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Probabilistic Integration of Intensity and Depth
Information for Part-Based Vehicle Detection

Alexandros Makris, Mathias Perrollaz, and Christian Laugier

Abstract—In this paper, an object class recognition method
is presented. The method uses local image features and follows
the part-based detection approach. It fuses intensity and depth
information in a probabilistic framework. The depth of each local
feature is used to weigh the probability of finding the object at
a given distance. To train the system for an object class, only a
database of images annotated with bounding boxes is required,
thus automatizing the extension of the system to different object
classes. We apply our method to the problem of detecting vehicles
from a moving platform. The experiments with a data set of stereo
images in an urban environment show a significant improvement
in performance when using both information modalities.

Index Terms—Bayes methods, object recognition, sensor fusion,
vehicle detection.

I. INTRODUCTION

R
ELIABLE environment perception is a very crucial com-
ponent of intelligent vehicle systems. Driver assistance

and autonomous or semiautonomous driving systems require
a detailed modeling of the vehicle’s surroundings to detect
potentially dangerous situations. First, the detection of possible
obstacles is required, but the characterization of the type of
each obstacle also is very important in order to determine
the appropriate behavior with respect to the obstacle. Generic
object recognition techniques using visual sensors provide an
accurate and feasible solution to this characterization problem
due to low implementation costs. They can be used to recognize
a variety of possible obstacles and other important features,
such as pedestrians, vehicles, and traffic signs. The detections
can then be used in order to warn the driver or automatically
initiate appropriate protective measures. However, visual recog-
nition is very challenging due to multiple difficulties of the on-
road application, i.e., partial occlusions, moving sensor, large
illumination variances, different possible object appearances,
cluttered backgrounds, and real-time constraints.

In this paper, we develop an object class recognition system
for intelligent vehicles, which follows the local part-based
detection approach. The system fuses intensity and depth infor-
mation in a probabilistic framework. The use of local features
and depth information allows us to efficiently handle occlusions
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by determining the visible parts of each object and considering
the features from that part to classify it. Additionally, depth
information and planar constraints are used to conservatively
filter out regions where no processing is necessary (e.g., sky
and road surface). It has to be noted, however, that this is not
a region-of-interest (ROI) generation step in the classical sense
as it does not provide specific candidate areas. Creating ROIs
using only one information modality, as is usually the case in
many recent methods [1], [2], makes the system sensitive to that
modality. Instead, we probabilistically fuse both information
modalities so detections that have a high score on one modality
but are missed by the other will be retained. We apply our
method to the problem of detecting vehicles by means of on-
board sensors. To train the system for a specific object class,
a database of annotated with bounding boxes images of the
class’ objects is required. Therefore, extending the system to
recognize different object classes is straightforward.

A. Related Work

The recognition of obstacles from sensors mounted on a
moving platform has been addressed using many different
approaches. Older methods focused on a specific obstacle class,
and they used features and techniques suited for this class
that were not easily generalized to other classes. Recently, the
advances on object class recognition techniques have made
possible the creation of more generic systems that can be used
to recognize different object classes after appropriate training.
The recognition is achieved using various types of sensors, e.g.,
monocular or stereo camera, laser, and radar. Several recent
papers have reviewed the state-of-the-art approaches in vehicle
and pedestrian detection [3]–[6]. The approaches that perform
data fusion from various sensors have proven to be the more
robust in a variety of road conditions [2], [7].

The state-of-the-art visual object class recognition systems
can be split into two broad categories: 1) the methods that
operate with local descriptors and codebook representation of
the objects and 2) the methods that perform holistic detection,
usually using a sliding-window approach [8]. The methods
of the first category use various local features (e.g., gradient
maps and edges) to create the descriptors. Then, kernel-based
classifiers are commonly employed to classify the detected
features in one of several object classes [9]–[12].

In the object recognition literature, there is a large number of
works that follow the part-based approach. The basic idea of the
part-based approach is that a set of detectors is independently
used for each part. Subsequently, the detected parts are used to
estimate the position of the whole object. In [10], a codebook
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of object part appearance is constructed using interest point
detector–descriptor pairs. The detected features are grouped
into clusters and linked to the center of the object. A method
that builds upon the aforementioned approach is presented in
[13]. An approach to discriminatively learn mapping between
image patches and Hough votes is presented. Random trees are
used to learn the above mapping in a supervised way (instead
of clustering). In [14], shape and appearance information is
used to perform object class recognition based on part detection
and Hough transform. The codebook entries are selected using
the boosting algorithm according to their significance, which
is related to its discrimination capacity and the precision of
the localization information for the object’s centroid. In [9], a
grouping of local features into pairs is proposed in order to in-
crease their discriminative power. Selecting features connected
by lines ensures finding feature pairs with high repeatability.

In addition to the intensity information from cameras, many
recent works incorporate depth information for object recog-
nition. Particularly in the field of intelligent vehicles, stereo
vision is widely used to provide depth information. Several
approaches exist that use stereo for generic obstacle detection
[15], [16]. A different approach for vehicle recognition is
presented in [17], where the authors detect cars using 3-D points
provided by stereo vision and confirm the recognition of cars
through a symmetry criterion. In [18], they generate hypotheses
of pedestrians as connected areas of constant disparity and
use the aspect ratio of the corresponding regions as a clue to
recognize pedestrians.

Lately, several methods that combine intensity with depth
information have been proposed. In [19], vehicle and pedestrian
detection is performed following the part-based approach in
[10] but also filtering the search regions by using the ground
plane constraints. In [20], a method for pedestrian detection
from a moving vehicle is presented. Stereo cues and a clustering
algorithm are used to find candidate areas. Several detection
windows are constructed around each area. The detection takes
place in these windows using multiple features applied to
manually predetermined subregions. In [21] and [22], stereo
information is used to detect ROIs for a HOG/SVM detector
[8], [23]. A similar approach to generate ROIs is used in [24].
To this end, a preprocessing step is performed, where candidate
obstacle regions are described as vertical rectangles with the
same depth. In [7], a pedestrian classification method using
depth and intensity features is developed. In this method, the
holistic detection approach is used, extracting features from the
whole region and feeding a classifier. The authors demonstrate
that using both depth and intensity information outperforms
any single modality method. Integration of stereo vision with
visual recognition has been proposed in [25], for estimating
the road surface, reducing the hypotheses for a sliding-window
approach. In the approach in [2], a sparse disparity map is
computed to establish the ROIs. Shape matching based on
chamfer distance is performed in the ROIs. A set of exem-
plars covering the possible pedestrian shapes is used for this
matching. A texture-based classification follows using a neural
network with local receptive fields. Then, a dense stereo-based
verification step is performed in the candidate locations. In
[26], we presented an approach for improving the part-based

Fig. 1. Benefits of using depth information on the local level instead of using it
globally. Here, we consider a scenario in which the object of interest is partially
occluded, and we detect features in two regions with different depth values,
which are represented by shaded green and shaded blue color. In (a), a local
feature is detected within the object, whereas in (b), it lies in the occluded area.
If depth information is used on a local feature level in (a), the contribution
of the feature for the detection will be strong since its depth corresponds to
that detection. In (b), however, its contribution will be lower since its depth
is different. However, if we use depth information globally, both features will
have an equal contribution to the detection despite the fact that in (b) the feature
is an outlier for the detection and should have been disregarded. Consequently,
these two cases will falsely lead to a detection with equal confidence.

Fig. 2. Possible detection scales from a local feature. (a) Only intensity
information is used. The distance of the detection cannot be accurately
determined, resulting in false-positive detections at inconsistent distances.
(b) Fusion of depth and intensity information. Depth information is used to
weigh the possible detections. Detections with inconsistent distances receive a
lower weight.

methodology by integrating depth information. In this paper,
we refine the mathematical model and extend the approach
with an explicit occlusion-handling strategy. We also include
an extended qualitative and quantitative evaluation, including
comparison with state-of-the-art approaches.

B. Contribution

The main contribution of this work is the development of
a probabilistic local part-based object recognition framework
fusing intensity and depth information. Although methods that
fuse intensity with depth information already exist, here, the
fusion is performed on the local feature level. This approach has
several advantages over the existing methods. First, it allows for
an efficient way to treat partial occlusions. In general, methods
based on local features are more robust to partial occlusions.
Additionally, our approach integrates the depth information on
the local feature level so the disambiguation of the possible oc-
clusion scenarios is facilitated (see Fig. 1). Compared with the
existing part-based generic object recognition methods, the use
of depth information significantly increases robustness since
it narrows the search over the possible detection scales (see
Fig. 2). In this way, the context in which we expect to find the
objects is taken into account (e.g., distant view and close-up).

An extra reweighting scheme has also been developed to
ensure that the weights of the detections are comparable. We in-
tensify by the occlusion ratio the contribution of the unoccluded
features of a partially occluded object. With this technique, the
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weight of an occluded object will be equal to the weight of
an unoccluded one provided that the density of the detected
features at the visible part is equal.

This paper is structured as follows. Section II provides the
theoretical aspect of our method. Section III details the imple-
mentation, providing a description of the stereoscopic sensor,
the depth calculation algorithm, and the training and detection
algorithms. The experimental evaluation of our method follows
in Section IV and, finally, the conclusion is given in Section V.

II. PROBABILISTIC FUSION OF INTENSITY

AND DEPTH INFORMATION

A. Method Description

The proposed method probabilistically fuses intensity and
depth information. As input, it uses a grayscale image and the
corresponding depth map. The method proceeds as follows. We
detect a set of features in the input image. For each feature,
we extract the intensity and the depth descriptor. Using the
intensity descriptor, we assign it to several prelearned local
object parts called codebook labels. Using the depth descriptor,
we estimate the feature’s distance. Each assigned local feature
votes for the position of the object. The output of the algorithm
is a set of detected objects with their respective categories and
3-D positions in a local coordinate system.

For further geometrical developments, let us define two
coordinate systems: the Image Coordinate System (ICS) and
the Vehicle Coordinate System (VCS). The ICS represents the
image coordinates in pixels (u, v), whereas the VCS repre-
sents 3-D Cartesian coordinates (X,Y, Z) in meters. In the
VCS, the X-axis is horizontal, the Y -axis is vertical, and the
Z-axis is parallel to the optical axis. Considering a calibrated
camera, for objects of known size in the VCS, there is a direct
correspondence between coordinates in the ICS and in the VCS
[27]. Therefore, we can switch from a detection at a given
position and scale of the ICS to a 3-D position of the VCS,
and vice versa.

The measurements are a set of N local features. Each feature
is localized by the image coordinates of its center and its size:
x
f
j = [uf

j , v
f
j , r

f
j ]

T . The size of a feature rfj is a parameter that
defines the support area of the feature, i.e., the area around its
center that is used to calculate the descriptors. Call {fj ,dj}Nj=1

the set of feature descriptors, where fj and dj are the intensity
and depth descriptors of feature j, respectively.

A codebook links the detected features with objects by at-
tributing a probability for each detected feature to be a specific
local part of the object [10]. We refer to these local parts as
codebook labels. The appearance of the local parts, as well as
their relative position with respect to the object, are learned off-
line (see Section III-B) using a data set of annotated positive
and negative images. This codebook representation is an inter-
mediate level of abstraction between low-level local features
and high-level detections.

To each local feature, we attribute depth variable zcj ∈ X d

and codebook label variable Cj ∈ X c. With zcj , we represent
the depth of the feature, and Cj is a random variable over
the possible codebook labels of the feature X c = {ci}Mi=0. The
values from c1 to cM represent matches with one of the M

TABLE I
DEFINITIONS OF THE MAIN VARIABLES

Fig. 3. Graphical model of the method. The jth feature pair, i.e., fj and dj , is
used to calculate the pdfs of the codebook labels and depths Cj and zc

j
. Using

these pdfs, the position of the object xo is estimated.

codebook labels, whereas the value c0 reflects the possibility
that no label matches with the feature.

Each detection of an object of a specific class/viewpoint is
represented by the state vector, i.e., xo = [uo, vo, zo]T ∈ X o,
where (uo, vo) are the image coordinates of its center and zo is
its average depth. The size of the orthogonal projection of the
object on plane Z = zo in the VCS, i.e., Ro = (W o, Ho), is
known. Using that size, we can convert the depth, i.e., zo, to the
size of its bounding box in the ICS, i.e., ro = (wo, ho).

The method estimates the probability p(xo|fj ,dj) for each
individual feature j. Subsequently, Hough voting is used to
calculate the evidence ε(xo) for every possible position of
detection space X o by accumulating the above probabilities for
the set of all available features. The set of the detections is ob-
tained by locating the local maxima of ε(xo) and thresholding.
The model variables are grouped in Table I.

B. Probabilistic Formulation

The graphical model depicting the conditional independence
assumptions that we make is shown in Fig. 3. This model
implies that the state of the object, which is conditioned on the
codebook label and depth, is independent of the image features.
Codebook label Cj directly depends on intensity feature fj . The
depth of the patch zcj directly depends on depth feature dj and
indirectly on the intensity feature through the label assignment.
This is justified because an intensity feature does not provide
depth information; however, after assigning the feature to a
codebook label of known depth, we can have an estimate of
the patch’s depth.

The probability of detecting an object with state x
o given a

local feature pair is

p(xo|fj ,dj) =
∑

X c

∑

Xd

p
(

x
o|Cj , z

c
j

)

p
(

Cj , z
c
j |fj ,dj

)

. (1)

The summations are over the codebook labels and depths.
The first term of (1) is the probability of having the object at
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position x
o given the cluster label and its depth

p
(

x
o|Cj , z

c
j

)

=
p
(

Cj , z
c
j |xo

)

p(xo)

p
(

Cj , zcj
) . (2)

The second term of (1) is given by the data likelihoods

p
(

Cj , z
c
j |fj ,dj

)

∝ p
(

Cj |zcj
)

p(fj |Cj)p
(

dj |zcj
)

(3)

where p(fj |Cj) is the intensity feature likelihood. It is calcu-
lated by comparing the observed intensity feature descriptor fj
with the descriptor of the codebook label. p(dj |zcj ) is the depth
feature likelihood. p(Cj |zcj ) is the probability distribution of the
codebook label assignment given the estimated feature depth. It
is calculated by comparing 1) the depth of the assigned code-
book label Cj using the known size of the object part that cor-
responds to that label with 2) the estimated depth of feature zcj .

The contribution of each feature is accumulated in a 3-D vot-
ing space ε(xo). The possible detections are the local maxima
of that space. In Section III-C, we describe the algorithm that
we use to efficiently estimate this posterior.

III. VEHICLE DETECTION SYSTEM IMPLEMENTATION

A. Stereo System

The vision system used in this paper is a stereoscopic sensor.
It is considered as perfectly rectified. Cameras are supposed
to be identical and classically represented by a pinhole model,
with fl, u0, and v0 being the intrinsic parameters [27], where
focal length fl is measured in pixels. The length of the stereo
baseline is bs. For simplicity in notations, the yaw, pitch,
and roll angles of the camera, relative to the VCS, are set
to zero. Arbitrarily, we use the left camera of the stereo pair
for the recognition task. The disparity value is denoted by ∆.
The relationship between coordinates in the left image and in
the VCS is given by

X =
bs(u− uo)

∆
, Y = −bs(v − vo)

∆
, Z =

flbs
∆

. (4)

The stereo images are processed in order to retrieve depth
information. The first stage consists of computing a disparity
map. This is done by using the semiglobal matching technique
proposed in [28]. This method has the advantage of providing
semidense disparity maps in real time, with subpixel accuracy.
The computed disparity map contains a large number of pixels
that cannot belong to vehicles (e.g., road surface, buildings, sky,
etc.). We propose to build a mask from the disparity image,
in order to avoid processing such pixels. Two approaches are
combined for this purpose, i.e., filtering based on occupancy
and filtering based on geometry.

For filtering based on occupancy, we want to remove all
the pixels belonging to the free space. For this purpose, an
occupancy grid is computed from the disparity data. This grid
is directly computed in the disparity space associated with the
stereoscopic sensor. In this approach, a visibility probability
is estimated for each cell as the ratio between visible pixels
and possible pixels. This strategy allows for the handling of
partially occluded objects. The details about this method are

Fig. 4. Occupancy grid computed from stereo vision. (Left) Left image of
the stereo pair. (Right) Disparity image computed with the SGM algorithm.
(Bottom) Occupancy grid computed in the u-disparity plane.

Fig. 5. Depth mask examples. The mask filters out the road surface and the
objects that are over a prespecified height.

described in [29]. Compared with the original approach, the
matching algorithm is different. The SGM algorithm does not
allow automatic classification of road and obstacle pixels. This
is not an issue, since road pixels do not vertically accumulate
and the road and obstacle areas are clearly distinguishable on
the occupancy grid, which gives a good approximation of the
free space. Fig. 4 illustrates the computation of the disparity
image and the associated occupancy grid. In the grid, each
cell (u,∆) is associated with a probability of being occupied
pu,∆(Occ). A threshold, i.e., Tf , is applied on these occupancy
values to classify the image pixels into obstacles/road: A pixel
of the left image with coordinates (u, v) and disparity value ∆
is filtered out if pu,∆(Occ) < Tf . This filtering is more robust
than just using the 3-D coordinates of each pixel individually,
because the occupancy grid takes advantage of the vertical
alignment of pixels along vertical objects.

Afterward, geometrical filtering is obtained by using an
arbitrarily chosen threshold for the height of the objects. This
allows for the removal of pixels situated at irrelevant heights
for the current application. For instance, while training the
algorithm for detecting standard vehicles, there is no interest in
observing above 2 m. The training data do not contain objects
that have a height larger than 2 m. Similarly, pixels situated
under the road surface and not filtered by the occupancy filter
(generally matching errors) are removed. Examples of masks
resulting from both filtering are shown in Fig. 5. After these two
steps, typically about 80% of the image is discarded; thus, the
computational cost of the approach is reduced by the same ratio.

B. Detector Training

The training of the visual object recognition system fol-
lows the codebook-based approach. A database of positive and
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Fig. 6. Car-side codebook labels. (Top right) Several image patches belonging
to five codebook labels. (Top left) Locations within the object that these patches
were found, from which we compute the relative position distribution. (Bottom)
Bounding boxes of the approximate position of each label within the object.

negative images is used to train the system for each object
category/view we want to detect. The positive images contain
the object located at distance ztr. During the training phase,
we calculate the SIFT descriptors [30] in a set of salient image
positions. The features are grouped according to their sizes
(characteristic scales) in S feature subsets. For each subset,
a clustering step in the feature space, using k-means, is then
performed to create the codebook of local appearances for
that object class. Each cluster regroups the appearance on
a specific scale range (and consequently distance range). In
the literature, the most common approach for intensity-only
methods is to cluster all the features directly without splitting
them, in order to be able to discriminate between features at
different distances. However, since during detection we use
depth information to distinguish different distances, we can
split the features according to their scale and then perform the
clustering. This technique results to more compact clusters.

For each cluster of codebook ci, we store 1) its appear-
ance represented by the mean feature vector fci and 2) its
relative position to the center of the object x

c
i . The latter is

nonparametrically stored as the set of the relative positions of
Ni features that belong to cluster i : {xc

ik}Ni

k=1
, where x

c
ik =

[uc
ik, v

c
ik, r

c
ik]

T . The relative position distribution is used to
approximate p(Cj , z

c
j |xo). Fig. 6 shows an example of several

clusters for the side view of the vehicle object class.
After the creation of the codebook, a validation step is

performed in order to assess the quality of the labels. A database
of positive and negative images is used to extract features. The
features are matched to the codebook labels. Let Npos

i and
Nneg

i be the numbers of positive and negative features matched
to label i. The probability of that label given the object p(Cj =
ci|xo) is approximated by pr(ci) = Npos

i /(Npos
i +Nneg

i ).

Algorithm 1 Codebook Learning Algorithm

Input:

{Itr, Ipos, Ineg}: Train, validation and negative images.
Codebook creation:

Detect N tr keypoints from {Itr}.

for each keypoint j = 1 to N tr do

Extract intensity descriptor: fj .
Store the relative feature position x

c
j .

end for

Cluster the N tr features into M clusters using k-means.
Codebook weighting:

Detect Npos, Nneg keypoints from {Ipos, Ineg}.
for each cluster ci, i = 1 to M do

Calculate the number of matching positive and negative
keypoints: Npos

i , Nneg
i .

Compute its weight as: pr(ci) = Npos
i /(Npos

i +Nneg
i ).

endfor

Output: A set of M clusters with their associated average
descriptors fci and pdfs p(Cj , z

c
j |xo).

C. Intensity-Depth Fusion Detector Implementation

Here, we describe the detection algorithm we use to estimate
the probabilities defined in Section II. After the filtering step
described in Section III-A, a salient point detector is used
to locate several image patches from the rest of the image,
and the descriptors are computed. For each extracted image
patch j, the probability of assigning a codebook label given the
intensity descriptor is computed. Subsequently, we calculate the
probability density function (pdf) of its depth given the label
assignment and depth descriptor. Then, the probabilistic vote of
the image patch for the location of the object is cast. The overall
approach is illustrated in Fig. 7. Algorithm 2 summarizes the
steps of the approach.

The intensity likelihood of codebook label ci is calculated by
comparing label and feature descriptor, i.e.,

p(fj |Cj = ci) ∝ exp

{

−‖fj − fci‖2
2σ2

f

}

(5)

where σf is the intensity variance parameter. We consider that
the feature matches with the cluster if the above likelihood is
over a threshold value.

For each positive match between feature fj and codebook
label ci, we calculate the Ni possible scales of the match as
sfjk = rfj /r

c
ik, where rfj is the size of the image patch. The scale

is converted into depth by zfjk = ztr/sfjk. The label assignment
probability given the estimated depth of the image patch is

p
(

Cj = ci|zcj
)

=
1
Ni

Ni
∑

k=1

N
(

zfjk; z
c
j , σ

2
zf

)

. (6)

For the same image patch, we calculate the distance infor-
mation from stereo zdj . It is estimated by taking the median
disparity value in the neighborhood associated to the feature
and converting the value into distance using (4). To compute the
depth likelihood, we take into account the fact that the disparity
values are discretized. The disparity discretization results in a
quantization of the distance values. The quantization step de-
pends on the distance from the sensor, its intrinsic parameters,



MAKRIS et al.: INTEGRATION OF INTENSITY AND DEPTH INFORMATION FOR VEHICLE DETECTION 1901

Fig. 7. Detection procedure steps. The stereo information is used to define the ROIs for the subsequent steps. Intensity and depth features are extracted from
salient points within these regions. The features are matched with the codebook clusters, which are, in turn, used to estimate the posterior for the object in each
position. The evidence is calculated by taking into account the contributions of all the features, and the detections are the local maxima of the evidence.

Fig. 8. Codebook label pdf over the distance for an image patch is plot-
ted. (Green) Label distance pdf calculated using the depth likelihood, i.e.,
p(dj |z

c
j
), peaked at zd

j
. (Blue) Label distance pdf using intensity likelihood,

i.e., p(Cj = ci|z
c
j
), peaked at zf

jk
. (Red) Fusion of the two modalities. (a) For

a patch that is close to the sensor, we have a small depth variance; thus, when the
two distance estimations are close, the peak of the fusion is high. (b) For small
distances, the peak of the fusion falls sharply when the two estimations are not
close. (c) When the patch is further, the depth variance is bigger; therefore,
the corresponding fusion pdf has a lower peak value. (d) The fusion peak falls
slowly at bigger distances w.r.t. to the difference in depth estimations.

and the stereo baseline. In particular, the uncertainty range for
distance zj with corresponding disparity value ∆j is given by

δzj = αubs

[

1

∆+
j

− 1
∆−

j

]

(7)

where with ∆+
j and ∆−

j we denote the previous and next
disparity values w.r.t. the value that corresponds to zj . Using
that uncertainty range, we calculate the depth likelihood from

p
(

dj |zcj
)

= N
(

zdj ; z
c
j , σzd

(

zcj
)2
)

(8)

where σzd(z
c
j ) = κzdδz

c
j is the standard deviation and is pro-

portional to the distance range δzcj .
By multiplying (5), (6), and (8), we get the probability of a

codebook label at a distance given the feature pair of image
patch j. Fig. 8 illustrates the codebook label pdf over the
distances. Its peak value depends on the distance between zdj

Fig. 9. Different categories of the patches of a detection. The patches can
be considered as either (yellow) visible, (cyan) occluded considering stereo
depth information, (green) occluded considering another detection nearer to the
sensor, or (blue) occluded considering both of the above.

and zfjk and the variances of the distance likelihoods. The above
technique allows us to use depth information to filter out the
noise resulting from false-positive matches between a feature
and a codebook label that correspond to detections at a different
distance from the true distance of the image patch.

Having calculated the probabilities of label assignments for
a feature extracted from local image patch j, the next step is to
calculate the probability of the detection given codebook vari-
able p(xo|Cj , z

c
j ). This is calculated using the nonparametric

distribution that was learned during training, i.e., p(Cj , z
c
j |xo),

and considering uniform priors p(Cj) and p(xo), i.e.,

p
(

x
o|ci, zcj

)

= pr(ci)
1
Ni

Ni
∑

k=1

δ (xo
ik) (9)

where the summation is over the Ni features that where at-
tributed to codebook label i during training, pr(ci) is the prior
weight of label i that was calculated also during training, and
δ(xo

ik) is 1 at position x
o
ik and 0 otherwise. The position x

o
ik of

the detection is given by

uo
ik = uf

j + uc
iks

c
j , voik = vfj +

vcik
scj

, zoik = zcj (10)

where scj is the scale of the patch that corresponds to distance zcj .
Up to this point, we derived the equations to calculate the

probability of a detection given a single image patch, i.e.,
p(xo|fj ,dj). The contribution of each patch is summed to
calculate the evidence ε(xo) in each position of X o, i.e.,

ε(xo) =

N
∑

j=1

p(xo|fj ,dj). (11)
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The mean-shift algorithm is used to find the local maxima
in the evidence space. The maxima represent the positions and
scales of the possible detections.

Algorithm 2 Detection Algorithm

Input: Stereo pair: I, pdf: p(xo|C).
Compute depth map using the SGM algorithm.
Filter image using stereo information.
Detect N salient image points.
Extract intensity/depth feature pairs from the detected points.
for image patch j = 1 to N do

Compute:

Intensity likelihood: p(fj |Cj).
Intensity distance likelihood: p(Cj |zcj ).
Depth distance likelihood: p(dj |zcj ).
Detection pdf given the label: p(xo|Cj , z

c
j ).

Update the evidence ε(xo) with the contribution of the jth
image patch.
end for

Locate the local maxima of ε(xo) using mean-shift.
Output: The set of L detections: {xo

l , ε(x
o
l )}Ll=1.

D. Occlusion Reweighting

Here, we further develop the proposed method by normaliz-
ing the evidence of detections to account for occluded regions.
The goal of the approach is to take into account the occluded
regions of a possible detection in order to reweigh the evidence
that comes from the unoccluded regions. In the example in
Fig. 9, the visible patches (yellow and green) account for
7/10 of the detection. If we consider that we have absolute
confidence about the state of each patch, we will multiply by
10/7 the evidence of the detection to normalize its evidence with
respect to a detection that is fully visible. To avoid giving high
weights to almost fully occluded objects, we use a visibility
threshold of 10% in order to reweigh possible detections.

In practice, for each detection patch j of a possible detection
x
o, we use depth information to calculate the probability of

visibility. We then update the detection evidence as

εV (x
o) = ε(xo)

1
1

Nrew

∑Nrew

j=1 p
(

V
(

xo
j

)

|dj

) (12)

where p(V(xo
j)|dj) is the probability of visibility of detection

patch j, and Nrew is the total number of detection patches.1

The visibility probability of an image patch is given by

p
(

V
(

x
o
j

)

|dj

)

=
1
2

[

1 − erf

(

zoj − zdj

σzd

(

zdj
)√

2

)]

(13)

where zoj is the distance of the jth patch of the detection and
zdj is the measured distance for the same patch calculated using

1We should note here that the detection patches form a nonoverlapping
grid that covers the possible detection (see Fig. 9) and are different from the
multiscale overlapping image patches that we used in Section III-C.

TABLE II
STEREO IMAGE DATA SET DETAILS

stereo information. This equation corresponds to 1 minus the
cumulative density function of (8).

IV. EXPERIMENTS

Here, we describe the experiments we conducted to evaluate
the performance of our method. We applied our method to
vehicle detection, and we demonstrate the improvement in ro-
bustness and computational efficiency of the complete system,
particularly for the case of occluded vehicles.

A. Experimental Setup—Data Set

For training and testing purposes, we created a data set using
a TYZX stereo camera. The stereo camera baseline is 22 cm,
with a field of view of 62◦. Camera resolution is 512 × 320
pixels with a focal length of 410 pixels. The camera is placed
behind the windshield of our vehicle. We performed several
acquisitions during daytime, under varying illumination and
climatic conditions in the urban area of Grenoble city in France.
To avoid correlations, we used different subsets of sequences
for testing and training. The details of the data set are presented
in Table II. We annotated the cars in these images with bound-
ing boxes. For training, we used about 300 positive images for
each viewpoint (front, rear, and side). We tested the perfor-
mance of the algorithms with different training set sizes, and
we observed that there is no big performance benefit after about
200–250 samples. The data set includes challenging images,
with poor illumination conditions, partial occlusions, and sig-
nificant scale variations. As occluded vehicles, we consider the
ones that are from 10% to 70% visible. The height of the anno-
tated vehicles varies from 40 to 100 pixels, which corresponds
to the distance range of 3–20 m. The range can be augmented by
using a sensor with higher resolution or different focal length.
However, as a part-based approach, our method shows its merit
when detecting objects of considerable size in pixels.

We compare five methods: 1) LPF—the proposed Local
Probabilistic Fusion method; 2) OR-LPF—the fusion method
using the Occlusion Reweighting procedure described in
Section III-D; 3) ISM—the intensity-only method, which is
an implementation of the method proposed in [10]; 4) GPF—
the Global Probabilistic Fusion method; and 5) L-SVM—the
latent-SVM/HOG method [12]. The GPF is similar to the
intensity-only method but, as a postprocessing stage, uses
depth information on the object level to filter the detections.
Postprocessing lowers the weights of the detections whose
distance does not match with the distance calculated using
stereo information. This is achieved using a likelihood function
computed as the ratio of the detection pixels, which have a
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Fig. 10. Vehicle detection examples. Here, we use in parallel our detectors to detect vehicles from different viewpoints at a distance range from 3 to 20 m.
Our system successfully detects most of the vehicles. Most of the missed detections are out of the detection range. (Yellow) False positive detections.

depth value that corresponds to the detection’s actual distance.
For the L-SVM method, we used the implementation provided
by the authors [31].

We trained all the methods using the data set in Table II.
Three separate detectors were trained for frontal, rear, and side
view of vehicles. The depth likelihood variance parameter, i.e.,
σzd(z

c
j ), is analogous to κzd, which was set to 0.7. The variance

of the depth distribution given the codebook assignment, i.e.,
σzf , is set to a low value, i.e., 0.05, in order to ensure that the
feature’s estimated distance is close to the distance estimated
from the label assignment. The intensity likelihood variance
parameter σf is set as to allow a sufficient number of features
to have a nonnegligible weight. For our data set, we found that
0.1 was an appropriate value. We tested the system with several
intensity detectors/descriptors, and we selected the SIFT be-
cause of its superior performance. For fairness of comparison,
we used the depth mask to filter out irrelevant regions for all the
methods.

Using the described setup, the computational cost of the
fusion method allows almost real-time operation. In a CPU im-
plementation, we achieve a frame rate of around 3 frames/s. The
most costly operations concern the extraction and matching of
the features that are parallelizable. We, therefore, expect that a
GPU implementation will result in a significant performance in-
crease, and a frame rate of around 30 frames/s can be achieved.

B. Qualitative Results

Here, we illustrate the advantages of our method by showing
the detection results in several images. The proposed method
detects cars in various scales, even in cases with partial occlu-
sions and under significant background clutter. In Fig. 10, we
show several example detections for a series of images from
our data set. To detect vehicles from different viewpoints, we
run our detectors in parallel and merge the resulting detections.

The main benefit of using depth information is that each
local patch contributes only to evidence of the detections that
have about the same depth with the patch. In this way, many
false-positive matches are avoided. An example of such a
situation can be seen in Fig. 11. We show a detection with and
without depth information along with the features that matched
with the codebook. As can be seen, in the case where no depth

Fig. 11. Comparison of a vehicle detection with and without depth infor-
mation. (a) Detection using depth–intensity and features that contributed to
the detection. The depth information filters out the features that belong to
background clutter. (b) Detection with intensity information and features that
contributed to the detection. Without depth information, background features
are considered and lead to a false-positive detection.

information is used [see Fig. 11(a)], many features of the back-
ground interfere, resulting in a false-positive detection. With the
use of depth information [see Fig. 11(b)], most of the features
that are not on the object have been filtered out, thus resulting
in a more accurate detection without any false positives.

The proposed method is well suited for situations in which
frequent occlusions exist such as urban environments. Part-
based methods, in general, are more robust with partial oc-
clusions. The use of depth information in the local image
patch level further increases the robustness as the features of
a candidate detection have a different depth from the occluding
objects so the depth descriptor can distinguish them. Fig. 12
shows a series of partially occluded detection examples. In
these examples, we note that the fusion method is able to
accurately detect most of the occluded vehicles, even those with
high occlusion ratios on the order of 60%–80%.

In Section III-D, we use depth information to reweigh the
detections that are partially occluded by multiplying the evi-
dence from the unoccluded areas. Fig. 13 shows an example of
the benefits of that technique. It allows us to have comparable
evidence values for detections that are unoccluded as well as
for heavily occluded detections.

C. Quantitative Results

To perform a quantitative comparison, we used several sub-
sets of our data set in which we detected the vehicles. For
evaluation, we followed the single-frame scheme, which is
adopted by the PASCAL object detection challenges [32]. For
each frame, we ran our multiscale detector, resulting in a set
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Fig. 12. Partially occluded vehicle detections. (a) Two cars in different distances are detected. (b) Precise detection of two partially occluded vehicles.
(c) Detection of two frontal views of vehicles. (d) Detection of side views with partial occlusion. (e) Detection of two vehicles under difficult illumination
conditions and heavy occlusion of the second one. (f) Detection of two vehicles that are less than 30% visible and very close to each other. These factors as well as
the heavy background clutter from the other parked vehicles render the rear detection inaccurate. (g) Detection of two rear views of vehicles. (h) Missed detection
of a partially occluded vehicle.

Fig. 13. Comparison of a vehicle detection with and without occlusion
reweighting. (a) The evidence is reweighted in order to account for the occluded
parts of the objects. This results in accurate detections, although large parts of
both objects are occluded. (b) When no reweighting takes place and keeping
the same evidence threshold, only one local maximum is found, which results
in one detection with inaccurate position.

of detected bounding boxes rdt, and using the ground-truth
bounding boxes rgt, we accept a detection if

α = A(rdt ∩ rgt)/A(rdt ∪ rgt) > 0.5 (14)

where A() denotes the area of the box. We associate only
one detection with each ground-truth bounding box; if other
detections intersect with it, we count them as false positives.
The output of our algorithm is a set of L detections, each with
a corresponding evidence value ε(xo

l ). By adjusting the accep-
tance threshold for a detection, we obtain the precision–recall
curve. From that curve, we calculate the average precision of
our method.

We tested the methods with different values of feature subsets
number S and clusters number M . Tables III–V summarize
the average precision scores for the fused detector LPF, the
intensity-only detector ISM, and the global fusion detector
GPF, respectively. Using the proposed fusion method, we
improve the average precision at a ratio 2–3 times compared
with the intensity-only approach. In the fusion method, we
observe that, on average, we get better results when we use
several feature subsets during training. This is explained as
being because splitting the features according to their scale
during training results in more compact clusters. Since the
intensity-only method cannot discriminate between features

TABLE III
AVERAGE PRECISION FOR THE LPF DEPTH–INTENSITY FUSION

DETECTOR. S IS THE NUMBER OF CODEBOOK SUBSETS

TABLE IV
AVERAGE PRECISION FOR THE ISM INTENSITY-ONLY DETECTOR

TABLE V
AVERAGE PRECISION FOR THE GPF GLOBAL FUSION DETECTOR

of different scales, using multiple subsets deteriorates its per-
formance. Overall, the best results were attained using 150/5
clusters/subsets for the fusion method and 90 clusters for the
intensity-only method. Comparing Tables IV and V shows that
using depth on the detection level instead of doing it locally
does not improve the performance. This validates our intuition
about the benefits of the local fusion.
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Fig. 14. Precision–recall curves for all the vehicles. (Red) LPF. (Blue) ISM. (Green) L-SVM. (a) Frontal view. (b) Rear view. (c) Side view.

Fig. 15. Precision–recall curves for the partially occluded vehicles. Occlusion
ratios: 30%–90%. (Magenta) OR-LPF. (Red) LPF. (Blue) ISM. (Green)
L-SVM.

Figs. 14 and 15 show the precision–recall curves for all
the vehicles and for the occluded ones, respectively. The
codebooks used for these curves are the ones that gave
the better overall results according to Tables III and IV
(5 subsets/150 clusters for the fusion method and 90 clusters
for the intensity-only method). The use of depth information
results in a considerable increase in performance. In Fig. 14,
we observe that the baseline method L-SVM outperforms
the proposed LPF, probably due to the stronger classifier.
However, compared with the ISM method that uses the same
type of classifier, the increase in performance using depth
information is significant. For instance, the proposed method
detects with 80% precision, about 60% of the side views, 40%
of the frontal views, and 55% of the rear views.

In Fig. 15, we test the performance of the methods for the
occluded vehicles with occlusion ratios over 30%. In this set-
ting, our LPF approach has comparable performance with the
L-SVM method, whereas the OR-LPF approach outperforms
all the other methods. It is clear that the procedure that ex-
plicitly treats occlusions significantly boosts the performance.
Additionally, the difference between the fusion methods and
the ISM is even bigger in this case; the intensity-only method
has very low precision for even very small recall rates. The
challenging nature of the data set with many vehicles with

high occlusion ratios poses difficulties for all the methods, and
therefore, the overall performance is generally low.

V. CONCLUSION

In this paper, we have presented a method that fuses intensity
with depth information to create a robust part-based detector.
We applied the method to create a system for vehicle detection
from a moving platform. We tested it in a real urban environ-
ment using a data set collected from our experimental vehicle.
The comparison with a standard approach using only intensity
information shows a significant increase in performance. Addi-
tionally, we have demonstrated that fusion on a global detection
level does not improve performance. For the occluded vehicles,
we show that our approach outperforms the current state-of-the-
art methods; however, for the unoccluded cases, the L-SVM

detector gives better results.
As a first future work, we consider using the stereo images

data set to train the system with intensity and depth information.
This way, we will be able to better estimate the parameters for
the calculation of the depth likelihood. We also plan to test the
system with more complex 3-D descriptors extracted from the
depth images. Another future goal is to derive an algorithm that
will sequentially detect over increasing distances. In this way,
we will be able to use high-level information of the detections
in closer distances in order to robustly identify occlusions in
larger distances.

REFERENCES

[1] C. Keller, M. Enzweiler, M. Rohrbach, D. Llorca, C. Schnorr, and
D. Gavrila, “The benefits of dense stereo for pedestrian detection,” IEEE

Trans. Intell. Transp. Syst., vol. 12, no. 4, pp. 1096–1106, Dec. 2011.
[2] D. Gavrila and S. Munder, “Multi-cue pedestrian detection and tracking

from a moving vehicle,” Int. J. Comput. Vis., vol. 73, no. 1, pp. 41–59,
Jun. 2007.

[3] Z. Sun, G. Bebis, and R. Miller, “On-road vehicle detection: A review,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 5, pp. 694–711,
May 2006.

[4] D. Gerónimo, A. M. López, A. D. Sappa, and T. Graf, “Survey of
pedestrian detection for advanced driver assistance systems,” IEEE Trans.

Pattern Anal. Mach. Intell., vol. 32, no. 7, pp. 1239–1258, Jul. 2010.
[5] P. Dollar, C. Wojek, B. Schiele, and P. Perona, “Pedestrian detection: An

evaluation of the state of the art,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 34, no. 4, pp. 743–761, Apr. 2012.

[6] M. Enzweiler and D. Gavrila, “Monocular pedestrian detection: Survey
and experiments,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, no. 12,
pp. 2179–2195, Dec. 2009.



1906 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 14, NO. 4, DECEMBER 2013

[7] M. Enzweiler and D. Gavrila, “A multilevel mixture-of-experts framework
for pedestrian classification,” IEEE Trans. Image Process., vol. 20, no. 10,
pp. 2967–2979, Oct. 2011.

[8] B. Dalal and N. Triggs, “Histograms of oriented gradients for human
detection,” in Proc. IEEE Conf. CVPR, 2005, vol. 1, pp. 886–893.

[9] M. Awais and K. Mikolajczyk, “Feature pairs connected by lines for object
recognition,” in Proc. ICPR, 2010, pp. 3093–3096.

[10] B. Leibe, A. Leonardis, and B. Schiele, “Robust object detection with
interleaved categorization and segmentation,” Int. J. Comput. Vis., vol. 77,
no. 1–3, pp. 259–289, May 2008.

[11] E. Seemann, M. Fritz, and B. Schiele, “Towards robust pedestrian de-
tection in crowded image sequences,” in Proc. IEEE Conf. CVPR, 2007,
pp. 1–8.

[12] P. F. Felzenszwalb, R. B. Girshick, D. A. McAllester, and D. Ramanan,
“Object detection with discriminatively trained part-based models,” IEEE

Trans. Pattern Anal. Mach. Intell., vol. 32, no. 9, pp. 1627–1645,
Sep. 2010.

[13] J. Gall and V. S. Lempitsky, “Class-specific Hough forests for object
detection,” in Proc. IEEE Conf. CVPR, 2009, pp. 1022–1029.

[14] A. Opelt, A. Pinz, and A. Zisserman, “Learning an alphabet of shape and
appearance for multi-class object detection,” Int. J. Comput. Vis., vol. 80,
no. 1, pp. 16–44, Oct. 2008.

[15] R. Labayrade, D. Aubert, and J. Tarel, “Real time obstacles detection on
non flat road geometry through v-disparity representation,” in Proc. IEEE

IV , Versailles, France, 2002, pp. 646–651.
[16] A. Broggi, C. Caraffi, P. Porta, and P. Zani, “The single frame stereo

vision system for reliable obstacle detection used during the 2005 DARPA
Grand Challenge on terramax,” in Proc. IEEE Intell. Transp. Syst. Conf.,
Toronto, ON, Canada, 2006, pp. 745–752.

[17] G. Toulminet, M. Bertozzi, S. Mousset, A. Bensrhair, and A. Broggi,
“Vehicle detection by means of stereo vision-based obstacles features
extraction and monocular pattern analysis,” IEEE Trans. Image Process.,
vol. 15, no. 8, pp. 2364–2375, Aug. 2006.

[18] T. Veit, “Connexity based fronto-parallel plane detection for stereovision
obstacle segmentation,” in Proc. IEEE Int. Conf. Robot. Autom., Workshop

Safe Navigat. Open Dyn. Environ., Appl. Auton. Veh., Kobe, Japan, 2009,
pp. 1–15.

[19] B. Leibe, K. Schindler, N. Cornelis, and L. J. V. Gool, “Coupled ob-
ject detection and tracking from static cameras and moving vehicles,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 10, pp. 1683–1698,
Oct. 2008.

[20] I. P. Alonso, D. F. Llorca, M. Á. Sotelo, L. M. Bergasa, P. R. de Toro,
J. Nuevo, M. Ocaña, and M. A. G. Garrido, “Combination of feature
extraction methods for SVM pedestrian detection,” IEEE Trans. Intell.

Transp. Syst., vol. 8, no. 2, pp. 292–307, Jun. 2007.
[21] R. Quintero, A. Llamazares, D. Llorca, M. Sotelo, L. Bellot,

O. Marcos, I. Daza, and C. Fernandez, “Extended floating car data
system—Experimental study,” in Proc. IEEE IV , 2011, pp. 631–636.

[22] J. Vinagre Diaz, D. Fernandez Llorca, A. Rodriguez Gonzalez,
R. Quintero Minguez, A. Llamazares Llamazares, and M. Sotelo, “Ex-
tended floating car data system: Experimental results and application for
a hybrid route level of service,” IEEE Trans. Intell. Transp. Syst., vol. 13,
no. 1, pp. 25–35, Mar. 2012.

[23] C. Burges (1998, Jun.). A tutorial on support vector machines for pattern
recognition. Data Mining Knowl. Discovery [Online]. 2(2), pp. 121–167.
Available: http://dx.doi.org/10.1023/A:1009715923555

[24] M. Enzweiler, M. Hummel, D. Pfeiffer, and U. Franke, “Efficient stixel-
based object recognition,” in Proc. IEEE IV , 2012, pp. 1066–1071.

[25] D. Geronimo, A. D. Sappa, A. Lopez, and D. Ponsa, “Adaptive image
sampling and windows classification for on-board pedestrian detection,”
in Proc. 5th Int. Conf. Comput. Vis. Syst., Bielefeld, Germany, 2007,
pp. 21–24.

[26] A. Makris, M. Perrollaz, I. Paromtchik, and C. Laugier, “Integration of
visual and depth information for vehicle detection,” in Proc. IEEE/RSJ

IROS, Workshop Perception Navigat. Auton. Veh. Human Environ.,
2011.

[27] R. I. Hartley and A. Zisserman, Multiple View Geometry in Computer

Vision. Cambridge, U.K.: Cambridge Univ. Press, 2000.
[28] H. Hirschmüller, “Stereo processing by semi-global matching and mutual

information,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 2,
pp. 328–341, 2008.

[29] M. Perrollaz, J.-D. Yoder, A. Nègre, A. Spalanzani, and C. Laugier, “A
visibility-based approach for occupancy grid computation in disparity
space,” IEEE Trans. Intell. Transp. Syst., vol. 13, no. 3, pp. 1383–1393,
Sep. 2012.

[30] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
Int. J. Comput. Vis., vol. 60, no. 2, pp. 91–110, Nov. 2004.

[31] R. B. Girshick, P. F. Felzenszwalb, and D. McAllester, Discriminatively
trained deformable part models, release 5. [Online]. Available: http://
people.cs.uchicago.edu/rbg/latent-release5/

[32] J. Ponce, T. L. Berg, M. Everingham, D. A. Forsyth, M. Hebert,
S. Lazebnik, M. Marszalek, C. Schmid, B. C. Russell, A. Torralba,
C. K. I. Williams, J. Zhang, and A. Zisserman, “Dataset issues in ob-
ject recognition,” in Toward Category-Level Object Recognition. Berlin,
Germany: Springer-Verlag, 2006, pp. 29–48.

Alexandros Makris received the Diploma in elec-
trical and computer engineering from the National
Technical University of Athens, Athens, Greece,
and the Ph.D. degree in computer science from
the National and Kapodistrian University of Athens,
Athens, in 2010.

He is currently a Postdoctoral Researcher with the
Moise team, INRIA Grenoble Rhône-Alpes, France.
From 2010 to 2011, he was with the E-motion team
with the same research center. His main research
interests include computer vision, probabilistic mod-

els, intelligent vehicles, and perception for robotics.

Mathias Perrollaz received the M.S. degree in elec-
trical engineering from the National Polytechnic In-
stitute of Grenoble (INPG), Grenoble, France, in
2003, with major in signal and image processing and
the Ph.D. degree from Paris-6 University (UPMC),
Paris, France, in 2008, for his work on multisensor
obstacle detection.

He was with the Images and Signals Laboratory in
Grenoble (CNRS), working on intelligent transporta-
tion systems (ITS), and with the perception team
of the LIVIC (INRETS). Since April 2009, he has

been with INRIA Grenoble Rhône-Alpes, Saint Ismier, France, working on
probabilistic methods for ITS. Between May and September 2011, he was with
Ohio Northern University, Ada, OH, USA, working on perception for robotic
manipulators. He also taught at Paris-10, Grenoble-1, 2, and INPG Universities.
His main research interests include computer vision, ITS, and perception for
robotics.

Christian Laugier received the Ph.D. degree
in computer science from Grenoble University,
Grenoble, France, in 1976.

He is a Research Director with INRIA and a
Scientific Leader of the e-Motion Team. He is also
responsible for scientific relations with Asia & Ocea-
nia at INRIA. In addition to his research and teaching
activities, he cofounded four startup companies in
the fields of robotics, computer vision, computer
graphics, and Bayesian programming tools. He has
served as a Scientific Consultant for ITMI, Aleph

Technologies, and ProBayes companies. He has coedited several books in the
field of robotics and several special issues of scientific journals, such as IJRR,
Advanced Robotics, JFR, or the IEEE TRANSACTIONS ON INTELLIGENT

TRANSPORTATION SYSTEMS. His current research interests include motion
autonomy, intelligent vehicles, and probabilistic robotics.

Dr. Laugier was awarded the Nakamura Prize for his contributions to
“Intelligent Robots and Systems” in 1997. He is a member of several scientific
committees, including the Steering/Advisory Committees of the IEEE/RSJ
IROS, FSR, and ICARCV conferences. He is also a Cochair of the IEEE RAS
Technical Committee on AGV and ITS. He was the General Chair or Program
Chair of such conferences as the IEEE/RSJ IROS’97, IROS’02, IROS’08, or
FSR’07.


