 3).
The nodes z and v can be accessed using the pointers in the root nodes z and y respectively. We
have the lollowing cases:

Case 1. 7(z) = 7(y). In this case we create a new node z with 7, as the left subtree and T}, as
the right subtree, and we assign a rank of r(z) + 1 to z. We then proceed up the tree as in
the promote operation.

Case 2. r(z) < 7(y). In this case we traverse the rightmost path of T and the leftmost path of
T, bottom up, in the increasing order of ranks of the spine nodes. As we proceed we store
the pointers to the nodes encountered and also tags indicating whether they are from T} or
T, in an array A ordered by node ranks. We also keep track of the nodes of equal ranks
last encountered in the two paths and we terminate the traversal when reaching the root z.
Suppose 1 is the smallest rank node along the leftmost path of T, having rank greater than z.




Figure 3: Join of trees T, and 7.

Suppose e and b are the last encountered equal rank nodes during the traversal, and note that
the node £ was stored as the last node in array A. We attach z along with its left subtree to
t as the left child of t. For the other nodes in A, we proceed as follows {see Fig. 3): Consider
the next node, ¢, in the array A. Suppose ¢ is part of 7. If the successor of ¢ in A is a node
d from T, we attach ¢ and its left subtree as a right child of d. If the successor of ¢ in A is
a node d from Ty, we attach ¢ and its left subtree as a left child of d. Suppose ¢ is part of
T,. If the successor of ¢ in A is a node ¢ from 73, we attach c and its right subtree as a right
child of d. If the successor of ¢ in 4 is a node d from 7}, we attach ¢ and its right subtree as
a left child of d. We continue this process till the nodes ¢ and b are encountered. Then, we
create a new node z with 7, and T} as lelt and right subtrees respectively. We assign a rank
of r(a) + 1 to z and rebalance if required through a promote operation. This terminates the
join. If there are no equal rank spine nodes e and b, then we join all the nodes in the array
A in the above manner.

Case 3. 7(y) < 7(z). Symmetrical to above case.

Analysis: We have 2 spine-node credits in each of the nodes along the rightmost path of T, and the
leftmost path of Ty. In case 1 we add one new spine-node (2 credits), one pair of equal rank siblings
(2 credits) and do not add new minor nodes. So, case 1 requires 4 new credits to maintain the credits




invariant and one credit to perform the operation. For cases 2 and 3, we show that with 8 new
credits, we can complete the update operation and also maintain the credit invariant. We consider
the case 2. The analysis of case 3 follows similarly. We use one of the two credits in each spine
node [or the upward traversal to locate the node ¢ and the remaining one credit for the downward
traversal to construct the resultant tree. We observe that the nodes from z to the rightmost leaf in
T: and the node from ¢ to the leftmost leaf in T}, are not spine nodes in the resultant tree, hence,
no longer need to store spine-node credits. The nodes from ¢ to ¥ are still part of the leftmost path,
but their credits are in tact. The remaining spine nodes retain their credits from 7, and 7. We
now show that the maintenance of minor-node credits does not require any extra credits. Consider
two consecutive nodes ¢ and d on the leftmost path of T, and two consecutive nodes p and ¢ on the
rightmost path of 7,. Suppose the order of nodes is ¢, p,d and ¢ in the resultant tree. To maintain
minor-node credit invariant, we need a total of 7(¢)—7(p) — 1+ 7(p) —7(d) -1+ r(d)—7(q)— 1,1,
r(c) — 7(g) — 3 credits in nodes p,d and ¢. Before we perform the join the nodes d and ¢ contain a
total of 7(¢) + r(p) — r(g) — 7(d) — 2 credits, which are enough to maintair the minor-node credit
invariant, since r(p) > r(d). Similarly for other order of nodes ¢,p,d and ¢, we can show that
the maintenance of minor-node credits does not require any new credits. Suppose we create the
node z during the join, which requires one credit. This operation does not add any new spine or
minor nodes. But it creates a pair of equal rank siblings (i.e., « and ) and hence it requires 2 new
twin-node credits. Also, the assignment of rank r(a) + 1 to node ! may trigger more promotions
and rebalancing. But it needs at most 5 credits by lemma 2.2. Thus, the complexity of join is at
most 8 credits and hence it takes O(1) time.

Split: We perform the split operation as in [6]. But we show that with the same complexity we can
preserve all three types of credits in the nodes of the resultant trees. The algorithm for splét(7%,7)
works as follows: Traverse the path from the root node z to the leaf node ¢ and collect the pointers
to the fringe subtrees attached to the nodes in the path. Store the pointers {o left subtrees and the
right subtrees separately in two arrays. Perlorm repeated joins on the subtrees in the two arrays
separately to obtain two biased finger trees, say, T; and 7} (see Fig. 4). We perform the multiple
joins on left subtrees as follows: consider the join of a sequence of left subtrees {1, s, - -, {} obtained
during the split. Let #y, 73, -, Tk, be the ranks of the roots of the subtrees. We first join [;, with
{1 and then join the resultant tree to {_». We continue the process till we join the first subtree
I to obtain ;. The construction of T} follows symmetrically.

Analysis: The length of the path from root to ¢ is bounded by O(log W/w;) which also bounds
the number of joins. Here the joins do not take O(1) time, however, as there are no spine-node
credits in the internal nodes to amortize the cost of the joins. The cost of each join operation is
bounded by the difference in the ranks of the roots of two subtrees as shown in Bent, Sleator and
Tarjan [6). Thus, the cost of the multiple joins is bounded by O(3>¥-1 r; — ri41), which nicely
telescopes to O(rq — 7). This is bounded by O(log W/w;), where w; is the weight of the item <.
Similarly the multiple joins of the right subtrees take O(log W/w;) time. Also, the nodes of the
resultant trees preserve the minor-node credit invariant. This follows because Bent, Sleator and
Tarjan [6] show that after the split operation the roots of the two trees have rank 7(z) + 1 and also
all the nodes in the two trees satisfy the minor-node credit invariant. In addition, they show that
there are r{z)+ 1 —r(!) and 7(z) + 1 — (+) additional credits in the two roots [ and 7 respectively.
The number of new spine nodes is bounded by the length of the path from root to ¢, which is
again O(log W/w;). Equal rank siblings are created only during rebalancing operations and each
takes O(1) time (see Lemma 2.2). Finally, the number of rebalancing operations is bounded by the
number of joins which is again O(log W/w;). So, the split operation requires at most O(log W/w;)
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Figure 4: Three-way split of tree T with respect to item 1.

new credits to complete the update and also to maintain the credit invarjant.

Insertion: Consider the insertion of an item : with weight w; to a biased finger tree T'. Let i~ be
the immediate predecessor of item ¢ in T if it exists, and immediate successor of ¢ in T otherwise.
We provide a pointer to ¢~. The algorithm for insert operation inseri(s,w;,p;,T) proceeds as
follows:

Case 1. 7(i) < r(¢~). Create a new node ! with i~ and 7 as the left and right children respectively
and attach ! to the parent of i~. Assign a rank of 7(i7) + 1 to the node {. This operation
is equivalent to promotion of rank of the node ¢~ in the original tree and hence may require
rebalancing.

Analysis: The rebalancing requires O(1) new twin-node credits by Lemma 2.2. This oper-
ation may create at most one new spine node i.e., node {. To maintain minor-node credits,
place 7(i7)} + 1 — r(¢) — 1 i.e., 7(¢7) — 7(¢) eredits in 7. So, this case requires O(r(i~) —~ r(2))
credits.

Case 2. r(i™) < 7(¢). In this case traverse the path from i~ towards the root till a node g with
parent p is hit such that 7(q) £ 7(¢) < r(p). We refer the path from i~ to g as split path. Now
split the subtree 7, rooted at ¢ as described above into left and right subtrees such that i~
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insert {
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Figure 5: Insertion of node ¢

is the rightmost element in the left subtree. Let T, and T} be the two resultant trees. Now
join Ty with the item 7 and then join the resultant tree with 7;. The tree resulting from the
join is shown in Fig. 5. The rank of the root of this tree is 7(¢) 4+ 1. Attach the resultant tree
in place of ¢ in the original tree. The promotion of rank of rode g to r(z) + 1 may require
rebalancing, so we complete this case by performing any promotions needed, as described in
section 2.1.

Analysis: Suppose we start with O(r(Z) — »(7)) credits. Computing the split path takes
O(dr(i~) — dr(g)) time, which is bounded by O(r(g) — r(i7)), by Lemma 2.1. Splitting the
tree T, takes O(r(g) — r(i~)) time, which is bounded by O(r(:) — 7(:™)). The join of the trees
Ta, T: and T} takes O(1) time as i is a leaf and 7(¢) > max{r(a), 7(6)}. The rebalancing due
to promotion of rank of node ¢ requires (1) new twin-node credits. This case adds at most
one new spine node as the tree 7} remains unaffected during the join (see Fig. 5). The split
operation preserves the minor-node credits and as the rank of node g is only promoted, no
new minor-node credits are needed. So, the complexity of case 2 is O{r(7) — r(i™)).

Case 3. i does not have a predecessor in ;. This case is equivalent to a join of T; and T'. Traverse
the path of T up from ¢~ (which now denotes the successor of i) to locate a node a with
parent b such that r(a) < r(¢) < 7(b). Now create a new node [ with ¢ and @ as the left and
right children and attach { as the left child of b (see Fig. 6). Assign a rank of r(Z) 4+ 1 to L.

Analysis: The update takes O(1) time as we can use the spine-node credits to charge the
traversal along the leftmost path. The rebalancing after insertion of node ! requires at most
O(1) new twin-node credits. This case adds at most two new spine nodes l.e., nodes ¢ and !
and hence it requires 4 spine-node credits. To maintain the minor-node credits add r(2) — r(e)
credits to node e which is bounded by #(¢) — #{(i™), where i~ is the successor of 7 in 7.

So, the complexity of insert operation is O(|(r(i) — 7(i~)}|), where i~ is the predecessor of i in 7.
In other words, the time complexity for an insertion is (j( log 2% +1).

Deletion: Consider the deletion of an item ¢ with weight w; from the biased finger tree T for which
a pointer to the item ¢ is provided. Let j be the sibling of ¢, let = be the parent of ¢, let £ be the
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Figure 6: Leftmost Insertion of node ¢

sibling of u, and let { be the parent of # and & (see Fig. 7). The algorithm for deletion proceeds as
{ollows:

Case 1. The node ¢ is a minor node. Delete ¢ and attach T} in place of T}, (see Fig. 7.1). This is
equivalent to demotion of rank of © and may require rebalancing, as described in section 2.1.

Analysis: The rebalancing requires O(1) new twin-node credits. This operation adds at
most 2 spine nodes since the biasing condition forces either 7 or its right child to be a major
leaf. This operation does not add any minor nodes. So, this case requires Q1) credits.

Case 2. The node ¢ is a major node and at most one of j or & is a minor node. Join T; ard 7}
and attach the resultant tree in place of T} (see Fig 7.2). This is equivalent to demotion of
rank of ! and may require rebalancing.

Analysis: The rebalancing requires O(1) new twin-node credits. Suppose j is the minor node
which implies r(§) < »(k). Then the join requires O(r(k) — (7)) credits which is bounded
by O(7(:) — r(5)). But these credits are available as minor-node credits in j. This operation
does not add any new minor nodes and adds at most O(r(z)) new spine nodes, if ¢ occurs
along either of the extreme paths.

Case 3: The node ¢ is a major node and and both j and & are also major nodes. Join T; and T}
and attach the resultant tree in place of T} (see Fig 7.2). This operation if it promotes rank
of I requires rebalancing,.

Analysis: The rebalancing requires O(1) new twin-node credits. Then the join requires
O(|r(k)—7(7)]) credits which is  constant since both % and j are major nodes. This operation
does not add any new minor nodes and adds at most O(r(i)) new spine nodes, if { occurs
along either of the extreme paths.

Case 4. The node 7 is a major node and and both j and 4 are minor nodes. Then, the biasing
condition insists that the sibling of {, say m, be a major node. Now join T; with T} and then
join the resultant tree to T,,. Attach the resultant tree in place of the parent of [. This is
equivalent to demotion of rank of the parent of ! and may require rebalancing.
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1. Case 1 of deletion. Node i is a minor node.

delete |

2. Case 2 of deletion. Node i is a major node and j or k is a major node,

Tigure 7: Deletion of node :.
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Analysis: The rebalancing requires O(1) new twin-node credits. Suppose r(k) > r(j). The
other case is symmetrical. The join of T; and T} takes time O(r(k) — 7(7)). Let T, be the
result The node m cannot be a minor node, as otherwise bias property is violated. Suppose
! is 2 minor node. Then either m or right child of m is 2 major leaf, and hence the join of
T, and T}, takes constant time. In this case, the over all time for the two joins is bounded
by O(r(k) — r(§) + ¢), where c is constant, and this in turn is bounded by O(r(i) — r(5))),
as 1 is a major node. Suppose [ is a major node. Then the join of T, and 13, takes time
O(r(m) — r(k)). So, the time for the two joins telescope to O(r(m) — r(j)). This is bounded
by O(7(2) — r(k) + 3), since ¢ and m are both major nodes, and also the levels of ¢ and m'
parent differ by 3 (see Lemma 2.1). This operation preserves minor-node credits and adds at
most O(r(t)) new spine nodes, if ¢ occurs along either of the extreme paths.

So, the overall complexity of deletion of node i is O(r(¢)), which is bounded by O(log w;).

Corollary 2.3: If node i does not occur along either of the extreme paths of T, then deletion of ©
takes O(1) time.

Proof: Since ¢ does not occur along the extreme paths of T, after deltion of ¢, no new spine-credits
are required to preserve the credit invariant. Also, other operations can be charged by minor-node
and twin-node credits. |

Change-weight: Consider changing the weight of an item ¢ from w; to wy. We provide a pointer
to the node 7 for this operation. Let j be the sibling of ¢, let © be the parent of ¢, let £ be the
sibling of » and let ! be the parent of « and k. Let 7(i') be the new rank of 7. The algorithm for
change-weight operation proceeds as {follows:

Case 1. 7 is a minor node and r(i') < (). This case does not require any rebalancing as 7 is still
a minor node.

Case 2. ¢ is a minor node and 7(¢) < (). I 7(¢) < r(u) then, no change is required. Otherwise
insert ¢’ as in case 2 of insertion. This takes time O(r(3') — r(%)).

Case 3. i is a major node and (i) < 7{(i’). Proceed as in case 2 of insertion to insert 7. This
takes time O(r(¢) — 7(3}).

Case 4. i is 2 major node, 7(#') < »#(¢) and either ¢~ or % is a major node. Suppose (k) > ().
Join T; with Ty and then join the resultant tree with T}. Attach the resultant tree in place
of I. These joins telescope and take time O(r(k) — r(i’)), which is bounded by O(r(i) — (")),
since 1 is a major node.

Case 5. 7 is 2 major node, (') < »(¢) and both j and £ are minor nodes. Now, the biasing
condition insists that the sibling of {, say m, must be a major node. In this case join Tj, T
and 7% in order and then join the resultant tree with 75,. These joins telescope and take time
O(r(m) — r(¢")), which is bounded by O(r(z) — (")), since 7 is a major node.

So, the complexity of change-weight operation is O(]r(#') — 7(2)|), which is O(|10g %“1|)

Slice: Consider slicing the item ¢ with weight w; into two items i; and i; of weights £ + w; and
(1 — «) % w; respectively, where z € IR, and 0.0 < z < 1.0. We note that at least one of the two
nodes has rank at least 7(¢) — 1. Suppose j is the left sibling of ¢ (the other case is symmetrical).

~—— ~~Let @ be the parent of i We show thatusing O (r (i) = min(r(%1); 7(i2))) credits, we can complete ™=~

the slicing operation, and also maintain the credit invariant. We have the following cases:
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Case 1. i is a minor node. Create a new node [ with ¢; and #» as the two children. Attach { in
place of ¢ to i’s parent. Assign r(%) as the rank of I. Place r(u) — r(¢) — 1 credits in { (which
were in ¢ as i is minor). This operation does not require any propagation of ranks, and adds
at most one more spine node. At most one of ¢; and iy can be minor. If, say i, is minor,
place r(i) — #(é2) — 1 credits in i;. This case takes O(r(2) — r{i3)) time.

Case 2. ¢ is @ major node and j is a minor node, and r(j) < 7(¢;). Create a new node m with
T; as left subtree and ¢; as right child. Then create a new node { with / and ¢, as left and
right children, respectively. Attach the resultant tree in place of . Do demotion of rank, if
required. Assign a rank of »(¢1) + 1 to m and a rank of =(¢) to . Place appropriate minor
node credits, if required. This case takes O(r; — min(r(4;), 7(42))) time.

Case 3. 7is a major node and j is @ minor node, and 7(j) > 7(3;}. Create a new node ! with ¢; and
tz as left and right children, and then join T; with 7. Attach the resultant tree in place of u.
Do a demotion of rank, if required. Assign a rank of 7(¢) to {. Place appropriate minor node
credits, if required. In this case, the join takes O(r(¢) — r(7) time and other operations require
O(r(3) — min(r(i1),(i2))). Since 7(5) > r(4), the overall time for this case is bounded by

O(r(2) — min(r(i1), r(i2))).

Case 4. 7 1s a major node and j is also a major node. Create a new node { with ¢, and i; as the
two children, and then join 77 with 7;. Attach !in place of u. Assign (%) as the rank of {. Do
promotion/demotion of ranks ol nodes, if required. To maintain minor-node credit invariant,
place appropriate number of credits in iy or 3. As in case 3, the overall time for this case is
bounded by O(r(¢) — min(r(41), 7(32))).

Case 5: 2 =~ 1 or 7(i2) is a constant (the other case r ~ 0 is symmetrical). This is a special case.
We create a new node { with 7; and i; as children and attach in place of 7, if iy does not
cause any violation of bias property i.e., if right sibling, 7, of ¢ is not a minor node. If there
is a violation, then we use left value of j to identify the left most node in T}, say g, and then
traverse upwards to identily proper sibling of ip, within constant steps. The complexity of
this case is O(1).

Analysis: All cases add at most O(1) new spine nodes and equal rank siblings. So, the complexity
of slice operation is bounded by Q(r(i) — min(r(4,),7(:2)}), which is O(log m;“:'lm)

Corollary 2.4: The complexity of slice(i,w;, 5,,1,43), with 2 = 0.5, or 2 = 1.0, or z = 0.0, is

o).

Proof: Case 5 gives proof for part of the claim. If z & 0.5, both 7; and ¢3 are major nodes and we
do not require any new credits to maintain minor-node credit invariant. Also the joins in all the
cases take constant time, since ¢; is a major leal and its rank is either greater than j or is smaller
by at most 2. |

Fuse: Consider fusing of two leaf items #; and i3 with weights w; and w, respectively. We deal
with the cases when i) and i; are siblings, and when they are not siblings, separately. When i,
and ¢, are siblings, let the parent of ¢; and i be % and let v be the sibling of u. Also, let w be the
parent of « and v. We have the following cases:

Case 1. r(i1) = r(é2) and iy and i, are siblings. Collapse i; and i, into a single leaf i of rank
7(i1) + 1 and attach ¢ in place of u. No promotion/demotion of ranks of nodes is required.
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To preserve the three credit invariants, we do not require any new credits. This case takes
O(1) time.

Case 2. 7(i1) > r(é2) and 4; and i, are siblings. Create a new leaf ¢ of rank r(3,), and then join
T: with T,. Attach the resultant tree in place of w. Do a demotion of ranks to nodes in the
higher levels, if required. The join of 7; and T, take O(1) time. To see this, if « is minor
node, then join 7 and 7, directly. Otherwise, if v is 2 minor node, then join ¢ and T, directly;
if v is a major node, then the join algorithm traverses constant number of edges along the
leftmost or rightmost path of T, before locating the sibling for ¢. So, this case takes O(1)
time.

Case 3. r(i2) > r(41) and 4; and i, are siblings. Symmetrical to above case.

Case 4. (1) = (i) and #; and ¢; are not siblings. Delete ;, rename i, as 7 and increase the
rank of ¢ by 1. Do a propagation of ranks to nodes in the higher levels, if required. If %, is
not on a root-to-leaf path (see Corollary 2.3), then this case takes O(1) time, and O(r(%;))
time, otherwise.

Case 5. 7(¢1) > 7(42) and ¢; and 4, are not siblings. Delete i3, rename ¢; as 7 and change the
rank of 7 to log(w;, + w;,) (this operation may increase the rank of 7 by at most 1). Do a
propagation of ranks to nodes in the higher levels, if required. If 3 is not on a root-to-leaf path
(see Corollary 2.3), then this case takes O(1) time, and O(min(r(s;),7(i2))) time, otherwise.

Case 6. r(i3) > r(f1) and , and ?; are not siblings. Symmetrical to above case.

So, the complexity of fuse operation is O(min(r(41), 7(42))), which is O(min(log w;, , log wi, }),
if smaller weight item among ¢; and i; does not appear on a root-to-leaf path, and O(1) time,
otherwise.

We summarize:

Theorem 2.5: One can maintain a collection of biased search trees subject to tree searches, el-
ement insertion and deletion, change of weight of element, slicing and fusing of elements, as well
as tree joining and splitting, in the bounds quoted in Table 1 for biased finger trees, discounting
search fimes.

3 Some Properties of Biased Finger Trees

In this section, we prove some properties of biased finger trees. For example, Bent et al. [G] show
that repeated single-node joins on the right hand side can construct a biased finger tree in O(n)
worst-case time. In our case, however, we can show the following:

Theorem 3.1: Any sequence of joins that constructs a biased finger tree of n items can be imple-
mented in O(n) worst-case time.

Proof: The proof follows immediately from the fact that our join algorithm on biased finger trees
takes O(1) time. |
The above result raises the question of whether or not a linear time construction of a biased
tree is possible for an arbitrary sequence of insertions of items. We now prove a lower bound that
answers the question in the negative and also proves that our time for insertion is optimal.
First we state a result from information theory that is relevant to weighted trees.
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Theorem 3.2: (Abramson [1]) Consider any search tree T for a set of weighted items, §, where
item © has weight w; and depth d; in T. If every node of T' has at most b children, then the total
weighted depth ;g wid; is at least W o pilogy(1/p:), where p; = w;/W and W is the total
weight of items in 5.

It is proved in [6] that the depth of an item 7 in a biased tree is at most log W/w; + 1, where W
is the total weight. We now prove an identity relating the weights and heights of items in a biased
tree.

Lemma 3.3: The height h; of an item ¢ with weight w; in a biased tree T is at most log w;/w;,
where w, is the weight of the smallest item in the tree.

Proof: Expand each leaf item 7 of weight w; in T, by a biased tree T; of w; items, cach of weight
1. The depth of an old leaf item ¢ in the new tree is log W/w;+ 1 and the maximum depth of a leaf
in the subtree of 1 is log W + 1. But all the nodes at bottom log w, levels are virtual nodes created
by the above expansion. So, the height of each item 7 in the original tree is at most log w;/w,, with
the smallest item at height 0.

So, we have the [ollowing identity relating the sum of the depths of the nodes and the sum of
the heights of the nodes in a biased tree.

Corollary 3.4: In a biased tree T representing a set § of weighted items, 3 ;cshi + d;i <
nlog W/w, + n, where h; and d; are the height and depth of an item i respectively.

But the sum of heights of the nodes is always bounded the sum of the depths as shown in the
following lemma.

Lemma 3.5: In a biased tree T representing a set of § weighted items, we have ) ;c¢log wifw, <
Yies i < Tiesdi £ Lieslog W/w; + n, where W is the total weight of the items in the tree and
w, is weight of the smallest item in the tree.

Proof: Qmitted as it can be shown easily by induction. [ |

The above lemma suggests that updating algorithms that work in a bottom-up fashion on a
biased finger tree may have better bounds than top-down algorithms. We prove that this is indeed
the case. First we show a lower bound for an arbitrary sequence of insertions into a biased tree
and then show that our insertion algorithm achieves that bound whereas any insertion algorithm
that works in a top-down fashion cannot reach that bound.

Theorem 3.6: There is a sequence of insertions that requires Q(3 ;¢ s log w;/w,) time in any biased
tree, where w; is the weight of the item ¢ and w, is the smallest weight in Lthe set §.

Proof: First we observe that any top-down method of insertion must deal with the lower bound
to fix the position of the item in the total order, which is 2(log W/w;) time by theorem 3.2. This
observation along with Lemma 3.5 prove that any top-down method of construction of a biased
tree cannot contradict the claimed lower bound.

We now prove that any bottom-up method using fingers also cannot contradict this bound. Any
algorithm for énsert(i, w;, p;, T) must first raise the item ¢ to its biased height and then perform
a split on the underlying set § to separate the items smaller than ¢ and bigger than 7 and then
insert i. Any such split should take time proportional to the height of the item : in the tree in
the worst-case, which is Q(log w;/w,). For leftmost and rightmost insertions, there is no need for
split. We now show an adversary sequence of insertions which requires a time, at least equal to
the claimed lower bound. First insert an item s of weight w,. Then insert n — 1 items of weights
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Figure 8: Computation of Layer for a New Point p.

w1, Wa, - -+, Wa_1 respectively with w; = (Z;;ll w;) + w,, alternately as successor and predecessor
of item s. When inserting an item Z, it must be first raised to the level of the current root (since
wy = (Z;;ll w;) + w,) and then the tree must be split into two trees containing 51| and [t

items respectively. The depth of the tree at the time of inserting ¢ is O(log w;/w,) and hence the
split takes time proportional to the depth. So, the total time required for inserting n items is

O(1 4 3.2 log w;/w,) time which is Q3 ;e glog wifws). |
Corollary 3.7: Our insertion algorithm on a biased finger tree is optimal.

Proof: The complexity of insert(i,w;,p;,T) operation is O(|logw;/w;]). The bound is

larger if w;’s are smaller and hence the complexity for worst-case sequence of insertions is

O(Y:es log wi/ws), which is optimal by previous theorem. |
Let us now turn our attention to some non-irivial applicalions.

4 The Layers-of-Maxima Problem

In this section, we use the biased finger tree data structure to solve an open (static) computational
geometry problem: the 3-dimensional layers-of-maxima problem. Before we describe our method,
however, we introduce some notations. A point p € IR® dominates a point ¢ € R3, if z(g) < z(p),
y(g) < y(p), and 2(g) < 2(p). Given a set § of points in IR3, a point p is a mazimum point in S,
if it is not dominated by any other point §. The mazima set problem is to find all the maximum
points in §. Kung, Luccio, and Preparata [26] showed that this problem can be solved in O(nlogn)
time. In the related layers-of-mazima problem, one imagines an iterative process, where one finds
a maxima set M in §, removes all the points of M from 5, and repeats this process until 5 is
empty. The iteration number in which a point p is removed from § is called p’s layer, and we
denote it by I(p), and the layers-of-maxima problem is to determine the layer of each point p in .
This is related to the well-known conves layers problem [8], and it appears that it can be solved for
a 3-dimensional point set S in O(nlognloglogn) time [2] using the dynamic fractional cascading
technique of Mehlhorn and Naher {31]. We show how to solve the 3-dimensional layers-of-maxima
problem in O(nlog=) time, which is optimal.
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We solve this problem using a three-dimensional sweep, and a dyramic method for point location
in a rectilinear subdivision. Given a set § of n points in IR3, we first sort the points along the
z axis and then sweep the points in the decreasing order of their z coordinates to construct the
maxima layers. During the construction, we maintain only a subset of points, which belong to each
layer. This simplifies the identification of layer for a new point. Let §' C § be the current set of
points maintained by the algorithm. We show that §' has the property that the projections of the
points in §’ onto the zy-plane rectilinearly subdivide the zy-plane, with points belonging to the
same layer forming a staircase. We show that this property is preserved at each step of the sweep,
when we compute the layer for a new point. Hence, at any instant the current set of maxima layers
forms a disjoint collection of staircases in a rectilinear subdivision. We call the region in zy-plane
between two staircases, a face. Hence, if there are m layers, they subdivide the zy-plane (actually,
the projection of points in §' uses @ much smaller area, which can be bounded by a rectangle) into
m + 1 faces. The projection of each new point onto zy-plane belongs to 2 unique face among these
m + 1 faces. We work with the rectilinear subdivision and the projection of new point, to identify
its layer.

The algorithm for computing the layer number of a new point p is, then, as follows:

1. Identily the lwo staircases in the rectilinear subdivision between which the new point p lies.
Assign p to higher-numbered layer, of these two. For example, in Figure 8, p lies between the
layers 1 and 2, and gets assigned to layer 2. If p lies between the highest-numbered layer, say
m, and the boundary, then assign p to a new layer m + 1.

2. Compute the horizontal segment £, and the vertical segment v from p which hits the boundary
or some layer.

3. Insert the segment ~ and the segment v into the subdivision.

4. Delete the segments in the layer {(p), which are dominated by p in the zy-plane. For example,
in Figure 8, we delete segments in portion A of layer 2.

Correctness and Analysis: We now show that each new point p is identified with its correct
layer. We use the Figure 8, to illustrate the idea. Since the points are processed in the decreasing
order of z coordinates, the point p does not dominate any of the points in layer 2. Also the points in
layer 2 do not dominate p along z and y coordinates. So, point p belongs to layer 2 (i.e., i(p) = 2),
as identified by the algorithm. We delete the points in portion A of {(p), as later if point g is
introduced, the algorithm will identify ¢ with layer {(p). But g does not belong to layer {(p) , since
¢ is dominated by p. So, it should either initiate a new layer, or belong to a layer (see I'igure 8). In
any case, I(q) = I[(p) + 1. Also, we observe that after deleting points in layer A, the projections of
the current set S’ again rectilinearly subdivide the bounding rectangle, with points in same layer
forming a staircase, thus preserving the property.

Suppose location, insertion and deletion of a vertex/edge in a rectilinear subdivision take time
Q(n),I(n), and D(n) respectively. We implement the step 1 as a point location in rectilinear
subdivision, and it takes O(Q(n)) time. We represent the staircase corresponding to each layer by
two dictionaries, one for ordering along z axis, and the other for ordering along y axis. Using these
data structures, we compute in O(logn) time the horizontal segment % and the vertical segment
v for a new point p. Hence, the step 2 takes O(logn) time. So, the total time for computing the
layer of each point is O(logn + Q(n) + I(n) + & + D(n)}, where k is the number of points deleted
in step 4. Since each point is deleted at most once, and is not inserted back, we amortize the
cost of k deletions on each of the & points. Hence, the complexity of computing layer of each new
point is O(logn + @(n) + I(n) + D(n)). In the next section, we show a method which achieves
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Type Queries Insert Delete Reference

general O(log nloglogn) | O(log nloglogn) | O(log® ) Baumgarten et al. [5]
connected | O(log? n) O(logn) O(log n}) Cheng-Janardan [11]°
monotone | O(logn) O(log® n) O(log? ») Chiang-Tamassia [9]
monotone | O(log? n) O(logn) O(logn) Goodrich-Tamassia [18]

rectilinear | O(lognloglogn) | O(log nloglogn) | O(lognloglogn) | Mehlhorn-Niher [31]
convex O(logn +1og N) | O{lognlog N) O(lognlog N) Preparata-Tamassia [39]

convex® O(log n} O(log ) O(log? n) this paper

Table 2: Previous and New results in dynamic point location. &N denotes the number of possible
y-coordinates for edge endpoints in the subdivision.

Q(n) = I{n) = D(n) = O(logn), resulting in a O(logn) algorithm for computing the layer of a
single point. This gives us an J(nlogn) algorithm for computing the three dimensional layers-of-
maxima, and is optimal 1.

5 Dynamic Point Location

In this section, we tackle the general problem of dynamic point location in a convex subdivision.
We also show how it applies to the layers-of-maxima problem. So, suppose we are given a connected
subdivision S of the plane such that § partitions the plane into two-dimensional cells bounded by
straight line segments. The point location problem is to construct a data structure that allows one
to determine for any query point p the name of the cell in § that contains p (see [13, 15, 16, 22, 27,
28, 34, 35, 40]). It is well-known that one can construct a linear-space data structure for answering
such queries in O(logn) time [13, 186, 22, 40].

These optimal data structures are static, however, in that they do not allow for any changes
to & to occur after the data structure is constructed. There has, therefore, been an increasing
interest more recently into methods for performing point location in a dynamic setting, where one
is allowed to make changes to &, such as adding or deleting edges and vertices. It is easy to see that,
by 2 simple reduction {rom the sorting problem, a sequence of » queries and updates to S requires
Q{nlogn) time in the comparison model, yet there is no existing fully dynamic framework that
achieves O(log =) time for both queries and updates (even in an amortized sense). The currently best
methods are summarized in Table 2. The results in that table are distinguished by the assumptions
they make on the structure of §. For example, a convez subdivision is one in which each face is
convex (except for the external face) (see Figure 9), a rectilinear subdivision is one in which each
edge Is parallel to the z- or y-axis, a monectone subdivision is one in which each face is monotone
with respect to (say) the z-axis, a connected subdivision is one which forms a connected graph,
and a general subdivision is one that may contain “holes.” We also distinguish between worst-case

1 A simple linear time reduction can be shown from sorling problem o three-dimensional layers-of-maxima problem,
thereby showing a lower bound of {nlog n) for three-dimensional layers of maxima problem.

‘Cheng and Janardan's update method is actually a de-amortization of an amortized scheme via the “rebuild-
while-you-work” technique of Overmars [33].

50ur method can aclually used for any dynamic point location envirenment satlisfying a certain pseudo.edge

property.
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Figure 9: A Planar Convex Subdivision.

running times, which we denote using the usual “Big-Oh” notation, and amortized running times,
which we denote using the notation O(*). The interested reader is referred to the excellent survey
by Chiang and Tamassia [10] for a discussion of these and other results in dynamic computational
geometry.

In this paper we give a scheme for dynamic point location in a convex subdivision that achieves
O(logn) time for performing a point location query for any point p € R?, O(logn) time for
inserting an edge e into S, and O(log® ) time for deleting an edge € from S. Thus, our method has
an optimal update time of O(logn) in the on-line (also called “semi-dynamic”) case. Our method
is based upon a variant of the static “trapezoid” method of Preparata {34], dynamized through
the use of the biased finger tree data structure. Interestingly, this bound could only be achieved
previously by not allowing for deletion at all‘[?].

Before we give the main ideas of our data structure lor dynamic point location let us review an
important data structure, which will comprise the primary structure for our method.

5.1 Weight-Balanced Binary Search Trees

Suppose we wish to maintain an ordered set of elements 5 in a binary search tree, T, subject to
tree-search queries and insert and delete update operations. Moreover, suppose we wish to maintain
an auxiliary data structure for each node » in T', such that the cost of performing a rotation at a
node » in T takes time proportional to the number of descendents of v. If we implement T as a
weight-balanced BB[a]-tree data structure [7, 29, 32], then we can maintain T so that tree-search
queries take O(log =) time in the worst case (for this is the worst-case depth of T'} and insert and
delete operations take O(log ) time (e.g., see Mehlhorn [29)).
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5.2 Our Data Structure

Suppose we are given a convex subdivision § that we would like to maintain dynamically subject
to point location queries and edge and vertex insertions and deletions. As mentioned above, our
method for maintaining § is based upon a dynamic implementation of the “trapezoid method” of
Preparata {34] for static point location. Incidentally, this is also the approach used by Chiang and
Tamassia [9], albeit in a different way. Let us assume, for the time being, that the z-coordinates
of the segment endpoints are integers in the range [1, 7] (we will show later how to get around this
restriction using the the BB[a] tree). We define our structure recursively, following the general
approach of Preparata [34]. Our structure is a rooted tree, T, each of whose nodes is associated
with a trapezoid 7 whose parallel boundary edges are vertical. We imagine the trapezoid 7 as being
a2 “window” on 8, with the remaining task being that of locating a query point in S restricted to
this trapezoidal window. Wilh the root of 7" we associate a bounding rectangle for S.

Let v therefore be a node in T with trapezoid 7 associated with it. If no vertex or edge of S
intersects the interior of 7, then we say that 7 is empty, in which case v is a leaf of 7. Note that in
this case any point determined to be inside T is immediately located in the cell of § containing 7.
Let us therefore inductively assume that 7 contains at least one endpoint of a segment in §. There
are lwo cases:

1. There is no face of & that intersects 7’s left and right boundaries while not intersecting 7’s
top or bottom boundary. In this case we divide 7 in two by a vertical line down the “middle”
(we choose a vertical line which balances the height of the tree on both sides) of 7, an action
we refer to as a vertical cut. This creates two new trapezoids 7 and 7, which are ordered by
the “right of” relation. We create two new nodes v; and v, which are respectively the left
and right child of », with v associated with ; and v, associated with 7.

2. There is at least one face of S that intersects both the left and right boundaries of v and
does not have a spanning edge of 7 as its top or bottom boundary. In this case we “cut”
T through each of the faces of & that intersect 7's left and right boundaries. This creates a
collection of trapezoids 11,73, ..., T ordered by the “above” relation. We refer to this action
as a collection of forizonial pseudo-cuts (even though it would be more accurate to call them
“non-vertical pseudo-cuts”). We associate a node v; in T with each 7; and make this set of
nodes be the children of v in T, ordered from left-to-right by the “above” relation on their
respective associated trapezoids.

Repeating the above trapezoidal cutting operations recursively at each child of v creates our tree
T (see Figure 10). The tree T', of course, cannot yet be used to perform an efficient point location
query, since a node v in 7" may have many children if its associated action forms a collection of
horizontal cuts. To help deal with this issue we define the weight of a node v € T to be the number
of leaf descendents of v in T, and we use w(v) to denote this quantity. Given this weight function,
then, we store the children of each node v in T" as leaves in a biased finger tree 7., and doubly link all
the leaves of T),. Of course, such a biased finger tree is a trivial tree for each node v corresponding
to a vertical cut, but this is okay, for it gives us a way to efficiently search the children of a node
whose corresponding action is a collection of horizontal cuts.

The structure of T satisfies an invariant that if a face f spans a trapezoid, then either it has
a spanning edge e of the subdivision on its top or bottom boundary or it is split into two by a
pseudo-cut. In either case, the face f has a bounding spanning edge if it spans 7. We say that a
face f or an edge e of the subdivision covers a trapezoid = if it spans = horizontally and it does
not span any ancestor of 7 in T. The structure of 7' has the property that any face or edge covers
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Figure 10: Trapezoidal Decomposition of a Convex Subdivision with Pseudo-Edge Cuts. The
triangular nodes denote vertical cuts and the circular nodes denote horizontal cuts.

at most O(logn) trapezoids and also each face or edge covers at most two nodes at any level of T'.
These properties follow easily from segment tree like arguments [30].

Along with the tree 7 we also maintain a DCEL [35] (doubly connected edge list) for the
subdivision. We maintain the faces of the subdivision as a dictionary D of size O(n). With each
face f (which is 2 node in D), we maintain 2 dictionary A(f), implemented as a linked list, of size
O(logn) containing pointers to the nodes in T that f covers. The i** item in the dictionary stores
(at most two) pointers to the nodes in T' that are covered by the face f at level i. We also make
the items in A{f), for any face f doubly linked.

If we always access the pointers in A for any face in level order, then the time to access a single
pointer is O(1), as we can search for the covered node at the highest level and then use links in the
items of A to access the other pointers.

5.3 Query Algorithm

We now describe the point-location query algorithm for our data structure. Consider the operation
guery(r,,y), where & and y represent the coordinates of the query point and 7 is a current
trapezoid in the subdvision (which represents 2 node in our primary data structure). We alternately
make comparisons with nodes in the primary and secondary data structures. In the primary data
structure (triangular nodes representing trapezoids), we compare the z value of the point against
the z value of the vertical cut at r. This identifies the left or right secondary data structure of
T containing the query point. We then use the secondary data structure to identify a trapezoid
containing the query point among the several trapezoids separated by horizontal cuts. In the
secondary data structure i.e., in the biased finger tree stored in the trapezoid 7, we compare the
(z,y) value of the point against the supporting line of the spanning edge or pseudo-cut 7 This

"When we usc the query algorithm to locate edges, if the edge spans the trapezoid r then we compare the y-value
of the point of intersection of Lhe edge wilh the left boundary of r against the y-values of Lthe points of inlersections
of the horizontal cuils with the left boundary of .
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identifies a leaf node, say g, in the biased finger tree that represents 2 trapezoid, say 7, in the
primary data structure. We now recursively locate the point by calling query(r;, z, 7).

The arguments in the previous subsections on the structure of our data structure imply that,
starting from the root of T', we can perform the point location query in O(log w(r)+ depth(r)) time
in the worst case, where r denotes the root of T. This is because the times to perform the biased
merge tree queries down a path in 7" form a telescoping sum that is O(log w(r)). Noting that w(r)
is O(nlogn) [34) and depth(r) is O(logn) (since our primary data structure is kept balanced) gives
us the desired result that a point location query takes O(logn) time.

We now turn to the problem of implementing our update operations. We use T, to denote the
biased finger tree attached to a trapezoid T and we use p, to denote the trapezoid associated with
a leafl p of a biased finger tree. We use left(r) and right(t) to denote the left and right boundaries
of a trapezoid 7.

5.4 Edge Insertion

Consider an edge insertion operation insert(r, e, f, fi, f2, v1,v2, A(f)), where we insert an edge e
with end points v, and v, into face f of the convex subdivision. The resulting two faces arc fy
and f;. Let 7 be the current trapezoid of T with a biased finger tree T associated with it and let
z be the vertical cut at 7. We say that an edge e or face f spans a trapezoid , if it intersects
both left(r} and righi{r). We use the dictionary A(f) to efficiently access the nodes in our data
structure, representing the pseudo-cuts or spanning edges in the trapezoids spanned by the face f.
We also use A(f) to create new dictionaries A{f;) and A(f2) for the resutting faces fi and f;. The
insert operation is a recursive procedure which depends on the way in which e cuts 7. During the
operation, we update our data structure dynamically in a way to keep it balanced, and also update
the dictionary D and A’s for faces f; and f,. We have the following cases: (refer to Figure 11):

Case 1: The edge e does not span 7, and e does not intersect any pseudo-cut in 7. Also, suppose
that both ends of e are located in a single leaf, say g, of T';. First, we increase the weight of
node g in 7; to account for the edge e. Let p; and p; be the left and right trapezoids of p,
separated by the vertical cut z. Let T,, and T, be the corresponding trees. We note that the
edge € cannot simultaneously span both p; and p,, as otherwise it spans 7 (see Figure 11.1). If
A(f) has a pointer to a node in T, then we add that pointer to A(f;) or A(f2) depending on
which face is closer to the spanning edge (can be easily checked). Now, we have the following
subcases:

Case 1.1: The edge e intersects only p;. Recursively call insert(py, e, f, fi, f2, v1,%2, A(f)).
Case 1.2: The edge e intersects only p.. Recursively call insert(p,, e, f, f1, f2,v1, %2, A(f)).

Case 1.3: The edge e intersects both p; and p,. Divide e into two segments
ey and ep; along z, and recursively call imsert(p, e, f, fi, fo, 71,27, A(f)) and
inseri(pr, ez, [, f1, f2. 0%, v2, A(f)), where v* is the point of intersection of ¢ with z.

Analysis: These cases initiate the recursion. The cases 1.1 and 1.2 take O(1) time (not
counting recursive calls). The case 1.3 occurs at the first trapezoid which contains e on both
sides of the vertical split and it occurs at most once during recursion. It also takes O(1) time
(not counting recursive calls).

Case 2: The edge e does not span 7, but e intersects a pseudo-cut in 7. This implies that the
two end vertices of e are located in two adjacent leaves, say p and g, of T,. We search for
one endpoint of e and access the node containing the other endpoint through the links in the
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Figure 11: Insertion of Edge e into a Convex Subdivision.
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Figure 12: Insertion of Edge e into a Convex Subdivision (Case 2.1).

leaves. Now, the pseudo-cut between p and g, call it %, is no longer valid which leads to the
following subcases:

Case 2.1: The edge e lies to the left of z, the vertical dividing line for 7. Fuse the two leaves
p and ¢ into a single leaf pg, and attach pg in place of parent of p and ¢ in 7',. Then,
join the trees attached to p and ¢ as shown in the I'igure 12. Locate the leaves p’ and
¢’ containing the two vertices of e in T}, and T, respectively, and then recurse on p’ and
g’ (see Figure 11.2) i.e., fuse the nodes p’ and ¢’ and recurse on the trapezoid ppy with
insert(pprgr, e, f, f1, f2, 71,92, A(f)). The faces f; and f; do not span 7, and hence no
new pointers are added to A(f1) and A(f>).

Case 2.2: The edge ¢ lies to the right of z. This case is symmetrical to above case.

Case 2.3: The edge e intersects both sides of z. We note that this case occurs at most once
during the recursion, as afterwards we search for only one endpoint of the edge and the
other endpoint always touches the left or right boundary of the enclosing trapezoid. The
cut k between the leaves p and ¢ is no longer valid, and alse both f; and fo do not
span 7. So, fuse the two leaves into a single leaf pg, and attach pg in place of parent
of p and ¢ in 7. Then, join the trees connected to p and ¢ as shown in Figure 13.
Locate the leaves p’ and ¢’ in left subtrees of T, and T, containing the horizontal cut
between p and ¢, and similarly, locate the leaves »” and ¢” in right subtrees of T), and
T, containing the horizontal cut between p and g. Fuse the leaves p’ and ¢ into a
single leaf p'q’, and similarly fuse the leaves p” and ¢" into a single leaf p"¢”. Divide
e into two segments ¢; and e; along vertical cut z of 7, and recurse on pys with
insert(ppy, e1, f, f, fo, 01,27, A(f)), where v* is the point of intersection of e with z
(see Figure 11.3). Also, recurse on pyugr with inseri(ppuge, ea, f, f1, f2. 2", v2, A(f)).
The faces f; and f; do not span 7, and hence no new pointers are added to A(f;) and
A(f2).

Case 2.4: The edge e crosses the pseudo-cut & between p and ¢, but unlike case 2.3, one of
the resulting faces, say f, spans 7 (see Figure 11.4). Using the information in A for face
f about the pseudo-cut & and the coordinates of endpoints of e, we can easily compaute
a new pseudo-cut, say ¢, for face f;. Replace the old pseudo-cut & with the new cut c.
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Figure 13: Insertion of Edge e into a Convex Subdivision (Case 2.3).

We add a pointer in A(f1) to the node representing the new pseudo-cut ¢ in 7T%. Recurse
on the left and right with appropriate segments of e.

Analysis: We show that for each of the cases (except 2.3), we recurse on one of the trees of
7 and all the operations performed in the other tree require only O(1) time. First case 2.1.
For this case, we perform two operations i.e., fusing of two leaves p and ¢ of T, and then the
join of the trees attached to p and ¢ as shown in Figure 12. The join of two biased finger trees
takes O(1) time. We now show that the fusing of the two leaves p' and ¢’ also takes O(1)
time. Now, the leaves p’ and ¢’ are not part of the leftmost or rightmost root-to-leaf path.
This is crucial for our O(1) time fusing algorithm (see the case analysis of fuse operation
in section 2.2). Suppose wy, > wy. Now, the rank of p'q’ is at most 7(p’) + 1. So, change
the rank of p’ according to the sum of the weights of p and ¢’ i.e., log{wy + wy). This is
equivalent to promotion operation and it takes O(1) time. We need to delete ¢’ which takes
O(1) time as ¢’ is not on the either of the root-to-leaf paths (see Corollary 2.3). The case 2.3
occurs in the first trapezoid which contains e on both sides of its vertical cut and it occurs
at most once. Again fusing and join takes O(1) time. Since the face f spans the trapezoid
T, the pointers to nodes p and ¢ can be accessed on O(1) time from A(f). The leaf nodes
7, ¢, p" and ¢” occur along the leftmost or rightmost root-to-leaf path (see Figure 13). Hence,
they can be accessed in O(1l) time using lefl or right values in the roots of the trees. The
case 2.4 involves computation of a new pseudo-cut which can be done in O(1) time from the
information about old cut %k and the intersection point of e with the right(r) (or lefi(r)).
So, the overall complexity of this case O(1) (not counting recursive calls).

Case 3: The edge ¢ spans either left(7) or right(r ), but not both ard also e does not intersect any

pseudo-cut for 7. This implies that only one end of e is located in a single leaf, say ¢, of T’
(see Figures 11.5 and 11.6). First, increase the weight of node ¢ in 7 to account for the
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edge ¢. Let p; and p, be the left and right trapezoids of p, separated by z. Let T, and T},
be ihe corresponding trees. If either f; or f; spans 7, then we add new pointers to A(f) or
A(f2), as in case 1 to the node representing the spanning edge for f; (which can be obtained
from A(f)). We have the following cases:

case 3.1. The edge ¢ spans p; (see Figures 11.5). The other case is symmetrical. Divide e
into two segments e; = v v* and es = »"vg, where v" is the intersection of e with the
vertical cut z. Now, recurse on p; and p, with e; and e; respectively. Note that, using
the pointer in A for face f (call it sibling-pointer), we can access in O(1) time the leaf
in T, containing the segment ez, since f spans p,. We note that the recursive call on
pr with eg Talls under case 4 and terminates immediately.

Case 3.2. The edge ¢ does not span both trapezoids. Suppose it lies entirely in
pr (see Figure 11.6). The other case is symmetrical. Now, recursively call

insert(pr, e, f, f1, f2, 01, v2, A(f)).

Analysis: This case takes log w,/w, time to access q. All other operations take O(1) time
(not counting recursive calls).

Case 4: The edge e spans the trapezoid 7. By our invariant there must already be a spanning
edge or pseudo-cut immediately below (or above) e. This case results as a resull of recursive
calls made in one of the previous cases, as we are not searching for any end points of e. We
directly use pointers in A(f) (or sibling-pointer as mentioned in the case 3.1) to locate e in
one of the leaves, say g, of T;. Let p and s be the predecessor and successor nodes of node ¢
respectively.

Case 4.1: The face f intersects the trapezoid p, (see Figure 11.7). Now the test at the least
common ancestor of p and g, say g1, in T represents a psendo-cut. Change this test to
e. There is a symmetrical case if the face f intersects the trapezoid p,. We include a
pointer to the node g; in the dictionaries A(fi) and A(f2).

Case 4.2: The face f does not intersect both p, and p,. By our invariant, e must be adjacent
to a spanning boundary edge of f on top or bottom of ¢ (see Figure 11.8). Now slice ¢
into two leaves, say ¢ and an empty leaf ¢, and attach them as children to a new node q;
in 7. Introduce the test e at g;. The slicing of node ¢ takes J(1), since ¢ is an empty
leaf te., z &~ 1.0 (see Corollary 2.4). We insert pointers in A(f2) to nodes ¢, and the
node representing the test e in 7;.. Also we insert pointers in A(f;) to node ¢.

Analysis: These two cases take O(1) time, given the pointers to the leaf ¢ and the nodes at
which the horizontal tests are performed, in 7. We obtain these pointers from A for face f
in O(1) time.

Analysis: The depth of recursion is O(log w(r)), where r is the root of T, and each case except
case 3 takes O(1) time (not counting the recursive calls). The complexity of case 3 telescopes to
give us an overall complexity of O(log w(r)), which is bounded by O(logn), for insert operation.
The insert operation creates two new faces f; and f; by splitting an old face f. We include the
new faces f; and f5, and delete the face f from the DCEL and dictionary D. This can be done in
O(logn) time. We detailed the updating the dictionaries A’s for f; and fs in each of the cases. So,
the overall complexity of insert operation is O(logn).
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5.5 Edge Deletion

Consider an edge deletion operation delete(r,e, f, f1, f2,v1,v2, A(f1), A(f2)), where we delete an
edge e with end points »; and v, separating faces f; and f» from the convex subdivision. Let the
resulting face be f. Let 7 be the current trapezoid of T with 2 biased finger tree T associated with
it. The dictionaries A(f;) and A(f2)) are used to efficiently access pointers to nodes in our data
structure, representing the tests at spanning edges or pseudo-cuts in the trapezoids spanned by
these two faces. We also use these two dictionaries to create A(f), the dictionary for the resulting
face f. Let z be the vertical cut of 7. The deletion operation is a recursive procedure, and it
depends on the way e cuts 7. We have the following cases® (see Figure 14):

Case 1: The edge ¢ does not span 7, and one of the faces f; or f; spans 7 (see Figures 14.1 and
14.2). We have the following two subcases:

Case 1.1: Both the endpoints of edge e lie in 7 (see Figure 14.1). In this case locate e in
a leafl node, say ¢, of 7, and decrease the weight of node ¢ by 1 in T;.. If e intersects
both sides of vertical cut z, then split ¢ into two segments, say e; and es, at the vertical
cut, and recurse on both sides of 7 with appropriate segments. Otherwise, recurse on
one side of 7 with e. Suppose the face fi spans 7. Then, copy the pointer to the node
representing the pseudo-cut of face fy, in T; to dictionary A{f) from A(f;).

Case 1.2: Only one endpoint of edge e lies in 7, say v, (see Figure 14.2). The other case is
symmetrical. In this case locate ¢ in a leaf node, say g, of T, and decrease the weight
of node ¢ by 1 in 7T,. If e intersects both sides of vertical cut z, then split ¢ into two
segments, say e; and ey, at the vertical cut, and recurse on both sides of 7 (i.e., p,, and
pg.) With e; and e respectively. Since, e; spans p,,., the node containing e, occurs as
rightmost leaf in 7}, , and its pointer is obfained in O(1) time using the right value at
the root. Hence, the recursive call with e; as parameter terminates in O(1) time (it falls
under case 3 to be discussed later), If e intersects only one side of 7, then recurse with
e on the appropriate side. We update the pointers in A{f) as in the previous case.

Analysis: The time needed to locate g is O(log wr/w,). All other operations take O(1) time
{not counting recursive calls). So, the total time required for this case is O(logw,/w,).

Case 2: The edge e does not span 7, and both faces f; and f; do not span 7. We have the following
subcases:

Case 2.1: Suppose after deleting e, the resulting face f does not span 7. Locate e in a leaf
node, say ¢, of 7. Now, decrease the weight of ¢ by 1 (2s one edge is deleted) in T’,.. I
¢ intersects both sides of vertical cut , then recurse on both sides of = with appropriate
segments of e. Otherwise recurse on one side of r with e (see Figure 14.3). No new
pointers are added to A(f), as faces f; and f2 do not span r.

Analysis: The time needed to locate g is O(log w, /w,). All other operations take O(1)
time. So, the total time required for this case is O(log w, /w,).

Case 2.2: Suppose after deleting e, the resulting face f spans 7. Since f spans 7 after
deleting e, we need to introduce a new pseudo-cut in 7. Let ¢ be the new pseudo-
cut. The computation of pseudo-cut ¢ is rather involved, and we describe the details
after discussing the subcases. The operations for this case, depends on how the edge e
intersects the vertical cut. We have the following subcases:

®We have ignored some of the symmetrical cases Lo simplify the exposition.
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Figure 15: Deletion of Edge e from a Convex Subdivision.

Case 2.2.1: The edge ¢ intersects both sides of z. This is a termination case. There

must be a spanning edge or pseudo-cut around e in trapezoids p; and p,, as both
faces f; and f> intersect the two trapezoids (see Figure 14.4). Slice pq into two nodes
p and g with a new node ¢ as parent, and introduce a new test ¢ on g;; attach ¢ in
place of pg in 7. Since, both f; and f; span the left and right sides of T respectively,
there must be pseudo-cuts in the two trapezoids p,, and p,, , along the cut ¢ in the
higher level. So, split the trees connected to pg along those pseudo-cuts, and then
join the two left and two right trees separately as shown in Figure 15.

Analysis: The time needed to locate pg is O(log w, /wp,). We also perform a slice
and two split operations in this case. The complexity of split operations dominates
the cost of slice operation, and it is bounded by O(logwy,/w;), where t is the

deeper) node in T, or 7, __ containing the test for pseudo-cut along e.
1% Pegy Ppar g g

Case 2.2.2: The edge e does not intersect both sides of z. Suppose ¢ lies to the left of

z. The other case is symmetrical. This is the most complicated case, as deletion of
edge e introduces a new pseudo-cut for face f in T at the first invocation of this case,
and we again recurse on the same case. Moreover, we show that this case incurs
logarithmic cost, at each recursive step. Slice pg into two nodes p and ¢ with a new
node ¢; as parent, and attach ¢, in place of pg in T... Since the face f; does not
span the left side of 7, there exits a node p'q’ in Tpg,, similar to pg in 7%, containing
the edge e. So, split Ty, at p¢; join the two resultant trees as left subtrees of
nodes p and ¢, respectively, and recurse on p'q’ with e (see Figure 14.5) Since the
face f; spans the right side of trapezoid 7, there exists nodes p” and ¢" in tree 7,,,,,
with a least common ancestor e, and containing the test for pseudo-cut along the
pseudo-cut ¢, between p and ¢g. Hence, split 7, at e, and join the resultant trees
as right subtrees to the nodes p and g, respectively (see Figure 15).

Analysis: The time needed to locate node pg is O(log w,/wp,). The search opera-
tion for nodes pg, p'¢’, ete., telescope during recursion yielding an overall complexity
of O(log w(r) + depth(7)), as in query algorithm, where r is the root of . We can

32




bound this complexity by O(logn). We also perform a slice and two split opera-
tions in this case. The complexities of split operations dominate the cost of slice
operation. The complexity of one split operation along the path of recursion is
O(log wpg/wprer). Since, we recurse on the node p'g’, these complexties telescope
yielding, again, an overall complexity of O(log w(r)), which is bounded by O(log ).
But the split operation on the right tree of T}, _, which is not on the search path (i.e.,
split on the tree B.D in the Figure 15), takes time O(logw,,/w,), where a is the
least common ancestor of the nodes p” and ¢" in T}, (see Figure 15). But, w, may
have no relationship with w,p. So, the complexities of these split operations do
not telescope. This results in a logarithmic overhead at each step of the recursion,
which in the worst case could be, as high as O(log w(r)), which in turn is bounded
by O(log ). So, this case takes (not counting recursive calls) O(log») time.

We now describe the details of computation of pseudo-cut ¢, and how to update A(f),
for case 2.2. It is easy to compute the pseudo-cut ¢ for face f in case 2.2.1, from A(f;)
and A(f;). But in case 2.2.2, the face f; does not span the left side of 7, and we have
information only about pseudo-cut for face fo. Moreover, from our invariant, we need
to introduce the psendo-cut for face f, only at the highest level where case 2.2.2 is
invoked. We observe that, the case 2.2.1 occurs either directly, or as a termination case
of recursive calls made in case 2.2.2. If case 2.2.1 arises as a result of recursive calls made
in case 2.2.2, compute the pseudo-cut for face f, and pass the result up the recursive
path. The pseudo-cut for face f; on the right side of 7, is available at each recursive
invocation of case 2.2.2. By combining this information with the pseudo-cut for face f;
obtained recursively, compute the pseudo-cut ¢ for face f.

Case 3: The edge e spans 7. Suppose the edge e separates the nodes p and ¢ in 7. This case
results from recursive calls made from one of our previous cases, specifically 3.2. In this case
there must be a real split at e in 7, already. Change this real split to a pseudo split (see
Figure 14.6). Fuse the node g with p if either of them is empty. Since, resulting face f spans
7, we include a pointer in A(f), to the node representing the psendo-cut in 7%, which can be
obtained from either A(f;) or A(f;).

Analysis: This case takes O(1) time as pointers to nodes ¢, p and the node containing the
test e are obtained from the left or right pointers in the root, as discussed in case 3.2.

Analysis: The complexity of recursion (not counting time for each case) is proportional to the
depth of the primary tree, which is bounded by O(logn). During deletion, the searches and split
operations along the path of recursion telescope, yielding a time complexity of O(logw(r)), which
is bounded by O(logn). The cost of case 2.2.2 dominates the costs of all other cases, which in the
worst-case takes O(log ») time. This leads to a O(log? ») time algorithm for deletion.

We say that an edge e is properly covered, if during deletion of e, it does not introduce any new
pseudo-cut into the subdivision. We observe that all the edges in a covex subdivision which are
surrounded by “long” edges above or below are properly covered.

Corollary 5.1: The deletion of a properly covered edge e from the convex subdivision takes
O(logn) time.

Proof: The recursive call for deletion of a properly covered edge never invokes cases 2.2.1 and 2.2.2.
All other cases of deletion, including the recursive calls can be bounded within O(logn) time. W
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5.6 Rebalancing the Primary Structure

In this section we show how to relax the constraint that the endpoints have z coordinates in the
range (1,n).

We now use a BB|[a]-tree as a primary tree for vertical cuts with biased finger tree as a secondary
structure in each node. We briefly review the properties of BB[a]-tree. Let f(!} denote the time
to update the secondary structures after a rotation at a node whose subtree has { leaves. Also,
assume that we perform a sequence of n update operations, each an insertion or a deletion, into an
initially empty BB[a]-tree. Now, we have the following times for rebalancing [29]:

e If f(I) = O(llog"l), with ¢ > 0, then the rebalancing time for an update operation is
O(log*t! n).

o If f(I) = O(I%), with ¢ < 1, then the rebalancing time for an update operation is O(1).

In our case, we show f(I) = O(n) and so the rebalancing cost is O(logn). The figures 16 and 17
outline the intuition behind this claim. Consider left rotation in a subtree rooted at node z in
the BB[c]-tree at level . Suppose right child of z is y. After rotation, ¥ becomes the root of the
subtree with left child z. We observe that the structure of the trapezoids which are descendants
of z and y are not affected by rotation. The structure of trapezoids at level i gets affected due to
rotation.

After rotation, we need to recompute the structure of the secondary structures at z and y. The
right subtree of y is constructed by joining all the right subtrees of ¥ nodes of all leaves of T into
a single tree to give the right subtree for y. These joins take O(k) time, where % is the number of
joins. We construct the left subtree of ¥ and the secondary structure of £ nodes as follows: Collect
the leaves of left subtree of £ and the leaves in the left subtree of ¥ nodes of all leaves of T in
two separate arrays, say A; and As respectively, in left to right order. Traverse the trapezoids
in A; in order and for each irapezoid check whether its top boundary extends up to y. If not,
conlinue the check with the next trapezoids in A;. Let 7 be the last trapezoid which satisfied the
check. Whenever a trapezoid 7 satisfies the condition, collapse all the trapezoids from = to 7
into a single trapezoid 79, which is a new leaf for the left subtree of y. By traversing the array
Az also simultaneously, the secondary struciure for 79 can be computed easily. The left subtree
of T consists of trapezoids from 7 to 7. Similarly the right subtree consists of the corresponding
trapezoids in Ag. All the above operations take time proportional to the number of descendanis of
z and hence is linear.

5.7 A O(logn) Update Method for Rectilinear Subdivision

We construct a O(logn) depth trapezoidal structure for rectilinear subsubdivision similar to the
one for convex subdivision to efficiently perform the update operations arising in layers-of-maxima
algorithm (see section 4). This structure satisfies a slightly different invariant. Here we use an
invariant that if a face f spans a trapezoid T and f can be split into two faces by a (truly)
horizontal spanning segment, say e, of 7, then we split 7 into two trapezoids using e. So, unlike
convex subdivision, not every spanning face of 7 will have a pseudo-cut (see Figures 18.a and 18.b)
here. The intuition being in the layers-of-maxima algorithm we always insert horizontal edges and
pseudo-cut property s required only for those type of edges we insert. From the invariant, it follows
that the insert operation during the computation of layer numbers takes O(logn) time.

The deletion of an arbitrary edge in rectilinear subdivision still takes O(log?») time, however,
but the edges which we delete in the layers-of-maxima algorithm (refer step 4) are not arbitrary. We
now show that they satisfy the proper cover property as required by Corollary 5.1 (see Figure 8).
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Figure 17: Effect of Rotation of Primary tree (see Figure 15) on Secondary Tree.
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a. A Spanning Face without any Pseudo-cut. b. A Sparning Face with a Pseudo-cut.

Figure 18: Pseudo-Cuts for Rectilinear Spanning Face.

Each edge deleted is bounded on the top and on the right by the “long” lines A and v from the
new point p. So, the edges deleted in the algorithm, and the edges k and v belong to the same
face. This implies that we already have a horizontal spanning psendo edge for the face resulting
after deletion, and hence deletion of an edge does not require an introduction of a new pseudo-cut
into Lhe subdivision. Hence, according to the terminology introduced in section 5.5, the edges we
delete are properly covered. Hence, by Corollary 5.1, we conclude that the deletion of each edge in
our layers-of-maxima algerithm, costs O(logn) time.
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