
HAL Id: hal-00906642
https://hal.inria.fr/hal-00906642

Submitted on 20 Nov 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A context information manager for pervasive
environments

Jérôme Euzenat, Jérôme Pierson, Fano Ramparany

To cite this version:
Jérôme Euzenat, Jérôme Pierson, Fano Ramparany. A context information manager for pervasive
environments. Proc. 2nd ECAI workshop on contexts and ontologies (C&O), Aug 2006, Riva del
Garda, Italy. pp.25-29. �hal-00906642�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49712606?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00906642
https://hal.archives-ouvertes.fr

A Context Information Manager
for Pervasive Computing Environments

Jérôme Euzenat1, Jérôme Pierson2, Fano Ramparany2

Abstract. In a pervasive computing environment, heterogeneous

devices need to communicate in order to provide services adapted

to the situation of users. So, they need to assess this situation as

their context. We have developed an extensible context model

using semantic web technologies and a context information

management component that enable the interaction between

context information producer devices and context information

consumer devices and as well as their insertion in an open

environment.

1 INTRODUCTION1

In a pervasive computing environment, various basic services can

be provided by smart devices (e.g., sensors, actuators, human-

computer interface). More advanced services can be provided when

they act together and cooperate, but smarter services can only be

achieved if the devices could adapt their behaviour to the user,

his/her preference and his/her task, than if users have to find the

specific service they want among all the smart devices.

 This idea requires the perception of the environment in which

devices and users interact. There are pieces of information that can

be considered common to all services. In particular, spatial and

temporal location as well as information related to the physical

environment in which services are made available [1, 2]. These

elements are part of the context in which applications operate. We

are here concerned with context-aware applications, i.e.,

applications whose behaviour is determined to some extent by the

context.

 Our goal is to design a context management system general

enough to be used by different pervasive computing applications,

specific enough for encompassing existing services and

applications, and flexible enough for supporting the dynamic

addition of new devices.

 First we introduce our proposal for a distributed architecture

that manages context information (Section 2), then we define a

context representation (Section 3) which is independent of

applications and an architecture enabling their evolution. The

openness of the system will require dealing with heterogeneous

representations that will have to be reconciled before being used

(section 4). For that purpose, we will take advantage of solutions

developed for the “semantic web”.

2 CONTEXTS

Context is the set of information (partly) characterizing the

situation of some entity [5]. The notion of context is not universal

but relative to some situation [15, 11]. This can be a physical

situation (as the spatio-temporal location of some person) or

functional (as the current task of the person).

1INRIA Rhône-Alpes, France
2France Telecom R&D, France

Although, several scientific domains have considered the

notion of context, the standpoints from which this notion is

considered are different: in pervasive computing, the context of an

application in terms of its physical parameters has been especially

considered ; in human-computer communication, the context is

most often the user task and the history of its dialogue with the

computer [4]; in artificial intelligence, the context is rather

considered as the conditions of validity of an assertion [14].

2.1 Context in pervasive computing

In pervasive computing, the physical context is of the utmost

importance. In general, it is acquired through sensor data. These

data are further elaborated into context characterization adapted to

their use (for instance « high temperature » for some air

conditioning controller). With regard to the sensor data (a

temperature), the information has been weakened (i.e., made less

precise) but is more adapted.

The various definitions of context in pervasive computing are

very often related to an application or a particular domain [6, 15].

The drawback of this characterization is its reliance on the task:

« high temperature » is not an absolute characterization. It depends

on the use of the room (a sauna or a sleeping room). More than

context, pervasive computing tends to manipulate a

characterization of the context in the perspective of an application.

As a consequence, it is difficult to dynamically implement non

expected applications with the characterization of context made for

another one.

Figure 1: Model for context in pervasive computing. Data coming from

sensors are aggregated and elaborated into the context used by applications

(from[7]). This paper does not consider the orthogonal aspects (discovery,

history and security).

However, multi-application context modelling is now

understood in pervasive computing [7] and raises the issue of

considering context independently from applications. Figure 1

shows the way to progressively elaborate context information from

sensors to applications. We will follow this approach and this paper

details the content of the perception and situation layers so that

they can support the dynamic nature of the environment (new

sensors and applications appear and disappear).

Sensors (numeric)

Perception (symbolic)

Context identification

Exploitation

H
isto

ry

D
isc

o
v

e
ry

2.2 Contexts in artificial intelligence

In artificial intelligence, the notion of context is, in general,

concerned with the representation of information. It is used for

accounting for two phenomena: the context of validity of

information [16] and the efficiency of reasoning in narrower

contexts [1].

John McCarthy [17] proposed a formalization of context

based on context « reification » as well as the « meta-predicate » ist,

ist(p,c) meaning that assertion p is true in context c. The

approaches of context in artificial intelligence allow grouping

knowledge in micro-theories [1] and to reason within those. In this

framework (that of Cyc), the context is a more precise frame for

interpreting information. This kind of approach can be used in

pervasive computing in order to integrate and interpret data

provided by sensors. Taking advantage of the theory associated

with the sensor enables reducing the ambiguity of the data it

delivers. In that view, raw data issued from sensors, are generally

not weakened but rather enriched (and aggregated with other

information sources allowing to further precise their interpretation).

[14] describes the way to express this kind of context within the

semantic web by providing each triple information on its origin

(« quad »). The same model is implemented in modern RDF

managers [2].

Although work from McCarthy and Guha consider contexts as

independent theories related to some particular knowledge field,

Fausto Giunchiglia instead considers contexts as concurrent

viewpoints on the same information. He expresses the relations

between contexts as « mappings » used for importing information

under some context into another. This approach can be useful in

pervasive computing when several information sources provide

comparable information. These works found their way within

semantic web tools through the C-OWL language [18]. A

comparison of both approaches is made in [19].

2.3 Synthesis

In summary, pervasive computing tends to consider context as

what characterizes the situation while artificial intelligence rather

characterizes the information itself. More notably, Pervasive

computing very often deals with the particular context of an

application while artificial intelligence determines the context in

function of the information source. In pervasive computing,

information coming from sources is very often weakened in order

to fit the application needs while artificial intelligence tends to

enrich it with further information.

Of course, these approaches are rather complementary than

competitors. In general, raw data can go through weakening and

enrichment, thus bridging both approaches.

In pervasive computing, upgrading the environment is not an

option: the environment must be designed from scratch in order to

evolve. Our goal is to contribute to dealing with the dynamic

evolution of context [7]. For that purpose, we design an

architecture supporting the introduction of new context elements

(provided from some new device) and the introduction of new

applications without interruption of the environment.

This component-based context management architecture relies

on a context modelling formalism based on semantic web

technologies. We demonstrate how they can be used to

dynamically extend the environment.

3 A CONTEXT INFORMATION

MANAGEMENT COMPONENT

Pervasive Computing applications retrieve context data directly or

indirectly from sensors, which are grounded in the physical

environment. We propose an architecture in which applications do

not need to directly connect to each sensor available and where

adding a new sensor does not require all applications to be

recompiled and redeployed.

3.1 Architecture

Designing an architecture for hosting context-aware services,

suggests the development of a context management service for

providing other services or devices with context information [6, 7,

11]. We have identified several alternative approaches for

designing the target architecture. The first approach lets

applications directly communicate with sensors they have an

interest in. This approach requires applications to know in advance

who they need to communicate with to get the information they

need. Furthermore it adds complexity to the process of information

aggregation, as this process should then be handled by the

applications themselves and overloads sensors activity. Finally this

approach makes it difficult to insert new sensors into the

environment and thus doesn't comply with our flexibility

requirement.

In the framework of service oriented architectures, the second

approach consists of building a context management service [4]

whose job is to collect sensors information and forward this

information to applications that need it. This approach makes it

possible to gather sensor information in a single place so that

information could be easily aggregated. For example, a system that

provides local temperature and atmospheric is very useful in a

home environment. At a city level, the same information is useful;

however it doesn't need the same degree of precision. The

drawback of such a system is that it centralizes the management of

context information, which is contradictory to the concept of

context. More specifically, this system provides information about

the activity environment (a special case of context information),

however this information is not contextual as it is independent of

the current task or situation, i.e. that of the client application.

Moreover, with such a system, the scope of context management

would be efficient in a limited area only.

We have adopted a third approach in which each device or

service embeds a context management component (CMC) for

maintaining context information for its own use or for the benefit

of others (Figure 2). The main advantage of this approach is that

new devices can join online or leave, without having to recompile

or reinitialize any part of the whole environment. This component

provides mechanisms for helping context-aware devices to request

context information from context sensitive devices.

Figure 2: Each device embeds a context management component (CMC) and a semantic description of its context.

3.2 Interaction

Applications should be able to query context information they are

interested in and some services should be able to provide context

information, such as aggregated context information to other devi-

ces. For this purpose we design a protocol that makes the best of

available services. We need to be able to identify a service, to

know what kind of context information it could provide and to

interact with it to get access to this information. Thus the context

management component provides a few methods. In our

description the first element is the query, the second is the response

type:

Id() -> URI: The identifier of the service;

Cl(URI) -> URI: The class of the identified service;

Desc(URI) -> OWL: The description of the information that

the component can provide;

Req(RDQL) -> RDF.

The first method allows identifying devices that are available in the

environment. The identifier can then be used to contact the device.

Alternatively, it could be used to get a more detailed description of

the device (e.g., in case the identifier is a URI pointing to a

network location where a description of the identified object is

stored). A second method identifies the class (in OWL terminology)

of the device. In theory, this class should be accessible from the

network and once its definition is found, it provides a detailed

description of the device. A third method provides the device

description (or rather that of context information they provide) in

an OWL formalism (OWL-S). A fourth method is used to post

queries to the devices and to get the context information returned.

 Thus any device is able to: find out, in its environment,

services that are able to provide information relevant to its own

context, get features of services that have been found (for example,

measurement precision), connect to the selected service to get the

information sought.

 We need a language to describe the context model of

heterogeneous devices so that these devices can interact in a

dynamic environment.

4 OPENESS, DYNAMICS AND

HETEROGENITY

The languages developed for the semantic web, and particularly

RDF and OWL, are adapted to context representation in pervasive

computing and particularly to the representation of dynamically

evolving contexts for two reasons: these languages are open: they

implement the open world assumption under which it is always

possible to add more information to a context characterization; and

they have been designed to work in a networked way.

4.1 Context model and language

In this dynamic pervasive computing environment, each CMC

manages context information of its device. To express its context

model, its needs or its capabilities, we use semantic web languages.

They ensure interoperability between these heterogeneous devices.

 The ground language for the semantic web is RDF (Resource

Description Framework [8]). It enables expressing assertions of the

form subject-predicate-object. The strength of RDF is that the

names of entities (subjects, predicates or objects) are URIs (the

identifiers of the web that can be seen as a generalization of URLs:

http://www.w3c.org/sw). This opens the possibility for different

RDF documents to refer precisely to an entity (it is reasonable to

assume that a URI denotes the same thing for all of its users).

 The OWL language [9], has been designed for expressing

« ontologies » or conceptual models of a domain of knowledge. It

constrains the interpretation of RDF graphs concerning this domain.

OWL defines classes of objects and predicates and makes it

possible to declare constraints applying to them (i.e., that the

« output » of a « thermometer » is a « temperature »).

 The context model that we use at that stage is very simple: a

context is a set of RDF assertions. Interoperability is guaranteed

through considering that context-aware devices are consumers and

producers of RDF. However, this is not precise enough and devices

may want to extract only the relevant information from context

sources. For that purpose, a language like RDQL [10] is useful for

querying or subscribing to context sources. In order to post the

relevant queries to the adequate components, it is necessary that

components publish the OWL classes of objects and properties on

which they can answer.

4.2 Why ontologies?

If we can add components at any time, they may not be easily

usable. Indeed, there is no a priori reason that components

available, new applications and new sensors are compatible.

Fortunately, knowledge representation techniques, and namely the

open world assumption, makes it possible to introduce new device

specifications in the environment by extending the ontology,

through specifying a new concept or a property. Using ontologies

to characterize the situations permits new equipment whose

capabilities have not been known at the beginning to enter and new

applications to benefit from these possibilities. The applications

Web

Privacy/Tru

Alignment
Service

CMC

CMC

CMC

CMC

CMC

CMC

CMC

must be as general as possible describing the information they need

whereas the context management system must be as precise as

possible on the information it makes available. This approach

enables the most specialized applications to take advantage of

CMCs. The essential point is to have sufficiently generic

ontologies to cover the various concepts implied in pervasive

computing applications [12].

4.3 Taking advantage of heterogeneous resources

The context management system we propose makes it possible to

introduce new devices in the environment by extending the

ontologies in such a way that existing applications can make the

best use of them. However, this view holds if all parties share the

same ontology.

 Unfortunately this is not always the case and agreeing on

standard, universal and self contained context ontology is not a

reasonable assumption. This raises the issue of matching context

information with applications context information requirements.

There are three alternative approaches addressing interoperability

in pervasive computing environments: (i) A priori standardisation

of ontologies, (ii) setting up mediators among ontologies and (iii) a

dynamical ontology matching service. These three approaches are

not incompatible and might even be jointly used. For example

parties could agree on sharing common high level ontologies.

Letting more specific level ontology evolve freely and

independently is a strategy enabling a close account for a fast

evolving domain.

As ontologies, matching services should be available for

applications and context managers through network access. They

provide an interface that allows the explicit handling of ontologies

alignments developed in the framework of the semantic web [20].

We propose to set up one (or more) ontology matching service(s)

(Figure 3). The goal of such services is to help agents (context

managers in our case) to find a matching between different

ontologies. These services provide mechanisms for finding out

ontologies close to a given ontology, archiving (and retrieving)

past alignments, dynamically computing matching between two

ontologies and translating queries and responses to queries between

context managers that use different ontologies [13].

5 RELATED WORKS

In pervasive computing, it is largely recognized that handling

context information is essential. As we presented, there are many

different management systems for context information. The one

which is the nearest to what we presented here is the work on

contextors [11]. It proposes a library of elements able to provide

context information: it makes it possible to combine contextual

information on a distributed mode. On the other hand, this system

does not establish how to dynamically add devices without

stopping the system or other devices. Regarding to the use of the

semantic Web technologies to represent context, there are several

proposals to extend the languages of the semantic Web in order to

contextualize the assertions [14, 19, 2]. With regard to the use of

OWL to represent the context information, [12] introduces a high

level ontology of contextual information for pervasive computing.

6 CONCLUSION AND PERSPECTIVES

We specifically addressed the problem of adaptability of context

management to an ever-evolving world. This is achieved by

providing a distributed component-based architecture and by using

semantic web technologies. Components enable the addition, at

any moment, of new devices that can provide information about the

context of applications. The use of RDF and OWL ensures

interoperability between components developed independently by

taking advantage of the open character of these technologies.

Moreover, using ontology alignment modules allows dealing with

the necessary heterogeneity between components. The proposed

approach relies on a minimal commitment on basic technologies:

RDF, OWL, and some identification protocol.

 We are currently developing a demonstrator of this

technology. It consists of a toolkit for developers of pervasive

applications which help them deploy a distributed context

management system. This toolkit provides a component for

managing (searching, broadcasting and updating) context

information.

Figure 3: For finding correspondence between its model and the model of the context information provider, the window service asks to an alignment service

to translate his model to another device model.

 WEB

Average

Temperature

Physical

Context

Temperature Brightness
isA

isA

Brightness

Alignment
Service

isA

Temperature °K Temperature °C Temperature °F

isA
isA

Physical

context

Temperature

isA

isA

Context

Room Context

Ho use

Context

isA

Resident Time

isA

isA isA isA

myRoomTemperature

Average

 Temperature

isA

⌠

>>

ACKNOWLEDGEMENTS

Fano Ramparany and Jérôme Pierson are partially supported by the

European project Amigo (IST-2004-004182); Jérôme Euzenat is

partially supported by the European network of excellence

Knowledge Web (IST-2004-507482).

REFERENCES

[1] R. Guha, Contexts: a formalization and some applications, PhD thesis,

Stanford university (CA US), 1991 (Technical Report STAN-CS-91-

1399-Thesis et MCC ACT-CYC-423-91).

[2] O. Khriyenko, V. Terziyan, Context description framework for the

semantic web, Proceedings Context 2005 Context representation and

reasoning workshop, Paris (FR), 2005

[3] A. Dey, D. Salber, G. Abowd, A conceptual framework and a toolkit

for supporting the rapid prototyping of context-aware applications,

Human-Computer Interaction 16:97-166., 2001

[4] P. Dourish, Seeking a foundation for context-aware computing,

Human-Computer Interaction, 16(2-3), 2001.

[5] M. Chalmers, A Historical View of Context, Computer supported

cooperative work 13(3), 223-247, 2004.

[6] A. Dey, Understanding and using context, Personal and ubiquitous

computing 5(1):4-7, 2001.

[7] J. Coutaz, J. Crowley, S. Dobson, D. Garlan, Context is key,

Communications of the ACM 48(3):49-53, 2005.

[8] G. Klyne, J. Carroll, Eds., Resource Description Framework (RDF):

Concepts and Abstract Syntax, W3C Recommendation, 2004

http://www.w3.org/TR/rdf-concepts/

[9] M. Dean, G. Schreiber Eds, OWL Web Ontology Language:

Reference, W3C Recommendation, 2004. http://www.w3.org/TR/owl-

ref/

[10] A. Seaborne, RDQL — A Query Language for RDF, W3C Member

submission, 2004. http://www.w3.org/Submission/2004/SUBM-

RDQL-20040109/

[11] J. Crowley, J. Coutaz, G. Rey, P. Reignier, Perceptual components for

context aware computing, Proceedings International Conference on

Ubiquitous Computing, Göteborg (SW), pp. 117-134, 2002.

[12] X. H. Wang, D. Q. Zhang, T. Gu, H. Keng Pung, Ontology based

context modeling and reasoning in OWL, Proceedings 2nd

International conference on pervasive computing and communication

Workshop on Context Modeling and Reasoning (CoMoRea), Orlando

(FL US), 2000.

[13] J. Euzenat, Alignment infrastructure for ontology mediation and other

applications, Proceedings ICSOC 1st international workshop on

Mediation in semantic web services, pp.81-95, Amsterdam (NL),

2005.

[14] R. Guha, R. Fikes, R. McCool, Contexts for the Semantic Web,

Proceedings 3rd ISWC, Hiroshima (JP), LNCS 3298:32-46, 2004.

[15] H. Chen, T. Finin, A. Joshi, An Ontology for Context-Aware

Pervasive Computing Environments, Knowledge engineering review

18(3):197-207, 2004.

[16] J. de Kleer, An assumption-based TMS, Artificial Intelligence

28(2):127-162, 1986.

[17] J. McCarthy, Notes on formalizing context, Proceedings 13th IJCAI,

Chambéry (FR), pp. 555-560, 1993.

[18] P. Bouquet, F. Giunchiglia, F. van Harmelen, L. Serafini, H.

Stuckenschmidt, C-OWL: contextualizing ontologies, Proceedings 2nd

ISWC, Sanibel Island (FL US), LNCS 2870:164-179, 2003

[19] L. Serafini, P. Bouquet, Comparing formal theories of context in AI,

Artificial Intelligence 155:1-67, 2004.

[20] J. Euzenat, An API for ontology alignment, Proceedings 3rd ISWC,

Hiroshima (JP), LNCS 3298:698-712, 2004.

