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Abstract: The trend towards reducing engine size in the automotive industry, motivated by more 

restrictive pollutant emission standards, has led to increasingly complicated engine technical definitions. 

The control challenge has also grown since engines are now considered as highly nonlinear multi-input 

multi-output systems with saturated actuators. In this context, the need for model-based control laws is 

greater than ever. In this study we propose a nonlinear model predictive control strategy based on a 

physical engine model. Moreover, we also underline the benefit of using a thermodynamic engine term in 

the objective function. Finally, the design and calibration choices consciously fulfill the criteria of the use 

of an explicit approach for real time implementation.  



1. INTRODUCTION 

Objectives in terms of pollutant emissions and fuel economy 

have led car manufacturers to complicate the technical 

definitions of both gasoline and diesel engines. Modern 

combustion engines can now be defined as multi-input multi-

output nonlinear systems with saturated actuators. In this 

paper, we evaluate the benefits of a nonlinear model 

predictive control (NMPC) law in terms of pressure set point 

tracking performances, calibration efforts and engine 

efficiency optimization. The study is motivated by the fact 

that model predictive control (MPC) is already well 

established in various industries for controlling multivariable 

processes (Camacho et al., 2004). Until now, calculation time 

considerations have prevented it from penetrating the 

automotive industry. Recently, however, so-called explicit 

model predictive control has broken this limit and enlarged 

the range of possible applications (Bemporad et al., 2000, Del 

Re et al., 2010, Di Cairano et al., 2007, Grancharova et al., 

2012).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  

In this study, a nonlinear predictive controller, using a 

physics-based engine model, has been designed and 

calibrated. The model relies on the so-called zero-

dimensional (0D) modeling approach (Eriksson, 2007, 

Eriksson et al., 2002) in order to maintain a low calculation 

time while benefiting from the accuracy of a simulator-like 

engine model. We also propose a new objective function 

which optimizes the engine efficiency by explicitly reducing 

the pumping losses. The comparison with a more classical 

method which consists in optimizing the throttle opening is 

presented. Conclusions stress the advantages of the new cost 

function, in particular for more advanced engine technical 

definitions. It should also be noted that the NMPC law that is 

presented in this paper has been designed to be implemented 

online using the explicit approach. As such, it fulfills all the 

criteria that are required to do so.  

The paper is organized as follows. Section 2 presents the 

system and the control objectives. Section 3 presents insights 

into the physics-based model of a turbocharged spark-ignited 

(SI) engine. The NMPC law and two objective functions are 

detailed in section 4. Simulation results are presented in 

section 5. The conclusion summarizes the main outcome of 

the study and the next steps to be achieved.   

2. SYSTEM DESCRIPTION 

2.1 Turbocharged SI engine 

The purpose of this study is to control the air path of a 1.2L 

turbocharged SI engine (Fig. 1).  

 
Fig. 1. Air path sketch of a turbocharged SI engine (p stands 

for pressure,  for temperature, Ne and t are respectively the 

engine and turbocharger rotational speed).  

 

At the intake, a compressor and a heat exchanger 

successively increase the pressure and cool down the fresh air 

flow. Then, a variable flow restriction, called throttle, 

controls the inlet manifold pressure     . At the exhaust, the 
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amount of gas which passes through a turbine is controlled by 

a by-pass, known as a wastegate (Fig. 1). This energy, 

recovered at the exhaust, drives the intake compressor and its 

outlet boost pressure      (Heywood, 1988). 

2.1 Control objectives 

In order to maximize the efficiency of the three-way catalytic 

converter, SI engines operate at stoichiometric conditions, i.e. 

the air/fuel equivalent ratio is always equal to one. 

Consequently, from the control point of view, the engine 

torque is directly controlled by the air mass entering the 

cylinders. For a given engine speed, this mass directly 

depends on the inlet manifold pressure ratio. A static map, 

calibrated on test bench measurements, is usually used to 

build the inlet manifold pressure reference trajectories from 

the engine torque set point.  

The objective of the air path controller is to determine 

which throttle and wastegate positions will achieve this 

pressure in the inlet manifold. Since there is an infinite 

number of actuator positions to achieve a given inlet 

manifold pressure, one would like to select the most efficient 

one. Usually, this multi-input and multi-objective control 

problem is divided into two single-input single-objective 

problems (Moulin et al., 2008). The throttle is used to achieve 

an inlet manifold pressure reference trajectory and the 

wastegate is used to control the compressor outlet pressure. 

The rule of thumb to maximize the efficiency is to use the 

same set point (Colin, 2006), i.e.: 

    
       

      (1) 

In these conditions, the throttle opening is maximized and 

intuitively the use of the turbocharger is minimized. Since the 

use of the turbine creates a flow restriction at the exhaust, the 

engine efficiency is expected to increase. In fact, the link 

between the exhaust pressure and the engine efficiency can 

be explained on the cylinder pressure-volume (P-V) diagram 

(Colin, 2006) of four-stroke engines (Fig. 2). 

 
Fig. 2. Theoretical P-V diagram in the cylinder of a four 

stroke internal combustion engine. The upper loop represents 

the work produced by the engine. The bottom loop represents 

the work consumed by the engine to suck up the air from the 

inlet manifold, i.e. the pumping losses. 

 

The area of the second loop, which represents losses, is 

directly linked to the difference between the exhaust 

manifold pressure      and the inlet manifold pressure     . 

Since the inlet manifold pressure is given by the torque set 

point, reducing the exhaust pressure is the only way to reduce 

the pumping losses and increase the engine efficiency. 

However, because of the turbocharger thermodynamic 

properties, maximizing the throttle opening does not always 

lead to minimizing the exhaust pressure. In particular, a better 

turbocharger operating point, in terms of exhaust pressure, 

could exist with a smaller throttle opening. In this paper, we 

propose to overcome this problem by directly using the 

thermodynamic criterion deduced from the p-V diagram. It 

consists in minimizing the ratio between the exhaust pressure 

and the inlet manifold pressure in order to reduce the area of 

the bottom loop. The advantage of such a method is that it 

guarantees that the engine will operate at its best efficiency 

point.  

3. PHYSICS-BASED 0D ENGINE MODEL 

Models that are used in MPC must capture both static and 

dynamic behaviors of the system (Camacho et al., 2004). For 

real-time automotive control, authors usually select 

mathematical models such as state-space representations (Del 

Re et al., 2010). They allow fast output prediction but usually 

require numerous test bench measurements to be calibrated. 

Moreover, since combustion engines are in fact highly 

nonlinear, multiple local linear models are usually required to 

cover the entire operating range (Colin, 2006, Pekar et al., 

2012). 

In an explicit approach, the online computational time is not 

linked to the model complexity since it is only used offline 

(Bemporad et al., 2000, Grancharova et al., 2012). For this 

reason, we propose to use a single nonlinear model. Among 

all the nonlinear approaches, physics-based models lead to 

improved prediction results. Additionally, they allow 

extrapolation to new operating points while maintaining a 

low calibration effort. In order to bring the offline 

computation effort under control, a 0D modeling approach 

combined with a mean value cylinder model was chosen 

(Moulin et al., 2008). The model is succinctly described 

below but more details can be found in El Hadef et al., 2012a, 

Eriksson, 2007, Eriksson et al., 2002, Heywood, 1988. 

3.1 Hypothesis and modelling philosophy 

The air path is discretized: a control volume of the air path is 

followed by a flow restriction, itself followed by another 

control volume and so forth (Fig. 3).  

 
Fig. 3. Example of a succession of control volumes and 

restrictions: the heat exchanger and its pipes are surrounded 

by two flow restrictions: the compressor and the throttle. 

 

In each control volume, the pressure and the temperature 

describe the complete thermodynamic state of the volume. In 

order to reduce the number of states of the model, the 
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temperature dynamics can be neglected (Hendricks, 2001). In 

that case, the temperatures are computed through simple 

algebraic relations. Pressure behavior is governed by a 

differential equation deduced from Euler’s mass, energy and 

momentum equations (Eriksson, 2007, Eriksson et al., 2002). 

Altogether, the model contains three control volumes: the 

inlet and outlet manifolds and the heat exchanger (Fig. 1). It 

respectively corresponds to three states:     ,      and     . 

In order to take into account the dynamics of the 

turbocharger, a fourth state is required: the turbocharger 

rotational speed   . 

3.2 Pressures in the three control volumes 

Under the assumption of constant temperature   in the 

volume V, the pressure time derivative 
  

  
 is given by: 

  

  
  

  

 
     

         
             (2) 

where  is the ratio of specific heat, r is the fluid gas constant 

and Qm the mass flow rate. Indices “in” and “out” 
respectively stand for inlet and outlet of the considered 

control volume. 

3.3 Engine mean value model 

Because of acoustic phenomena and valve phasing, the 

theoretical flow entering the cylinders at manifold conditions 

is corrected by a volumetric efficiency coefficient     : 

     
        

     

  

   
      

    

    
             (3) 

where      is the incoming engine flow, pman and man the 

manifold pressure and temperature, Vcyl the engine 

displacement and Ne the engine rotational speed.      is a 

nonlinear function which is approximated using a second 

order polynomial calibrated on steady state test bench 

measurements. 

At the outlet of the cylinders, the flow rate is the sum of 

    , the engine flow  and      , the fuel mass flow rate  

directly injected in the cylinders. 

The exhaust pressure and temperature are respectively 

computed using (2) and from the inlet manifold gas 

temperature: 

              
         

              
       (4) 

where LHV is the fuel lower heating value,    the specific 

heat at constant pressure and      represents the proportion 

of the total energy which is transferred to the flow at the 

exhaust: 

          
                                   (5) 

where      
 is a nonlinear function approximated by a 

second order polynomial calibrated on steady state test bench 

measurements. 

3.4 Actuator  models 

The system has two inputs: the throttle and the wastegate, 

both considered as variable flow restrictions. The flow is 

computed using pressures on each side : 

 
 
 

 
    

   

     
    

 

   
 

   

      
                   

   

   
   

 

   
 

 

   

   
   

     
  

   

   
 

 

  
  

   
    

   

   
 

   

 
                

 
 (6) 

where S is the effective area of the orifice and depends non-

linearly on the actuators’ position:      and    . The indices 

“us” and “ds” respectively stand for upstream and 

downstream. 

In order to reduce the number of states of the model, the 

dynamics of the actuators are neglected. 

3.5 Turbocharger model 

The turbocharger model relies on four static data-maps, 

extrapolated from manufacturers’ data. The physics-based 

method that has been used is presented and validated in (El 

Hadef et al., 2012a, El Hadef et al., 2012b). 

 3.5.1 Compressor and turbine sub-models 

The compressor and turbine mass flow rates are directly read 

from a nonlinear extrapolated data-map    : 

      
                        (7) 

where    is the compressor (respectively turbine) mass flow 

rate and   the compression (respectively expansion) ratio. 

The flow temperature at the component outlet out  depends 

on the isentropic efficiency   and is computed from the inlet 

flow temperature in: 

                        (8) 

where   is a nonlinear function. 

The isentropic efficiency is directly read from another 

extrapolated data-map   : 

             (9) 

  3.5.2 Fourth model state: turbocharger rotational speed 

The fourth state equation describes the turbocharger 

rotational speed    and is given by: 

    
 

 
                  (10) 

where I is the turbocharger inertia of the shaft which links the 

turbine to the compressor and       and       respectively 

represent the turbine and compressor torques. 

Compressor and turbine torques depend on the mass flow 

rate, the inlet and outlet temperature and the turbocharger 

rotational speed. They are computed algebraically: 

      
                    

  
  (11) 

      
                     

  
  (12) 

3.6  Summary 

Globally, the model is nonlinear and has four states     , 

    ,      and   . There are two control variables:      and 

   . In continuous time, it can be written as below: 



 

 

     

 

 
  
 

  
 
      

  

    
                          

      
  

    
                     

      
  

    
                               

    
 

 
              

 

  (13)  

where Vape, Vman and Vavt respectively represent the volume 

between the compressor and the throttle, the volume of the 

intake manifold and the exhaust manifold volume (Fig. 1). 

Qthr and Qwg stand for the throttle and wastegate flows, both 

obtained with (6).  

For control design purposes, the model is discretized at a 

sampling time of 1 ms, using Euler’s backward 

differentiation method. 

4. NONLINEAR MODEL PREDICTIVE APPROACH 

4.1  NMPC formulation 

MPC uses an iterative finite-time open loop optimization to 

compute the optimal actuator position vector    with respect 

to an objective function. At each time step, only the first 

command is applied to the real process. A new open-loop 

optimal problem is solved following the receding horizon 

principle (Camacho et al., 2004, Del Re et al., 2010, Ferreau 

et al., 2006). 

Given the current system state    and the vector of 

exogenous inputs   (principally the set points) at time instant 

k, the discretized NMPC problem we address in this paper 

can be written as below: 

                            
    
   

     (14) 

s.t.                                           (15) 

                            (16) 

                       (17) 

                       (18) 

                 (19) 

where      denotes the system states and      stands for the 

vector of piecewise constant control inputs.             

is the so-called prediction horizon at time k.    and   are 

nonlinear functions describing the discrete-time system 

dynamics. Finally,  ,  ,   and   respectively stand for lower 

and upper bounds on the states and the control variables. 

4.2  Application to the turbocharged SI engine 

The air path control problem fits into the above formulation 

of an NMPC optimal control problem if we consider: 

                     
 
              (20) 

                       (21) 

                      (22) 

          
                             (23) 

The parameter     
   is used to track the desired manifold 

pressure set point. The right hand side of (15) is derived from 

the set of equations (13), while the output vector   consists in 

the second and third states of the same model. No explicit 

state constraints are required. The manipulated variables are 

bounded in order to take into account the actuator saturations:  

               (24) 

As detailed before, the air path control of a turbocharged SI 

engine classically relies on using the same set point for the 

inlet manifold and compressor outlet pressures (Colin, 2006). 

It leads to the first objective function below:  

          
        

         
        

 
       (25) 

where the weighting factors    and    are used to scale and 

penalize each term of the cost function. 

In this study, we propose to directly maximize the 

thermodynamic efficiency by minimizing the pressure 

difference between the inlet and outlet manifold.  As such, a 

proper choice of the objective function is:  

          
        

    
    

    
     (26) 

where the weighting factors    and    are used to scale and 

penalize each term of the cost function.  

In both cases it is a multi-objective problem: if    is chosen 

too small compared to   , the inlet manifold pressure will not 

reach its desired value. In fact it would become more 

favorable to minimize the exhaust pressure than achieve the 

required inlet manifold pressure. 

It can be seen that the NMPC formulation (14-19) avoids the 

use of a terminal penalty term and terminal constraints 

(Mayne et al., 2000). This design choice is principally due to 

the parameterization of the optimization problem in   which 

makes the definition of such additional terms intractable in 

this nonlinear framework. However, the closed-loop stability 

(in the sense of boundedness of state space trajectories) is 

ensured by the intrinsic dissipative properties of the system 

as well as the bounds on the control variables. 

The only thing left is a proper choice of the control sampling 

time, which can be different from the model simulation 

sampling time.  In order to control the fast dynamics of the 

engine as well as allow quick response to set point changes a 

new control is applied every 10 ms. 

4.3  Prediction horizon and control variable partitions 

The control function      will be considered to be piecewise 

constant over the prediction horizon in order to get a finite-

dimensional optimization problem. On one hand the number 

of control variables should remain as small as possible in 

order to simplify the optimization problem. On the other 

hand, the degrees of freedom, represented by the number of 

partitions of     , need to be adapted to the control horizon 

that is chosen. Otherwise, the MPC performances would be 

equivalent to the use of static data maps.  

For the prediction horizon, the regular choice is made in 

relationship with the settling time of the system. In the case 

of a turbocharged engine, it has to be mentioned that the 

settling time is linked to the operating point of the engine. In 

particular, it depends on the engine and turbocharger 

rotational speed and can vary from about 80 ms to 250 ms. 

In this study, a prediction horizon of 100 ms combined with a 

constant control value over this horizon has proved to be 

flexible enough to track realistic vehicle transients. The 

optimization problem is addressed in a classical single 

shooting framework using a simple trust-region reflective 



 

 

     

 

algorithm implemented in Matlab®. This algorithm, 

initialized in the middle of the control variable space, 

converges within 10 iterations. The performances are 

depicted in the next section. 

It can be seen that the simplicity of the problem, in particular 

the small number of model states and set points, as well as its 

fast convergence time match the requirements for a real-time 

implementation using the explicit MPC formulation. Such 

formulations will provide additional elements for the formal 

validation and verification of the closed-loop performance 

and stability. However, these explicit MPC constructions are 

beyond the scope of the present paper which concentrates in 

the remaining part on the analysis of the on-line optimization-

based MPC performances and discusses the sensitive aspects 

with respect to the design parameters. 

5. SIMULATION RESULTS 

5.1  Model validation 

The model was calibrated using steady-state data acquired 

exclusively on an engine test bench. In this section we briefly 

present model validation results.  

 
Fig. 4. Model states estimation validation example on 

vehicle transients. Over the complete validation cycle, engine 

speed varies from 1,000 to 6,000 rpm while actuator 

positions vary from closed to fully open (including sudden 

openings). 

 

The steady-state validation detailed in (El Hadef et al., 

2012a) shows that the model prediction is very accurate over 

the entire engine operating range. The error remains well 

below 10% for most of the operating points. In Fig. 4 it can 

be seen that the model described above leads to accurate 

dynamic behaviour predictions which is compulsory for use 

in an MPC approach. 

Altogether, steady-state and transient performances validate 

the modelling hypotheses as well as the different data that 

have been used. In particular, the exhaust pressure and the 

turbocharger rotational speed, computed thanks to the 

extrapolated compressor and turbine data-maps, are well 

predicted. It confirms that the recent physics-based 

extrapolation strategy presented in (El Hadef et al., 2012a, El 

Hadef et al., 2012b) leads to accurate results. 

5.1  Validation on vehicle transients 

In this section the performance of the NMPC is evaluated on 

an inlet manifold pressure transient. The complete transient 

represents 65 seconds of a driving sequence performed on a 

vehicle equipped with the engine depicted in this paper. In 

Fig. 5, we compare the performances obtained with the 

classical approach (i.e. tracking both compressor outlet and 

inlet manifold pressures reference trajectories) and with the 

new objective function (which directly maximizes the engine 

efficiency in the objective function). 

It can be seen that both approaches lead to equivalent and 

satisfying tracking performances. Both pressure manifold 

signals remain in the +/- 100 mbar tolerance interval required 

to achieve good drivability. On the actuator position graphs, 

note that, as expected, the classical approach leads, on 

average, to a wider throttle opening. However, the wastegate 

opening is usually greater with the new approach, designed to 

minimize the pumping losses. This can be clearly observed 

between 42.5 seconds and 44 seconds. This is also confirmed 

on the complete transient, for which averaged performances 

have been summed up in table 1.  

 
Fig. 5. Inlet manifold pressure tracking with corresponding 

actuator positions. The inlet manifold pressure reference 

trajectory is depicted through upper and lower 100 mbar 

tolerance intervals (red dashed lines).  

 

In Fig. 5, the pressure difference between exhaust and inlet 

manifold pressures is also compared for both approaches. In 

most cases the new objective function, designed to maximize 

the engine efficiency, leads to a smaller pressure difference, 

i.e. smaller pumping losses. In some rare cases, for example 

at time equal to 37.8 seconds, the classical approach leads to 
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a smaller pressure drop. This is due to the calibration of the 

coefficients    and    in (25) and (26). In fact, as explained 

before, they are used to penalize or not the pressure drop 

minimization with respect to the inlet manifold pressure 

tracking. At this particular point, the set of constant 

parameters that were chosen for the new objective function is 

probably more favorable to inlet manifold pressure tracking. 

However, on average, the new objective function leads to 

smaller pumping losses while maintaining equivalent inlet 

manifold pressure tracking performances. This is detailed in 

Table 1. 

Table 1.  Performances on a complete transient cycle 

Average values 
Classical 

approach 

New objective 

function 

Tracking error < 20 mbar < 20 mbar 

Pressure drop 535 mbar 520 mbar 

Throttle opening 30% 29% 

Wastegate opening 75% 80% 

Compressor efficiency 0.70 0.71 

Turbine efficiency 0.56 0.57 

 

One can see that the throttle opening is maximized in the 

classical approach while it is the wastegate opening that is 

maximized with the new approach. The consequence of this 

is that, with the new objective function, the pressure 

difference between the exhaust and inlet manifold pressures 

is reduced by about 3% on the complete transient. The 

pumping losses are reduced in the same proportion. This can 

be explained by a slight increase in the compressor and 

turbine average efficiency. 

6. CONCLUSION 

In this paper, a NMPC approach is used to control the air path 

of a gasoline engine in a coordinated way. The main 

contribution resides in the combination of a MPC design with 

a nonlinear physical engine model. The main motivation to 

this multi-input approach is that it implicitly takes into 

account the nonlinear and coupled nature of the system. A 

second advantage is that it allows introducing physics-based 

terms in the objective function. In this study, a 

thermodynamic term replaces an empirical one in the 

objective function in order to maximize the engine efficiency. 

On this particular technical definition, the obtained pumping 

losses lead to a marginal effect on fuel consumption. 

However, the genuine advantage is that this formulation is 

independent of the tracking problem. In particular, the 

extension to gasoline engine torque tracking is 

straightforward. From an industrial point of view, the major 

advantage of such a generic design is the reduction of the 

calibration effort. 

Finally, from the very beginning of this study, the real-time 

implementation constraints of the control have been taken 

into account. As such, the NMPC presented in this paper 

fulfills all the requisite criteria for online implementation 

using an explicit approach. The natural extension of this work 

is to compute its explicit form in order to validate the real-

time performances (El Hadef et al., 2013). 
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