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Introduction

 Brief history of standing wave tube Brief history of standing wave tube

 Four microphone standing wave tube Four-microphone standing wave tube

E ti ti f Bi t t b d ti l Estimation of Biot parameters based on acoustical 
measurements
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Standing Wave Tubeg

 Standing wave method for measuring normal Standing wave method for measuring normal 
incidence absorption coefficients more than 100 
years oldy

 Method is credited by a number of authors to J Method is credited by a number of authors to J. 
Tuma (1902)

 Subsequent experiments conducted by Weisbach 
(1910) and Taylor (1913)
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PHYSICAL REVIEW, 2(4): 270-287 OCT 1913
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J. Acoust. Soc. Am. 19, 420-427, May 1947
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J. Acoust. Soc. Am. 90(4), 2182-2191, Oct 1991



Four Microphone Methodp

 Four-microphone tube for silencer testing
 Munjal (Duct Acoustics)
 Two-load method
 Two-source method

 Four-microphone tube for material testing Four microphone tube for material testing
 Suggested by Joseph Pope
 Yun and Bolton (1997 SAE)
 Song and Bolton (2000 JASA) introduce transfer matrix approach Song and Bolton (2000 JASA) introduce transfer matrix approach
 Many articles since then
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Transfer Matrix Method
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Anechoic Transmission Loss
Aviation grade glass fiber (density=9.6 kg/m3, flow resistivity= 31000 Rayls/m)
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q y ( )

 Above shearing resonance – finite size sample represents infinite sample

 Below shearing resonance – all properties affected by edge-constraint



Estimation of Biot Parameters

 Software available to estimate Biot parameters by 
performing optimal fit to measured acoustical data (flow 

i ti it it t t it i h t i ti l th th lresistivity, porosity, tortuosity, viscous characteristic length, thermal 
characteristic length, bulk density, Young’s modulus, loss factor, Poisson ratio)
 ESI-FOAM-X (rigid, limp)

COMET/T i ( i id li l ti ) COMET/Trim (rigid, limp, elastic)

 Original software based on transversely infinite layered Original software based on transversely infinite layered 
representation: i.e., edge constraint effects are not included
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Infinite Panel Model: COMET/TRIM
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Infinite Panel Model: Limitation
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Note that this model does not simulate the low frequency
transmission loss fluctuation caused by shearing
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transmission loss fluctuation caused by shearing 
resonance of the sample



Finite Element Models: COMET/SAFE

 The software COMET/SAFE is used to model and 
compute  the absorption and transmission loss having a 
finite depth and finite size layer of porous material.
A fi it l t b d th t ll f th A finite element based program that allows for the 
analysis of sound traveling through various media 
including fluids, solids and foam-like substances.

 Finite element implementation is based on u-U and p-U
versions of Biot theory.
All d l d i thi k i l d i t i All models used in this work involved axisymmetric 
elements.

 The new version of TRIM supports automated inverse

1717

 The new version of TRIM supports automated inverse 
characterization capability based on SAFE.



Finite Element Model

Note that finite model can simulate the low frequency
transmission loss fluctuation caused by shearing
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transmission loss fluctuation caused by shearing 
resonance of the sample



Inverse Characterization

 Questions: Is it possible to determine the Biot 
parameters from acoustical measurements?  Do 
parameters act independently? How many parametersparameters act independently?  How many parameters 
can be estimated?

 To help answer these questions, introduce a procedure 
b d Si l V l D itibased on Singular Value Decomposition

 Singular Value Decomposition is widely used linear 
algebraic method to identify the principal components inalgebraic method to identify the principal components in 
the field of image processing and signal processing.
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Sensitivity Matrix Analysis
Procedures

1 Li i b i d i i ffi i l

Procedures

1. Linearize absorption and transmission coefficient close 
to a certain parameter set

2. Use absorption and/or transmission coefficient values 
for certain number of frequencies to construct a 
sensitivity matrixsensitivity matrix

3. Perform singular value decomposition on the sensitivity 
t i d t t i l l t d t i ff timatrix and extract singular values to determine effective 

rank (number of independent parameters)

2020
4. Calculate condition number (the smaller the better)  



Sensitivity Matrix Analysis

 Linearize the expression for the absorption and 

y y

p p
transmission coefficient in the vicinity of a certain 
parameter set
For 1 frequencyq y
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Sensitivity Matrix Analysis

 For n frequencies the equation can be combined as a matrix

y y

 For n frequencies, the equation can be combined as a matrix
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Sensitivity Matrix
Perform singular value decomposition: g p
M=UΣV*

The rank of the matrix M equals the number of non-zero

2222

singular values which is the same as the number of non
zero elements in the matrix Σ.



Rigid Foam
S iti it M t i A l i

 Use COMET/TRIM rigid foam type material that has 5 

Sensitivity Matrix Analysis

material properties. E.g., Porosity, flow resistivity, 
tortuosity, viscous and thermal characteristic length.

 The nominal values of the material properties are The nominal values of the material properties are
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Porosity Flow
Resistivity

Tortuosity VCL TCL
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Rigid Foam
S iti it M t i A l i

 Effect of adding frequency data for absorption coefficient

Sensitivity Matrix Analysis
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condition number, but the condition number is too big 
to consider that the sensitivity matrix is well-posed.



Rigid Foam
Sensitivity Matrix Analysis

 Effect of adding frequency data for transmission coefficient

Sensitivity Matrix Analysis
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condition number, but the condition number is too big 
to consider that the sensitivity matrix is well-posed.



Rigid Foam
Sensitivity Matrix Analysis

 Sensitivity matrix

Sensitivity Matrix Analysis

 Sensitivity matrix
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p y y q
each other for both absorption and transmission coefficients



Singular Vector
Ab ti C ffi i tAbsorption Coefficient

Note: Effect of material property 1(porosity) and 2(flow resistivity)
is almost the same on all five singular vectors.
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Rigid Foam
Sensitivity Matrix Analysis

 Fixed porosity case result for absorption coefficient

Sensitivity Matrix Analysis
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g p y
significantly and makes the sensitivity matrix well-posed.



Rigid Foam
Sensitivity Matrix Analysis

 Combine both absorption and transmission coefficient

Sensitivity Matrix Analysis

 Combine both absorption and transmission coefficient 
sensitivity matrix

Singular Value Condition NumberSingular Value

2.1197
0 87038

Condition Number

11
0.87038
0.39976
0.18173

Adding other acoustical measurements reduces 

2929

g
the condition number further



Rigid Foam
Sensitivity Matrix Analysis

 To verify the effect of low and high condition number

Sensitivity Matrix Analysis

 To verify the effect of low and high condition number 
during the automatic inverse characterization in 
COMET/TRIM, two different cases were studied 

Solution Initial 
value

Found 
value 1

Found 
value 2

Porosity 0.98 0.5 0.54 0.98
Flow resistivity 50,000 125,000 165,000 51,050

Tortuosity 2.0 6.0 1.47 2.073
Viscous C.L 3.0*10-5 9.0*10-5 1.77*10-5 3.08*10-5

3030
Thermal C.L 9.0*10-5 2.7*10-4 7.85*10-4 9.06*10-5



O ti l I Ch t i tiOptimal Inverse Characterization

 4 parameter search gives near optimal result 4 parameter search gives near optimal result
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Inverse Characterization based on FEM

 Use COMET/SAFE (FEM) elastic foam type material that has 9 material Use COMET/SAFE (FEM) elastic foam type material that has 9 material 
properties listed below.

 Layer thickness = 5 cm, Sample is fixed around circumferential edge

Porosity Flow
R i i i

Tortuosity VCL TCL Density Young’s
d l

Poisson’s
i

Loss
f

32

Resistivity modulus ratio factor

0.98 50,000 2.0 3.0*10-5 9.0*10-5 9.0 50,000 0.4 0.3



Singular Vectors for Absorption and 
T i iTransmission

 Higher order singular vectors for absorption & transmission coefficient Higher order singular vectors for absorption & transmission coefficient 
case

E hi h (6th 7th 8th d 9th) d i l t
33

Even higher (6th, 7th, 8th, and 9th) order singular vectors 
have wide range of values – all parameters independent



S l ti I iti l U fi d

Inverse Characterization Results

Solution Initial guess Unfixed

Porosity 0.98 0.75 0.88

Flow resistivity 50,000 45,000 51,203y , , ,

Tortuosity 2.0 1.7 2.04

Viscous C.L 3.0*10‐5 3.5*10‐5 3.16*10‐5

Thermal C.L 9.0*10‐5 1.05*10‐4 8.66*10‐5

Density 9.0 7.5 9.87

Young’s modulus 50,000 45,000 53,445

Poisson’s ratio 0.4 0.35 0.399

Loss factor 0 3 0 25 0 302

34

Loss factor 0.3 0.25 0.302

• 9 parameters estimated with reasonable accuracy



I Ch t i ti R ltInverse Characterization Results
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I P d b d FEM

 The finite element model’s condition number is 

Inverse Procedure based on FEM

significantly smaller than the condition number based 
on the plane wave model.

Absorption coefficient: 2336  49
Transmission coefficient: 1309  178

 This result is due to the fact that the finite element 
model can simulate finite sample size effects such as 
low frequency shearing resonance of the sample insidelow frequency shearing resonance of the sample inside 
the tube.

 Therefore, the inverse characterizations based on the 

36

finite element model have better chance to extract 
correct material properties.



Conclusions

St di t b id b th b ti d• Standing wave tubes can provide both absorption and 
transmission loss data for estimation of Biot parameters by 
inverse methods, but edge constraint effects have a 
significant impact on the resultssignificant impact on the results

• By using a linearization and SVD procedure, the stability of 
the inverse process can be improved by removing materialthe inverse process can be improved by removing material 
properties that makes the sensitivity matrix ill-conditioned.

• Inverse procedures based on finite element models of edge-p g
constrained samples may offer improved performance by 
making the effect of input parameters more independent   
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