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Abstract

Machine learning shows potential to automatically predict program
optimizations for many years. However, it is still far from production
use due to ”black box” nature, complex and constantly changing experi-
mental setups, very naive and limited experimental scenarios, and lack of
large and diverse training sets. Our main contribution is to start cooper-
ative formalization and validation of program optimization (auto-tuning)
and machine learning making it understandable, practical, reproducible
and scalable. We present a novel experimental methodology implemented
as a distributed buildbot to continuously optimize and classify multiple
code and dataset samples shared by the community while exposing, an-
alyzing and solving unexpected behavior either automatically or through
crowdsourcing.

We present industrial case study using 285 shared code and dataset
combinations from 8 popular benchmarks and 5000 combinations of GCC
compiler flags demonstrating that statistical models built using limited
training sets from existing works can be totally misleading. We demon-
strate how our framework can help to expose, isolate and collaboratively
fix SVM model mispredictions for a surveillance camera application, while
finding and sharing missing relevant features by domain specialists. At the
same time, formalization of auto-tuning and machine learning allows us
to continuously apply standard complexity reduction techniques to leave
a minimal set of influential optimizations and relevant features while pro-
ducing a new realistic, representative and continuously evolving bench-
mark currently consisting of 79 distinct optimization classes. We agreed
with our industrial partners to release presented framework and all related
data for artifact evaluation and to the public at the conference under free,
open source license.

Keywords: Collaborative experimentation, program optimization, predic-
tive modeling, performance tracking buildbot, anomaly detection, feature learn-
ing, model sharing, shared experimental pipelines, all research artifacts, con-
tinuous complexity reduction, representative benchmark, minimal feature set,
experiment validation, reproducible research
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1 Introduction
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Figure 1: Rising number of optimization dimensions in GCC in the past 12 years (flags
and parameters). Obtained by automatically parsing GCC manual pages, therefore
small variation is possible.

Machine learning has been actively promoted as a possible solution to cope
with ever rising complexity of computer systems including dramatically increas-
ing number of available program optimizations such as compiler flags shown
in Figure 1 for more than a decade [10, 41, 34, 12, 40, 4, 23, 13, 31, 17, 44,
33, 30, 19, 37, 42, 35, 38, 11]. Existing studies usually focus on a few positive
outcomes (predictions) to improve execution time, power consumption or other
characteristics using some off-the-shelf black-box classification and predictive
modeling techniques such as SVM, neural networks or KNN [8, 21, 29], several
optimizations and a few benchmarks combined with several ad-hoc program or
architecture features. Though undoubtedly interesting, such limited studies can
only demonstrate some potential of using machine learning for predictions but
do not include deep and systematic analysis of the selection of a learning al-
gorithm and related features for large and realistic training sets which are the
major research challenges in the field of machine learning for decades, and far
from being solved [8].

In fact, complex, ad-hoc, and continuously changing experimental setups
including rapidly evolving architectures, compilers, run-time systems, multiple
and often incompatible auxiliary tools, possibly non-representative benchmarks
and datasets together with excessively long training phases and rising amount
of experimental data make systematic and long-term studies practically impos-
sible. Furthermore, ”black box” nature of many machine learning algorithms
together with the lack of common experimental methodology and culture of
sharing large, diverse and reproducible experimental sets in computer engineer-
ing makes it too tedious or sometimes even impossible to validate results of
numerous publications and use them to improve compilers, applications and
architectures. In the end, all these issues started rising many concerns about
practicality and scalability of published machine learning based approaches for
compilation and architecture in realistic production scenarios.
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The main goal and contribution of the presented work is a novel, scalable
and extensible optimization methodology and public framework that attempts
to address all above challenges in a cooperative and coherent way while grad-
ually unifying and validating existing ad-hoc techniques and tools. Instead of
publishing a few positive and often non-reproducible experimental outcomes, we
propose to formalize and expose the whole optimization scenario including mul-
tiple optimization choices and characteristics to the community or a workgroup
in a modular and portable way as a buildbot. Now, we can easily distribute
various optimization scenarios among many participants and continuously ex-
plore available optimization choices for all shared code and dataset samples from
the community in realistic environments while focusing on unexpected behav-
ior and mispredictions. All behavior anomalies are continuously collected and
exposed in a centralized repository to find most optimal predictive models and
correlating algorithm, program, architecture, dataset and other features for a
given scenario either automatically or through crowdsourcing as it is currently
successfully used in other sciences including biology and artificial intelligence.

As a proof of concept and to start building a community crucial for our ap-
proach, we installed developed buildbot with 2 experimental setups to validate
”iterative compilation” and ”machine learning” in two major companies (omit-
ted for blind review) and on Android-based mobile phones of our colleagues.
Within 6 months, our supporters have shared 289 code and dataset samples
from major benchmarks including NAS, MiBench, SPEC2000, SPEC2006, Pow-
erstone, UTDSP, SNU-RT, and a few real applications which were continu-
ously optimized in terms of execution time using at least 5000 combinations
of GCC compiler optimization flags currently deriving 79 distinct and pruned
optimization classes. Popular SVM model [8] have been applied and optimized
to separate those classes using available shared features derived from program
semantic analysis and hardware counters. Analyzing mispredictions, we show
that current limited experimental setups can result in completely meaningless
correlations. We also present a case study in an industrial setup, where we
exposed mispredictions on a production code to domain specialists who ”de-
constructed” and isolated the problem, prepared and shared counter-example
benchmark, and learned correct algorithm, program and dataset features to fix
wrong classification. Furthermore, such white box approach helped to deliver
minimal representative benchmark to an architecture verification and testing
department of our industrial partner. Now, the community has an extensible
toolset to continue analyzing all exposed problems and find new features to
improve and optimize predictive models.

This paper is organized as follows. In Section 2, we present our novel frame-
work that formalizes current research on auto-tuning and machine learning al-
lowing to implement various research scenarios as shared experimental pipelines.
Section 3 describes two experimental scenarios to validate compiler auto-tuning
and machine learning combined with continuous and incremental complexity
reduction. Section 4 presents a case study demonstrating our methodology in
practice to find missing features, improve compiler optimizations and make real
image processing application adaptive at run-time. Finally, we summarize re-
lated work in Section 5 and conclude in Section 6.
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2 Cooperative research and experimentation

Figure 2: (a) Conceptually depicted current ad-hoc experimentation; (b) wrappers
developed by the community around existing tools to gradually expose behavior (char-
acteristics), choices, features and system state using unified JSON input and output
format; (c) wrappers and modules chained together as LEGO to implement various ex-
perimentation scenarios within a public buildbot that can be collaboratively explored
and improved by the community.

Our basic idea is to bring an interdisciplinary community together to collab-
oratively explore various research and experimental scenarios while explaining
unexpected behavior and mispredictions. However, unlike some other sciences
where similar approach has already been successfully used for years (see Journal
of Statistical Software, for example), it is not yet widely used in design and op-
timization of computer systems due to at least two major problems: variability
in behavior of computer systems such as execution time that we will discuss
in Section 4, and very complex and continuously evolving experimental setups
with multiple hardwired ad-hoc and ever changing tools and architectures com-
bined with some tuning and analysis scripts while often sharing results in non
unified CSV, TXT and XLS files with some limited meta-description or at most
in MySQL and similar databases, as conceptually shown in Figure 2a. Usually,
by the end of tedious development and experimentation, new versions of compil-
ers, libraries, OS, architectures are already available making results potentially
outdated while problems possibly solved or considerably evolved. The lifespan
of such often undocumented and unreleased developments is usually a duration
of an MS or a PhD project.
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2.1 Back to basics

In order to understand how to solve mentioned problems, we would like to first
remind end-users’ needs and try to formalize existing research techniques. Very
simplistically, computer systems’ users rarely care about underlying technology
but mainly care about performing their multiple important tasks such as playing
games on a console, watching videos on a mobile phone, surfing Web on a
tablet, modeling a new critical vaccine on a supercomputer or predicting a new
crash of financial markets using cloud services either as fast, realistic, accurate
and reliable as possible or with some real-time constraints while minimizing
or amortizing all associated costs including power consumption and device or
service costs. Therefore, we can formalize research presented in most of the
related papers as modeling of a function P that can predict most optimal design
or optimization choices for a given computer system c based on some features
(properties) of end-users’ tasks and datasets f, set of requirements r, as well as
a current state of a used computer system s:

c = P(f , r, s)

This function is naturally associated with a function B representing behavior
of a user task running on a given system depending on properties, choices and
a system and program state:

b = B(f , c, s)

Both functions are of particular importance to hardware and software de-
signers to be able to continuously provide and improve choices for a broad range
of user tasks, datasets and requirements while trying to improve own ROI and
reduce time to market. In order to find optimal choices, this function should be
minimized in presence of possible end-user requirements (constraints). However,
the fundamental problem is that nowadays this function is highly non-linear with
such a multi-dimensional discrete and continuous parameter space which is not
anymore possible to model analytically or evaluate empirically using exhaustive
search as it was done in the past for the small kernels and libraries with just
one or a few program transformations [45, 3]. For example, b is a behavior
vector that can now include multiple characteristics including execution time,
power consumption, accuracy, compilation time, code size, device cost, and any
other important characteristic; p is a vector of features of a task and a system
that can include semantic program features [34, 41, 4, 19], dataset features and
hardware counters [13, 24], system configuration, and run-time environment pa-
rameters among many others; c represents available design and optimization
choices including algorithm selection, compiler and its optimizations, number of
threads, scheduling, processor ISA, cache sizes, memory and interconnect band-
width, frequency, etc; and finally s represents the state of the system such as
frequency, cache contentions and so on.

2.2 Agile, wrapper-based framework for cooperative ex-
perimentation

A possible revolutionary approach would be to re-design the whole software
and hardware stack while exposing all characteristics and optimizations, and
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continuously tuning and adapting the whole system. However it is unlikely to
be quickly accepted by the community based on the past experience from some
related projects that either became too complex and heavy, or too theoretical,
cover a very narrow part of computer system, over specialized (for example, for
supercomputers), or already last for years and far from being finished [6, 15, 32,
28, 26].

Instead, we present a practical and evolutionary approach based on above
formalization of objectives of various research projects where the community
gradually provides simple wrappers to the used tools including compilers, source-
to-source transformers, code launchers, profilers to transparently monitor all in-
formation flow in experimental setups as shown in Figure 2b. At the same time,
researchers gradually expose various characteristics of behavior b, choices c,
system state s and features f (meta information) from this flow only when
needed to implement a given research scenario using popular and human read-
able, language-independent and easily extensible JSON data format [2] based
on combinations of string keys, values, lists and dictionaries as in the following
example:
{”characteristics”:{

”execution times”: [”10.3”,”10.1”,”13.3”],

”code size”: ”131938”, ...},
”choices”:{
”os”:”linux”, ”os version”:”2.6.32-5-amd64”,

”compiler”:”gcc”, ”compiler version”:”4.6.3”,

”compiler flags”:”-O3 -fno-if-conversion”,

”platform”:{”
”processor”:”intel xeon e5520”, ”l2”:”8192”,

”memory”:”24” ...}, ...},
”features”:{
”semantic features”: {”number of bb”: ”24”, ...},
”hardware counters”: {”cpi”: ”1.4” ...}, ... }

”state”:{
”frequency”:”2.27”, ...}

}
From our past experience in building community-based frameworks, we no-

ticed that researchers are not always good programmers and naturally care
more about quickly prototyping their research ideas rather than drowning in
complex specifications for experiments that may be even thrown away in the
end. Therefore, in contrast with other frameworks, we decided to get rid of
pre-defined data specifications and rigid SQL-based databases difficult or even
impossible to extend in rapidly evolving projects in favor of gaining popularity
agile methodology [5] and noSQL databases to let community derive the most
simple, appropriate and backward compatible specification just enough for their
needs and only when research scenario and modules are validated and can be
shared with a wide community. JSON perfectly fits such approach and is now
backed up by many companies, supported by most of the recent languages, web
technologies and schema-free repositories [1], and can be easily used for web
services and P2P communication during experimentation.

Therefore, each wrapper has an associated file to describe the information
flow (input and output) using our own flat JSON format to be able to ref-
erence any key in the complex JSON hierarchy using just one string. Such
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flattened key always starts with # followed by #key if it is a dictionary key or
@position in a list if it is a value in a list. For example, flattened key for the
second execution time ”10.1” in the above dictionary example is ”##charac-
teristics#execution time@1”. By now, we prepared the following description of
the information flow enough to validate many existing auto-tuning and machine
learning techniques (as explained in the next section):

”flattened json key”:{
”type”: ”text” | ”dict” | ”list” | ”integer” | ”float” | ”category” | ”uid”,
”characteristic”: ”yes” | ”no”,
”feature”: ”yes” | ”no”,
”state”: ”yes” | ”no”,
”has choice”: ”yes” | ”no”,
”choices”: [ list of strings if categorical choice”],

”explore start”: ”start number if numerical range”,

”explore stop”: ”stop number if numerical range”,

”explore step”: ”step if numerical range”,

”can be omitted”: ”yes” | ”no”,
}

This specification is being continuously extended by our partners and we
will release full specification at the conference.

Finally, we introduce modules that perform mathematical and other actions
on unified JSON inputs and outputs (similar to filters in electronics) or simply
chain wrappers and other modules into experimental pipelines within a public
buildbot to quickly prototype research ideas using existing components or grad-
ually convert existing ad-hoc experimental setups to a unified format as shown
in Figure 2c. Wrappers and modules are written in Python for productivity
and portability reasons (though technically any language can be used), and can
easily call each other using one unified API function with input and output
JSON thus substituting and unifying all ad-hoc experimentation scripts, or can
be invoked from the command line by just prefixing original tool with a buildbot
front-end as following:

buildbot fe ⟨wrapper/module name or UID⟩ ⟨action function⟩ @unified input.json

−− ⟨original CMD⟩
Each wrapper or module has an assigned unique ID and an associated di-

rectory storage of format .repository/⟨wrapper/module name or UID⟩/⟨data en-
try UID⟩ to preserve any related research artifact with an associated meta-
description such as features or classification in a JSON file thus effectively ab-
stracting data access. For example, module source.code can preserve all code
samples, module dataset will keep all datasets, wrapper compiler will keep de-
scription of various compilers and their tuning parameters, module model will
keep various shared predictive models with different parameters, module exper-
iment.result will keep auto-tuning results and so on. Meta description is trans-
parently indexed using open-source JSON-based ElasticSearch framework [1]
allowing fast and complex search queries.

2.3 Co-existence of multiple versions of tools and libraries

Yet another challenge that makes experimentation and life of computer re-
searchers and engineers very exciting is continuously changing tools and li-
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braries. Presented approach with tool wrappers and an artifact repository helps
to elegantly solve this problem. We naturally consider packages and libraries as
research artifacts (or choices) too and therefore moved them to a repository with
an associated unified module to be able to install any given package on a given
user machine on demand while automatically resolving all dependencies. A spe-
cial OS-dependent script is always created during installation to set up binary,
includes and library paths and all other necessary environment variables inside
a wrapper just before tool execution. We already prepared packages and instal-
lation scripts compatible with our buildbot for most of the versions of popular
compilers, tools and libraries, including GCC, LLVM, ICC, Open64/PathScale
compilers, PGI compilers, ROSE infrastructure, Oracle JDK, VTune, visual
studio compilers, NVidia GPU toolkit, perf, gprof, GMP, MPFR, MPC, PPL,
LAPACK and others to relieve community from this burden. Interestingly, we
can use the same repository as an installation target thus providing an oppor-
tunity to researchers to preserve and share their whole experimental setups in
private or public repositories possibly with a publication while referencing any
research artifact directly using format similar to DOI:

⟨wrapper/module name or UID⟩:⟨data entry UID⟩.

3 Public research scenarios and experimental pipelines

Figure 3: Summary of the presented cooperative approach and practical buildbot
to collaboratively and semi-automatically learn and improve behavior of computer
systems using complete public experimental pipelines including code and dataset sam-
ples, tools, models, features and all other associated artifacts shared, analyzed and
improved by the interdisciplinary community.

Optimization formalization allows researchers to implement most of the cur-
rent auto-tuning techniques as a mathematical problem in terms of multiple
characteristics (behavior), choices and features while easily reusing and chaining
together well-known interdisciplinary techniques as buildbot plugins including
normality test to analyze variation of experimental results and detect behav-
ior anomalies [18], Pareto frontier filter to leave only optimal solutions during
multi-objective optimization [27, 22] and complexity reduction and differential
analysis techniques [39, 25] to continuously isolate behavior anomalies, com-
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pact experimental data on the fly, leave only influential optimization dimensions
(choices), related features and most accurate models. Furthermore, common op-
timization framework and cooperative methodology allows community to share
multiple code and datasets samples and collaboratively explore large optimiza-
tion spaces using our public buildbot while making use of machine learning
statistically meaningful as conceptually summarized in Figure 3.

However, our approach also requires radical change in mentality of researchers
when defining experiments that can be collaboratively explored thorough spare
computational resources including mobile phones or cloud services. Rather than
focusing on a few positive speedups from auto-tuning or prediction from ma-
chine learning that are relatively straightforward and can now be continuously
shared in the public repository to directly improve end-user’s applications, com-
pilers, and run-time systems, researchers will need to prepare such experimental
pipelines that can continuously ”crawl” for unusual or unexpected behavior of
computer systems and models when spare resources become available:

while True:

lsr=get list of available spare resources()

if len(lsr) ⟩ 0:
sr=random(lsr)

lep=get list of shared experimental pipelines(get features(sr))

if len(lep) ⟩ 0:
ep=run pipeline(sr, random(lep), timeout(lsr))

save and prune expected results(ep,sr)

expose unusual behavior(ep,sr)

If a researcher has difficulties explaining results, mathematical formalization
of a problem also allows to expose it to an interdisciplinary community that
can help to analyze and understand domain-specific problems (anomalies) while
manually finding related features in the whole software and hardware stack to
improve predictions which is currently practically impossible to generalize and
automate until deep learning becomes practical and powerful enough [21, 29].

In the next sections, we will demonstrate how to use our approach to validate
several well-known and far from being solved problems including automatic com-
piler flag tuning and prediction. Based on our practical experience and feedback
from our industrial partners, it now takes just a few days rather than months
to implement such scenarios as Python-based buildbot modules and wrappers
(plugins) thus considerably increasing productivity and return on investment
when prototyping research ideas.

3.1 Validating compiler auto-tuning (iterative compilation)

As the first practical usage of the presented approach and framework, our in-
dustrial partners desperately required practical compiler flag auto-tuning that
has been well-known for decades, far from being solved and is getting tougher
with years (see Figure 1). However, in contrast with existing ad-hoc setups, we
can now design an experimental pipeline as such to automatically and recur-
sively query its all connected tool wrappers for available choices and monitored
characteristics in a provided computer resource such as code and dataset sam-
ples, compilers and their optimizations, execution time, power consumption, and
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hardware counters’ profilers, and so on. These choices and behavior character-
istics are aggregated in a JSON dictionary as json c and json b respectively.
Such dictionaries can quickly become complex, for example to accommodate
other tuning techniques particularly on function, loop and instruction levels.
Therefore, we use our flat JSON format introduced in Section 2.2, to flatten
above dictionaries into vectors c and b together with their descriptions c desc
and b desc that are automatically obtained from all associated tool wrappers.
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Figure 4: Variation in execution time vs code size when crowdsourcing optimization of
an image corner detection application with a fixed dataset on Samsung Galaxy Series
mobile phone with ARMv6 830MHz processor when randomly selecting compiler flags
for Sourcery GCC 4.7.2. Yellow point represents -O3 and red circles show Pareto
frontier. This data will be available for validation at the conference.

The first relatively straightforward usage scenario allows end-users to crowd-
source program optimization. In such scenario, a user just needs to provide some
basic meta information about compilation and execution command lines for a
given program, and use our buildbot web front-end or command line to mark
characteristics to monitor and choices to explore including compilers, datasets,
flags, or anything else available in the system, select preferable shared search
strategy plugin that can be random, probabilistic, genetic, among many others,
and chain available filters to process empirical data on the fly if needed. Impor-
tantly, unification of experimental results in a vector form simplifies and enables
usage of multiple public visualization, data mining and analytics web services
for example from Google or available in various packages for Python, R, Weka,
MATLAB, SciLab, and other popular tools.

As example, we ran experimental pipeline to continuously optimize real
image corner detection program using our colleagues’ Android-based mobiles
(mainly Samsung Galaxy Series), Sourcery GCC v4.7.2 with randomly gen-
erated combination of compiler flags of format -O3 -f(no-)optimization flag –
parameter param=random number from range, and chained Paretto frontier fil-
ter for three characteristics (execution time, code size and compilation time) re-
quired by our partners. Figure 4 shows 2D visualization of the multi-dimensional
optimization and characteristic space using Google Web Services. Note, that
before exploring multiple optimization choices on an available resource we vali-
date existing results using default choice configuration vector c def such as -O3
for compilers (shown by a yellow point on a figure) or even several randomly
selected points from an explored space. If difference on any characteristic dimen-
sion is more than some threshold (currently set as 2%), we skip such computer
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resource and provide opportunity to record this case as suspicious including
all inputs and outputs for further validation and analysis by the community as
described later in Section 4. Now, a user can easily select optimal cases commu-
nity depending on the further application usage, i.e. fastest variant (or probably
with some balance in code size) to be used in a smart phone or cloud service,
or smallest variant if it is used in some tiny devices with very limited resources,
for example to support recent ”Internet of Things” initiative.

3.2 Universal complexity reduction, problem isolation and
experimental data packing

Though effective, crowdsourcing has a downside - rising amount of data to
exchange, store and analyze (also known as a big data problem). Formalization
of auto-tuning combined with on-line filters (based on active learning) allows
us to elegantly and universally solve this problem at least in our domain by
continuously pruning those explored points or dimensions in choices that have
description key ’can be omitted’ set to ’yes’ and do not degrade any observed
past characteristic within some allowed threshold when removed. Therefore, we
can now simply skip all blue points in Figure 4 leaving only optimal red solution
on the frontier or unexpected behavior for web-based data exchange and storage
during online tuning while effectively packing empirical results by several orders
of magnitude.

The same problem also relates to compiler flag selection: very often optimal
random combinations of optimization flags together with global optimization
levels such as -O3, -Os and -fast include many ”useless” flags (noise) that do
not have any effect on the code during compilation. Our unification of choices
allows to use standard complexity reduction plugin for this problem too while
incrementally, continuously and randomly switching off optimizations using -
fno-optimization flag that do not degrade any of the observed characteristics
in contrast with just removing them as in some other works [19] since global
optimization level flag may still turn them on. Such pruning is often overlooked
by the community but is essential to improve machine learning as will be shown
further.

3.3 Validating machine learning (classification and predic-
tive modeling)

Optimization formalization and unification in our framework opens up another
interesting possibility to crowdsource a global problem solving in compilation
and architecture while avoiding explosion in the amount of experimental data.
For example, we would like to understand if machine learning can be really
efficient in predicting compiler optimizations. Current experimental scenarios
attempt to address this problem by selecting a few benchmarks, tune each of
them on a given platform for a few months collecting a large amount of training
data and then show that it is possible to build a model with some ad-hoc
semantic or dynamic features to predict optimizations usually from the same
training set using cross-validation. Though technically correct, such approach
is focusing only on ”positive outcomes”, prone to the same ”big data” problem
as described before and usually results in very limited studies covering a small
part of computer systems that do not help to understand whether a model
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-O3 -fif-conversion -fno-ALL
-O3 –param max-inline-insns-auto=88 -finline-functions -
fno-ALL
-O3 -fregmove -ftree-vrp -fno-ALL
-O3 -fomit-frame-pointer -fpeel-loops -ftree-fre -fno-ALL
-O3 -falign-functions -fomit-frame-pointer -ftree-ch -fno-
ALL
-O3 -ftree-dominator-opts -ftree-loop-optimize -funswitch-
loops -fno-ALL
-O3 -fguess-branch-probability -fmove-loop-invariants -
fsched-pressure -fschedule-insns -fno-ALL
-O3 -ftree-ccp -ftree-forwprop -ftree-fre -ftree-loop-
optimize -fno-ALL
-O3 -finline-functions -fivopts -fprefetch-loop-arrays -
ftree-loop-optimize -ftree-vrp -fno-ALL
-O3 -fgcse -fivopts -fmove-loop-invariants -ftree-
dominator-opts -ftree-loop-optimize -funroll-all-loops
-fno-ALL
-O3 -fdce -fgcse -fomit-frame-pointer -freorder-blocks-and-
partition -ftree-reassoc -funroll-all-loops -fno-ALL
-O3 -fivopts -fprefetch-loop-arrays -fsched-last-insn-
heuristic -fschedule-insns2 -ftree-loop-optimize -ftree-
reassoc -ftree-ter -fno-ALL
-O3 -fforward-propagate -fguess-branch-probability -
fivopts -fmove-loop-invariants -freorder-blocks -ftree-ccp
-ftree-ch -ftree-dominator-opts -ftree-loop-optimize -ftree-
reassoc -ftree-ter -ftree-vrp -funroll-all-loops -funswitch-
loops -fweb -fno-ALL

Table 1: Some of the top performing combinations of optimization flags in GCC
4.6.3 out of 79 found optimization clusters found across Intel E5520 architecture using
our buildbot on a local data center and several ARM-based mobile phones. Meta
flag -fno-ALL means that all other optimization flags have been switched off when
applying complexity reduction plugin and leaving only most influential flags. We
continue running our buildbot and will release updated list of optimization clusters for
other compilers and architectures to the PLDI Artifact Evaluation Committee and at
the conference.

will predict well in industrial setup with many more benchmarks and features
available.

Instead, we would like to create and continuously update a pool of top per-
forming optimizations for any given compiler that are different from -O3 and
continuously cluster all available benchmarks in terms of those optimizations .
The natural idea is that benchmarks in the same optimization cluster naturally
also share some features that can be used for prediction. At the same time,
we would like to focus not only on high speedups (positive results) but also on
slowdowns (negative results that are currently overlooked by the community) to
be able to hint compiler designers that there is a possible problem with an inter-
nal optimization heuristic as it is not possibly to simply add these optimization
flags to -O3 to improve all benchmarks.

We reused and extended experimental pipeline from the previous section to
address above problems using spare computer resources and shared code and
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dataset samples while solving a problem of small training sets and more impor-
tantly focusing on both positive and negative results (”unexpected behavior”).
To demonstrate our approach, we used developed buildbot to continuously opti-
mize 285 shared code and dataset combinations from 8 popular benchmarks in-
cluding NAS, MiBench, SPEC2000, SPEC2006, Powerstone, UTDSP and SNU-
RT in terms of execution time on a local cloud service with 100 nodes, Intel
E5520 processor (2.27GHz frequency, 8Mb last level cache) and GCC 4.6.3 us-
ing either the pool of top optimization combinations or at least 5000 random
combinations of flags during 5 months. Whenever a new top combination of
optimizations was found outside the pool, we applied it to all shared programs
to perform online clustering while simply removing all redundant combinations
that produce speedup similar to the new combination across all benchmarks. So
far, our buildbot has found 79 distinct combinations of optimizations (optimiza-
tion clusters) that cover all shared code and dataset samples. Table 1 present
some of the top performing combinations of flags pruned by the universal com-
plexity reduction plugin as described in the previous section.

Figure 5: (a) 79 distinct combinations of optimizations (optimization clusters) cov-
ering all 285 shared code and dataset samples on Intel E5520, GCC 4.6.3 and at least
5000 random combinations of flags together with maximum speedup achieved within
each optimization cluster; (b) number of benchmarks with speedup at least more than
1.1 for a given cluster; (c) number of benchmarks with speedup less than 0.96 (slow-
down) for a given cluster.

Figure 5 shows maximum speedups achieved for each optimization cluster
across all benchmarks together with the number of benchmarks which achieve
highest speedup using this optimization (or at least more than 1.1) and the
number of benchmarks with speedups less than 0.96 (slowdown) for the same
optimization. For example, distinct combination of optimizations -O3 -fif-
conversion -fno-ALL achieved maximum speedup on 9 benchmarks (including
1.17 speedup on at least one of these benchmarks) and slowdowns for 13 bench-
marks.

Note, that unlike previous works, such clustering of continuously pruned
combinations of optimization flags together with reproducible experimental setup
cab already help compiler developers from our industrial partners to isolate
and possibly solve code size, compilation time and performance regressions or
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Number of code and
dataset samples

Prediction accuracy us-
ing optimized SVM

12 (from prior work) [19] 87%

285 from current work 56%

Table 2: Prediction accuracy when using optimized SVM with full cross-validation
for 12 and 285 code and dataset samples from prior and current works respectively
combined with all available semantic features (from MILEPOST GCC) and dynamic
features (from hardware counters).

other problems in production compilers thus considerably enhancing existing
bug buildbots. Furthermore, it helps to automatically systematize and prune
large collections of benchmarks and datasets leaving only representative ones
for a given research problem (such as leaving only one code and related dataset
sample per optimization cluster). However, more importantly, it makes use of
machine learning more understandable since all benchmarks in red clusters with
maximum speedups are distinct - we just need to build a predictive model to
associate a previously unseen program with one unique cluster.

At this stage, most of the existing works would attempt to build a predic-
tive model using some off-the-shelf machine learning technique such as SVM
or KNN and a few ad-hoc features. We also decided to validate such ap-
proach using SVM model from R package with full cross-validation for all
285 benchmarks used in our study and only 12 from the previous work on
MILEPOST GCC [19]. Our feature vector f was automatically generated us-
ing 56 semantic features available in MILEPOST GCC (extracted for each
benchmark at -O1 optimization level after pre pass) combined with 30 hard-
ware counters (”cycles”, ”instructions”, ”cache-references”, ”cache-misses”, ”L1-

dcache-loads”, ”L1-dcache-load-misses”, ”L1-dcache-prefetches”, ”L1-dcache-prefetch-

misses”, ”LLC-prefetches”, ”LLC-prefetch-misses”, ”dTLB-stores”, ”dTLB-store-misses”,

”branches”, ”branch-misses”, ”bus-cycles”, ”L1-dcache-stores”, ”L1-dcache-store-misses”,

”L1-icache-loads”, ”L1-icache-load-misses”, ”LLC-loads”, ”LLC-load-misses”, ”LLC-

stores”, ”LLC-store-misses”, ”dTLB-loads”, ”dTLB-load-misses”, ”iTLB-loads”, ”iTLB-

load-misses”, ”branch-loads”, ”branch-load-misses” ) obtained using standard per-
formance monitoring tool perf available in most Linux distributions by default.

Table 2 summarizes results of our modeling. When using just a few bench-
marks, prediction accuracy is quite high and supports findings from other papers
including [19]. However, interestingly, when adding considerably more bench-
marks, prediction accuracy drops dramatically and starts exhibiting close to
random behavior (50%). In order to understand such behavior, we decided to
take a closer look at one of the optimization clusters and ”deconstruct” it. We
noticed that optimization combination -O3 -fif-conversion -fno-ALL is one of the
simplest ones in our pool while having 7 benchmarks with positive speedup and
10 with negative ones. Unification of feature vectors in our framework allows to
apply standard complexity reduction to incrementally remove all features one by
one while rebuilding model and keeping at least not worse prediction accuracy.
Naturally, it can also be done using statistical techniques such as ANOVA or
PCA [13], but since we would like to isolate possible problem, we need precise
analysis. Our pruning left only one semantic feature from MILEPOST GCC
(ft29) that counts number of basic blocks where the number of phi-nodes is
greater than 3. Visualization at Figure 6 helps us to derive a decision that ft29
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Speedup > 1.10 
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Slowdown > 1.10 
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Cut to separate classes 

Figure 6: Automatic detection of the relevant feature(s) to predict optimization clus-
ter ”-O3 -fno-if-conversion -fno-ALL” using complexity reduction. However, we man-
ually converted several code samples to provide counter examples that invalidated
this feature and showed that using small training sets in many current studies can be
totally misleading.

is more than 0 can effectively separate two classes with only 3 mispredictions
out of 17.

Most of the papers will conclude at this step that relevant feature is found
and it is possible to use machine learning to predict optimizations. However, in
industrial setup, we also need to understand whether this feature makes sense
and how to use this information to improve a compiler. Therefore, we exposed
all these experimental data to our industrial colleagues and compiler developers
who confirmed experimental results but could not explain this feature. Con-
sidering that confirming relevance of a feature may not be straightforward, we
decided to try to find a counter example instead to invalidate this result. We
selected a simple blocksort function from bzip2 that has 0 phi-nodes and tried
to manually add phi-nodes by converting source code as following (added lines
are highlighted):

...

volatile int sum, value = 3;

int sumA = 0;

int sumB = 0;

int sumC = 0;

for (j = ftab[ss ⟨⟨ 8] & ( ((1 ⟨⟨ 21))) ; j ⟨ copyStart[ss] ; j++) {
k = ptr[j] - 1;

sumA += value;

sumB += value;

sumC += value;

...

This manual transformation added 3 PHI nodes to the code passes the
threshold ft29 from 0 to 1 while speedup remained the same. We performed
similar transformation in a few other benchmarks that did not influence the
original speedup while changing ft29 from 0 to any number thus invalidating
original decision separating 2 classes and showing that our model is misleading.
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At the same time, we shared all counter examples in a buildbot repository thus
providing code samples with unusual and reproducible optimization behavior
similar to bug buildbot where samples causing compiler crashes are continu-
ously collected and analyzed.

Does it mean that machine learning for compilation and architecture is a
hoax? No, it just means that our community is often using it in a wrong way:
the fundamental problem is that many popular off-the-shelf statistical models
were originally developed for pattern recognition and can work well only with
a large amount of training data and features available such as thousands or
even millions of public images. Our training set even with hundreds of features
and benchmarks is simply too small to build statistically meaningful model.
At the same time, relatively high prediction accuracy on very small training
sets can now be explained by finding some meaningless hyperplanes in a sparse
feature space while failing to find any relevant correlation when much more
benchmarks available. This finding supports our idea to move away from ”black
box” machine learning approaches at least at this stage while focusing our effort
to add much more benchmarks and use knowledge of domain specialists to
collaboratively search and explain relevant features!

4 Crowdsourcing feature learning and model im-
provement

Most of the papers on auto-tuning and machine learning fight variation in exe-
cution time [16, 43, 36] or mispredictions to be able to show only positive results.
However, in our approach, unexpected behavior is of critical importance to find
and explain missing features in a system. Therefore, we have developed a new
buildbot module using Shapiro-Wilk normality test from R that can be chained
to any experimental pipeline to test any monitored characteristic in a behavior
vector b for normality. Most of the reported experiments have been executed
more than 30 times while passing a normality test with variation less than 3%.
Otherwise, we record an experiment in a reproducible wayas ”suspicious” for
further analysis.

For example, one of the code samples from the previous section (image B&W
threshold filter) was wrongly classified because most of the time it belonged to
the optimization cluster -O3 -fif-conversion while occasionally moving to an
opposite class. We managed to identified two distinct datasets that separated
the classes. The visual analysis suggests that when image is mostly white,
”if conversion” transformation is beneficial while when image is mostly black,
”if conversion” considerably degrades performance by 17.3%. As usual, we
decided to apply universal complexity reduction here to isolate the cause of this
performance regression by iteratively removing instructions one by one from the
source code until regression disappeared. Note, that semantics of the code is
now changing but it does not matter as long as code is not crashing and we can
detect instruction causing performance degradation. This helped us to identify
”suspicious instruction” (temp1 ⟩ T) ? 255 : 0. ”If conversion” added several
predicated statements that may degrade performance if additional branches are
rarely taken while adding a few additional cycles to check branch condition.
However, this is a run-time dependency which no semantic compiler feature can
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Class -O3 -O3 -fno-if-conversion 

Shared data  

set sample1 

 

Monitored 

during day 

 

reference execution time no change 

Shared data  

set sample2 

 

Monitored 

during night 

no change +17.3% improvement 

if get_feature(TIME_OF_THE_DAY)==NIGHT 

                         bw_filter_codelet_day(buffers); 

else 

                                                                      bw_filter_codelet_night(buffers); 

Figure 7: Manually detecting missing feature related to the time of the day which
does not exist in the system and thus impossible to derive automatically in available
machine learning approaches. It was successfully used to make adaptive application
performing well across all available datasets.

capture. However, by preserving and analyzing the whole experimental setup,
we noticed that some images where taken during the day and some during the
night as shown in Figure 7 helping us to find new relevant feature ”time of
the day” out of the system that can effectively separate 2 classes. We added
this feature to our experimental pipeline through our universal feature vector
f and validated our idea by passing this feature to the application through
environment variable TIME OF THE DAY. Now, we can clone threshold filter
function and applying 2 different optimizations during compilation while adding
a decision tree to effectively separates classes at run-time thus delivering an
adaptive application to a customer and sharing missing feature that did not
exist in a system with the community in an experimental pipeline.

Figure 8: Unexpected behavior helped to identify and share missing feature.

At the same time, when analyzing multiple executions of image corner de-
tection benchmark on a smart phone shown in Figure 4, we noticed occasional
4x difference in execution times. Normally, most of the studies would simply
skip such experiment, however now we have an opportunity to record, repro-
duce and visualize such cases as shown in Figure 8. Simple analysis showed
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that our phone was often in the low power state at the beginning of experi-
ments and then gradually switched to the high-frequency state (4x difference
in frequency). Though obvious, this information allowed us to add CPU fre-
quency to the pipeline and universal feature, state and choice vectors f, s, and
c together with cpufreq wrapper thus using exposed ”unexpected behavior” to
improve public experimental pipeline and help community to avoid pitfalls in
their next experiments while gradually extending collection of features in our
system.

This example highlights yet another fundamental problem with current ma-
chine learning techniques for compilation and architecture that attempt to au-
tomatically correlate some existing features with optimizations - related feature
may simply not be even available in the system and will likely require special-
ized knowledge even though we expect that it may be formalized later using
deep learning techniques when enough features or tools to extract features will
be shared by the community. It also supports our idea to move away from
”black box” machine learning approaches at least at this stage and possibly
build specialized hybrid models combining manually found decision trees, and
spare computer resources to continuously optimize, cluster, prune and model
behavior of computer systems while exposing unusual behavior to a community
in a reproducible way!

5 Related work

Nowadays, machine learning has become a buzz word when nearly every con-
ference, journal and workshop in our field includes multiple papers on black
box program and architecture automatic tuning and predictive modeling [10,
41, 34, 12, 40, 4, 23, 13, 31, 17, 44, 33, 30, 19, 37, 42, 35, 38, 11]. At the
same time, there are very few papers that come with shared tools and data to
reproduce results and validate scalability and statistical meaningfulness of tech-
niques. Interestingly, we contacted authors of six referenced papers and only
two were able to provide related tools or scripts with one interesting reply that
we should just trust their technique because it was published in a top conference!
Besides obvious reasons of academic competition or worries of mistakes, this is
largely due to an existing vicious circle where initiatives to develop common
tools and repositories widely available to the research and teaching community
to systematize experimentation, share research artifacts (datasets, tools, bench-
marks, statistics, models), validate past experimental results and techniques are
practically not funded or rewarded academically.

The most close work to ours is MILEPOST GCC [19] that is accompanied
by a public learning compiler and database with performance results. However,
it is very GCC centric, can not be extended to other experimental setups, have a
very few available ad-hoc features, and focuses only on a few positive outcomes
(predictions). We demonstrate that their results can be misleading and pro-
vide methodology to cooperatively improve them in industrial setup. Another
related work is [14] where GCC compiler flags are continuously tuned using
a data center, however like most other papers it uses black box auto-tuning
with only several programs while focusing on a few speedups and without any
released tools. Finally, authors in [30] suggest to automatically derive combina-
tions of features from a compiler using grammars but only for one optimization
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(unrolling), has no released infrastructure, and does not include analysis of the
scalability of the approach in presence of ever growing number of features, op-
timizations and programs. Furthermore, we demonstrate in Section 4 that very
often related features are not even available in a system.

Therefore, to the best of our knowledge, we provide the first simple and
practical methodology and public framework to unify, formalize and connect
together available ad-hoc techniques and tools for auto-tuning and machine
learning using recent advances in agile methodologies, web and crowdsourc-
ing technology, and schema-free repositories. We hope that recent initiatives
particularly at OOPSLA and this conference to evaluate research artifacts for
the accepted papers can be supported technically by the presented approach
to make the quality and reproducibility of experimental results as important as
publications themselves.

6 Conclusions and Future Work

The fundamental question that we started addressing in this article is how to val-
idate, share, enhance and systematize our past research knowledge and practical
experience particularly on program optimization and machine learning (largely
overlooked by our community) using recent advances in web technology, JSON-
based schema free databases, agile methodology and crowdsourcing. Presented
evolutionary community-driven approach and practical, portable, plugin-based
framework help to unify and connect together existing ad-hoc tools while lib-
erating researchers and particularly students or reviewers from a tedious and
sometimes impossible task of reimplementing ad-hoc experimental setups from
numerous publications. It also helps researchers to quickly prototype their ideas
in days rather than months just like assembling LEGO by reusing and cus-
tomizing shared experimental setups and data while focusing all their effort and
creativity on either solving existing problems while reusing, improving and op-
timizing shared predictive models and finding missing features, or developing
truly novel approaches.

Furthermore, we expect that our methodology will eventually help our com-
munity to switch focus from publishing only a few positive and possibly mis-
leading or even wrong results to sharing all data including negative results or to
validate past research techniques which is practically impossible to publish. It
can also fit well recent initiatives on reproducible research and artifact evalua-
tion which can in turn help to restore the attractiveness of computer engineering
particularly for new students making it a more systematic, rigorous and repro-
ducible discipline.

The success of this approach depends fully on the active community involve-
ment. Therefore, in the past year, we managed to validate it in two major com-
panies and with several academic partners. All partners have been either using
common experimental setups while customizing existing wrappers for their own
tools and exposing tuning dimensions, characteristics and features, or develop-
ing their own wrappers and learning components compatible with our buildbot.
In spite of our framework being recently officially licensed by our industrial
partner, we agreed to release it together with a public repository, experimental
setups for compiler multi-objective auto-tuning and machine learning for GCC,
LLVM, Open64, Rose, and ICC, and all related research artifacts including code
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and dataset samples under the free, open-source license for further validation
and improvement by the community.

Our future and ambitious goal is to use presented approach and framework
to bring a large interdisciplinary community together to systematically optimize
and model behavior of various existing computer systems. Our formalization
allows to apply top-down learning and modeling approach already effectively
used in many other sciences while focusing first on coarse-grain behavior and
optimizations such as global optimizations and later move to finer-grain level
gradually covering analysis, optimization and adaptation of the whole com-
puter system and making it compatible with our approach including fine-grain
program optimizations using pragmas [20], events and plugins in GCC [19];
source-to-source polyhedral transformation tools [9]; adaptive scheduling [33];
just-in-time compilation for Android Dalvik or Oracle JDK, algorithm-level tun-
ing [7] and many others.

At the same time, mathematical formalization allows us to take advantage of
recent advances in deep learning techniques when unsupervised feature learning
will become fast and practical enough [21, 29]. Furthermore, it allows us to apply
standard complexity reduction techniques to find related features, improve and
share most accurate predictive models, and build minimal representative and
community-driven benchmarks covering various research problems. We expect
that community will eventually create a large and diverse training set similar to
other sciences to help researchers avoid common statistical pitfalls while prac-
tically helping compiler engineers, application developers and system designers
to improve tools, architectures, and programs unveiling machine learning as a
useful ”white-box” support tool rather than ”black-box” panacea.
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