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Abstract: Microarchitecture research and development relies heavily on simulators. The ideal
simulator should be simple and easy to develop, it should be precise, accurate and very fast. As the
ideal simulator does not exist, microarchitects use different sorts of simulators at different stages
of the development of a processor, depending on which is most important, accuracy or simulation
speed. Approximate microarchitecture models, which trade accuracy for simulation speed, are very
useful for research and design space exploration, provided the loss of accuracy remains acceptable.
Behavioral superscalar core modeling is a possible way to trade accuracy for simulation speed
in situations where the focus of the study is not the core itself. In this approach, a superscalar
core is viewed as a black box emitting requests to the uncore at certain times. A behavioral
core model can be connected to a cycle-accurate uncore model. Behavioral core models are built
from detailed simulations. Once the time to build the model is amortized, important simulation
speedups can be obtained. We describe and study a new method for defining behavioral models for
modern superscalar cores. The proposed behavioral application-dependent superscalar core model

(BADCO) predicts the execution time of a thread running on a superscalar core with an error
typically under 5%. We show that BADCO is qualitatively accurate, being able to predict how
performance changes when we change the uncore. The simulation speedups obtained with BADCO
are typically greater than 10.

Key-words: processor, microarchitecture, superscalar core, fast simulation, behavioral model



Modèles comportementales dépend de

l’application pour superscalaires cœur

Résumé : La recherche et développement en microarchitecture est en grande
partie basée sur l’utilisation de simulateurs. Le simulateur idéal devrait être
simple, facile à développer, précis, et très rapide. Comme le simulateur idéal
n’existe pas, les microarchitectes utilisent différentes sortes de simulateurs à dif-
férentes étapes du développement d’un processeur, en fonction de ce qui est le
plus important, la précision ou la vitesse de simulation. Les modèles approchés
de microarchitecture, qui sacrifient de la précision afin d’obtenir une plus grande
vitesse de simulation, sont très utiles pour la recherche et pour l’exploration
d’un espace de conception, pourvu que la perte de précision reste acceptable.
La modélisation comportementale de coeur superscalaire est une méthode possi-
ble de définition de modèle approché dans les cas où l’objet de l’étude n’est pas
le coeur lui-même. Cette méthode considère un coeur superscalaire comme une
boite noire émettant des requêtes vers le reste du processeur à des instants déter-
minés. Un modèle comportemental de coeur peut être connecté à un modèle
de hiérarchie mémoire précis au cycle près. Les modèles comportementaux sont
construits à partir de simulations détaillées. Une fois le temps de construction
du modèle amorti, des gains importants en temps de simulation peuvent être
obtenus. Nous décrivons et étudions une nouvelle méthode pour la définition
de modèles comportementaux de coeurs superscalaires. La méthode que nous
proposons, BADCO, prédit le temps d’exécution d’un programme sur un coeur
superscalaire avec une erreur typiquement inférieure à 5%. Nous montrons que
la précision d’un modèle BADCO est aussi qualitative et permet de prédire com-
ment la performance change lorsqu’on modifie la hiérarchie mémoire. Les gains
en temps de simulation obtenus avec BADCO sont typiquement supérieurs à
10.

Mots-clés : processeur, microarchitecture, coeur superscalaire, simulation
rapide, modèle comportemental
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4 Velásquez & Michaud & Seznec

1 Introduction

Modern high-performance processors have a very complex behavior which re-
flects the complexity of the microarchitecture and the applications running on
it. Models are necessary to understand this behavior and take decisions.

Various sorts of models are used at different stages of the development of a
processor, and for different purposes. For instance, analytical models are gen-
erally used for gaining insight. Fast performance models are useful in research
studies and, in early development stages, for comparing various options. As we
take decisions and restrict the exploration to fewer points in the design space,
models become more detailed. In general, there is a tradeoff between accuracy
and simplicity. A "heavy" model, e.g., a RTL description, gives accurate perfor-
mance numbers, but requires a lot of work and is not appropriate for research
and design space exploration. A "light" model, e.g., a trace-driven performance
simulator, can be used for research and exploration but provides approximate
numbers. Moreover, it is possible to use different levels of detail for different
parts of the microarchitecture, depending on where we focus our attention.

In this study, what we call an application-dependent core model, or core

model for short, is an approximate model of a superscalar core (including the
level-1 caches) that can be connected with a cycle-accurate uncore model, where
the uncore is everything that is not in the superscalar core (memory hierarchy
including the L2 cache and beyond, communication network between cores in a
multicore chip, etc.).

It must be emphasized that a core model is not a complete processor model.
A complete processor model provides a global performance number, while a
core model emits requests to the uncore (e.g., level-1 cache miss requests) and
receives responses to its requests from the uncore. The request latency may
impact the emission time of future requests. The primary goal of a core model
is to allow reasonably fast simulations for studies where the focus is not on the
core itself, in particular studies concerning the uncore.

Core models may be divided in two categories : they can be either structural
or behavioral. Structural models try to emulate the internal behavior of the core
microarchitecture. Simulation speedups in this case come from not modeling all
the internal mechanisms but only the ones that are supposed to most impact
performance.

Behavioral models try to emulate the external core behavior : the core is
mostly viewed as a black box generating requests to the uncore. In general,
and unlike structural models, behavioral models are derived from detailed sim-
ulations, which is a disadvantage in some cases. But in situations where model
building time can be amortized, behavioral core models are potentially faster
and more accurate than structural models.

Yet, behavioral core models have received little attention so far and are not
well understood. To the best of our knowledge, the work by Lee et al. is the
only previous study that has focused specifically on behavioral superscalar core
modeling [15]. They found that behavioral core models could bring important
simulation speedups with a good accuracy. However the detailed simulator that
they used as reference, namely SimpleScalar sim-outorder [1], does not model
precisely all the mechanisms of a modern superscalar processor. We present in
Section 3 an evaluation of Lee et al.’s pairwise dependent cache miss PDCM
core modeling method using Zesto, a detailed superscalar processor simulator

Inria
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[18]. Despite our efforts, the maximum error with PDCM is still significant. This
led us to propose a new method for defining behavioral application-dependent
superscalar core (BADCO) models, inspired by, but different from Lee et al.’s
method.

A BADCO model is built from two cycle-accurate traces (T0 and TL). T0 is
generated by forcing a zero latency to every L2 access. The purpose of this trace
is to obtain the contribution of each µop to the total cycle count independent
from the uncore configuration. TL is generated by forcing a latency of L cycles
to every L2 access. TL is used to extract the data and memory dependencies
among µops, and to capture L2 accesses. The timestamps annotated in these
traces are used to construct a coarse-grained dependence graph. The nodes in
the graph define groups of µops. Nodes are annotated with the size in µops, the
weight in cycles, and the L2 accesses of its associated µops. The edges define
data/memory dependencies between nodes. During simulation, the BADCO
model emulates the processor’s reorder buffer (ROB) and the level-1 miss status
holding registers (MSHRs), and honors dependencies between nodes. BADCO
performs a differential processing of instruction-request, load-request and store-
request that mimics the real processor.

We have compared the accuracy of BADCO with that of PDCM. Compared
to PDCM, BADCO is better able to model the effect of delayed L1 data cache
hits. BADCO is on average more accurate than PDCM and can estimate the
thread execution time with an error typically under 5%. From our experiments,
we found that the maximum error of BADCO is less than half the maximum
error of PDCM. We have studied not only the ability of BADCO to predict
raw performance but also its ability to predict how performance changes when
we change the uncore. Our experiments demonstrate a very good qualitative
accuracy of BADCO, which is important for design space exploration. The
simulation speedups obtained with BADCO are typically greater than 10..

This paper is organized as follows. Section 2 discusses previous work on core
modeling. Section 3 presents our implementation of Lee et al.’s the (PDCM)
modeling method using the Zesto simulator. We describe the proposed BADCO
modeling method in Section 4. Section 5 describes the experimental setup. Fi-
nally, Section 6 presents an experimental evaluation of results.

2 Previous work on superscalar core modeling

Trace-driven simulation is a classical way to implement approximate proces-
sor models. Trace-driven simulation is approximate because it does not model
exactly (and very often ignores) the impact of instructions fetched on mispre-
dicted paths and because it cannot simulate certain data mispeculation effects.
The primary goal of these approximations is not to speed up simulations but
to decrease the simulator development time. A trace-driven simulator can be
more or less detailed : the more detailed, the slower. We focus in this section
on modeling techniques that can be used to implement a core model and that
can potentially bring important simulation speedups.

RR n° 7795



6 Velásquez & Michaud & Seznec

2.1 Structural core models

Structural models speed up superscalar processor simulation by modeling only
"first order" parameters, i.e., the parameters that are supposed to have the
greatest performance impact in general. Structural models can be more or less
accurate depending on how many parameters are modeled. Hence there is a
tradeoff between accuracy and simulation speedup.

Loh described a time-stamping method [17] that processes dynamic instruc-
tions one by one instead of simulating cycle by cycle as in cycle-accurate perfor-
mance models. A form of time-stamping had already been implemented in the
DirectRSIM multiprocessor simulator [4, 26]. Loh’s time-stamping method uses
scoreboards to model the impact of certain limited resources (e.g., ALUs). The
main approximation is that the execution time for an instruction depends only
on instructions preceding it in sequential order. This assumption is generally
not exact in modern processors.

Fields et al. used a dependence graph model of superscalar processor per-
formance to analyze quickly the microarchitecture performance bottlenecks [7].
Each node in the graph represents a dynamic instruction in a particular state,
e.g., the fact that the instruction is ready to execute. Directed edges between
nodes represent constraints, e.g., the fact that an instruction cannot be dis-
patched until the instruction that is ROB-size instructions ahead is retired.

Karkhanis and Smith described a "first-order" performance model [11], which
was later refined [6, 2, 5]. Instructions are (quickly) processed one by one to
obtain certain statistics, like the CPI in the absence of miss events, the num-
ber of branch mispredictions, the number of non-overlapped long data cache
misses, and so on. Eventually, these statistics are combined in a simple math-
ematical formula that gives an approximate global performance. The model
assumes that limited resources, like the issue width, either are large enough to
not impact performance or are completely saturated (in a balanced microarchi-
tecture, this assumption is generally not true [22]). Nevertheless, this model
provides interesting insights. Recently, a method called interval simulation was
introduced for building core models based on the first-order performance model
[8, 24]. Interval simulation permits building a core model relatively quickly from
scratch.

Another structural core model, called In-N-Out, was described recently [14].
In-N-Out achieves simulation speedup by simulating only first-order parame-
ters, like interval simulation, but also by storing in a trace some preprocessed
microarchitecture-independent information (e.g., longest dependency chains lengths),
considering that the time to generate the trace is paid only once and is amortized
over several simulations.

2.2 Behavioral core models

Kanaujia et al. proposed a behavioral core model for accelerating the simulation
of the execution of homogeneous multi-programmed workloads on a multicore
processor [10] : one core is simulated with a detailed model, and the others cores
mimic the detailed core approximately.

Li et al. have used a behavioral core model to simulate the execution of multi-
programmed workloads on a multicore [16]. They have shown that behavioral
core modeling can be used to simulate power consumption and temperature.

Inria
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The core model consists of a trace of L2 cache accesses annoted with access
times and power values. This per-application trace is generated from a detailed
simulation of a given application, in isolation and assuming a fixed L2 cache size.
Then, this trace is used for fast multicore simulations. The model is not accurate
because the recorded access times are different from the real ones. Therefore the
authors do several multicore simulations to refine the model progressively, the
L2 access times for the next simulation being corrected progressively based on
statistics from the previous simulation. In the context of their study, the authors
found that 3 multicore simulations are enough to reach a good accuracy.

The ASPEN behavioral core model was briefly described by Moses et al.
[20]. This model consists of a trace containing load and store misses annotated
with timestamps [20]. Based on the timestamps, they determine whether a
memory access is blocking or non-blocking. ASPEN takes the trace as input
and simulates the actual delays and events through a finite state machine that
models the states that a thread would go through its execution: idle, ready,
executing or stalled.

Lee et al. have proposed and studied several behavioral core models [3, 15].
These models consist of a trace of L2 accesses annotated with some information,
in particular timestamps, like in the ASPEN model. They studied different mod-
eling options and found that, for accuracy, it is important to consider memory-
level parallelism. Their most accurate pairwise dependence cache miss model
simulates the effect of the reorder buffer and takes into account dependences be-
tween L2 accesses. We present in Section 3 a description of our implementation
of a PDCM model for the Zesto core.

2.3 Behavioral core models for multi-core simulation

Behavioral core models can be used to investigate various questions concerning
the execution of workloads consisting of multiple independent tasks (e.g., [16,
27]).

Once behavioral models have been built for a set of independent tasks, they
can be easily combined to simulate a multi-core running several tasks simulta-
neously. This is particularly interesting for studying a large number of combi-
nations, as the time spent building each model is largely amortized.

Simulating accurately the behavior of multi-threaded programs is more dif-
ficult. Trace-driven simulation (functional-first simulation in general) cannot
simulate accurately the behavior of non-deterministic multi-threaded programs
for which the sequence of instructions executed by a thread may be strongly de-
pendent on the timing of requests to the uncore [9]. Some previous studies have
shown that functional-first simulation could reproduce somewhat accurately the
behavior of certain parallel programs (e.g., [9, 8]), and it may be possible to use
behavioral core models to model accurately the execution of such programs
[3, 23]. Nevertheless, behavioral core modeling may not be the most appropri-
ate simulation tool for studying the execution of multi-threaded programs. The
rest of this study focuses on single-thread execution.

RR n° 7795



8 Velásquez & Michaud & Seznec

Figure 1: Core and uncore

3 PDCM model as reference

Zesto is a highly detailed x86 cycle-accurate simulator. In particular the memory
hierarchy is more detailed than in SimpleScalar. Figure 1 shows a basic block
diagram of the Zesto CPU specifying the core and uncore parts. What we call
core in this study includes the CPU pipeline stages, the level-1 caches and level-1
TLBs. It also includes the MSHRs and prefetchers, but not the DL1 write-back
buffer. What is not in the core is in the uncore.

The PDCM model was originally implemented and tested with SimpleScalar
sim-outorder [15]. The authors assumed a perfect branch prediction and no
hardware cache prefetchers. We have ported the PDCM strategy to a more
detailed x86 simulator, namely Zesto [18]. Moreover, we have extended PDCM
to support machine configurations with realistic branch predictors and hardware
prefetchers. To obtain with Zesto the accuracy level demonstrated by Lee et al.
on Simplescalar sim-outorder, we had to modify PDCM. We started from the
original PDCM model and added features progressively to improve the accuracy
as much as we could. In this section we make a brief review of the PDCM
simulation kernel and describe the changes introduced to the original model.

3.1 ROB occupancy analysis

The PDCM model is a behavioral core modeling strategy where trace items are
µops with attributed L2 accesses. The trace is generated with a cycle-accurate
simulator modeling a L2 cache having 100% hit rate. Trace items are annotated
with the number of cycles elapsed (cycelapsed) since the previous committed µop,
and the number of µops (µopsnum) committed in that interval. During trace
generation, the data dependency chains among µops are analyzed to determine
dependencies among trace items. Of all possible dependencies, only the closest
is annotated.

The ROB occupancy analysis simulates the ROB behavior in order to control
which trace items can issue requests to memory. Only the items inside the ROB
can emit requests to memory. A trace item is enqueued into the ROB if its
µopsnum is less than or equal to the number of free positions in the ROB. Once
a trace item is admitted into the ROB and the annotated item dependency has

Inria
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been fulfilled, the associated requests can be issued to the memory hierarchy.
The item dependencies act as an extra condition to issue memory requests. If
an item B depends on another item A, A must complete the processing of all
its requests before B can start processing its own. When an item reaches the
top of the ROB, their associated µops start committing. The µops commit with
a speed of µopsnum/cycelapsed. An item is committed when all its associated
µops have committed and when all its associated requests have been processed.

3.2 PDCM Implementation

In order to adapt PDCM to Zesto, some changes were required. The changes
include the kind of requests captured during the trace generation phase. Un-
like SimpleScalar, Zesto models the translation of virtual to physical addresses.
This includes the modeling of TLBs. Due to the non-negligible effect of I/D-
TLB misses, we need to capture this kind of L2 accesses into the trace. We
also capture write-back requests and prefetch requests. In addition, the use of
realistic branch predictors makes necessary the capture of requests in the wrong
path. In this context, we attribute all the requests in a mispredicted path to
the mispredicted branch.

As a consequence of the new request types, extra complexity of inter-request
dependencies arise. For instance, a trace item with data TLB and read requests
must process first the TLB request before issuing the read requests to memory.
A similar dependency can be established between read/write/prefetch requests
and write-back requests.

Another important change introduced in Lee’s model is related to the han-
dling of instruction requests. The PDCM model makes no difference between
the handling of instruction and data requests. In our PDCM implementation,
trace items process the instruction requests before being enqueued into the
ROB. The changes discussed so far concern our implementation of PDCM for
the Zesto simulator. The accuracy of PDCM, which we evaluate in Section 6,
is reasonably good on average. However, despite our efforts, the maximum er-
ror can be quite significant. This led us to propose a new modeling method,
BADCO.

4 A new behavioral application-dependent super-

scalar core model

The BADCO approach consists in attaching every µop to a single µop accessing
the uncore. We call the µops generating requests to the uncore requests µops or
simply r-µops . We call the µops without requests non request µops or nr-µops

for short. For a given µop A, the r-µop B to which the µop A is attached will
be called the uncore parent µop (up-µop for short) of A. A will be called the
uncore child µop (uc-µop for short) of B. In order to perform this attachment,
we run a cycle-accurate simulation, forcing a long latency (e.g. 1000 cycles) for
each uncore request. Such a long latency ensures that a µop A, posterior to
an r-µop B is independent from B if A starts executing before B completes.
Hence, we attach A to the last r-µops that completed before A.

The underlying assumption of our model is that, for any memory latency,
the interval between the completion of an up-µops and the completion of any

RR n° 7795



10 Velásquez & Michaud & Seznec

Figure 2: BADCO methodology

of its uc-µops will remain approximately constant.
When the uncore is simulated in conjunction with our model, the uncore

provides the timing for the r-µops completion. When r-µops completes, our
model starts issuing the group of its uc-µops .

A restriction of our model is that we assume that, independent of the uncore
behavior, the same instructions are executed on the wrong path and the same
uncore accesses are always performed, including misses generating on the wrong
path and prefetch requests.

The model is further detailed below.

4.1 Trace generation

Figure 2 shows an overview of the BADCO methodology. The model building
phase requires two detailed simulations. The detailed simulator used for this
study is Zesto [18]. For both simulations, we assume an unlimited number of
MSHRs [12]. In the first simulation, we force a null latency for all the requests
to the uncore (i.e., we assume an ideal L2 cache). In the second simulation,
we force a latency of L cycles for all the requests to the uncore, where L is a
fixed and arbitrary value. Typically, we take L greater than the longest latency
that the core may experience when connected with a cycle-accurate uncore, e.g.,
1000 clock cycles.

We have instrumented Zesto to generate a trace 1. The trace generated by
the first and second simulations are called T0 and TL respectively. We assume
that simulations are reproducible 2, so that T0 and TL correspond exactly to

1 For generating the trace, we skip the first 40 billions instructions of each benchmark,
and the trace represents the next 100 millions instructions. A practical use of the BADCO
methodology may use sampling to obtain a representative set of traces [25].

2 We used SimpleScalar EIO tracing feature [1], which is included in the Zesto simulation
package. Other known methods for reproducible simulations include for instance System-

Inria
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the same sequence of instructions. There is one trace item per retired µop.
In T0, each µop is annotated with its retirement cycle. The retirement cycle
is used to estimate the cycle contribution of a µop to the global cycle count
independent of the uncore configuration. In TL, each µop is annotated with its
issue cycle and completion cycle. These timestamps are used to attach uc-µops

to up-µops .
In the TL trace, we also attribute memory access events to µops. By memory

access events, we mean instruction misses, data misses, write backs events but
also instruction and data TLB misses and prefetch requests. We do not trace
the µops on the wrong path. However, an uncore request generated on the
wrong path is attached to the first µop on the correct path that uses the block.
Moreover we found that due to specific features of the architecture modeled in
Zesto, it is necessary to model delayed hits : when several miss requests are
pending on the same block, Zesto allocates an entry in the MSHR per request,
therefore delayed hits have a non-negligible impact on performance. In order to
handle this, delayed hits are also recorded in the trace.

4.2 Model building

BADCO model building is illustrated on an example in Figure 3. Model building
starts from traces T0 and TL in Figure 3(a). The final BADCO model is shown
in Figure 3(c).

A BADCO model is a coarse-grained "dependence" graph (CGDG). A node
in such graph represents a set of uc-µops with the same up-µop . By depen-
dence, we do not mean effective dependence, but the observation of a completion
dependence, meaning that, in TL, the uc-µops complete after their up-µop and
before the next r-µops .

In a node, we group the uc-µops associated with a given up-µop that
belongs to an interval between two r-µops . This node will be simulated as a
group. When a node features a r-µop , this r-µop , will always be the first µop
in the node; there is at most one r-µop per node.

The node is represented by several parameters. The node size S is the
number of uc-µops represented by the node. The node weight W is the sum of
the individual contribution of each uc-µops to the total cycle count when the
total penalty of the node requests is zero, i.e using trace T0. A node carries the
memory accesses and delayed hits that are attributed to the µops represented
by the node.

Nodes carrying requests are called request nodes or r-nodes for short. Other
nodes, called non-request nodes or nr-nodes can carry one or several delayed
hits. A single incoming edge is associated with each node from the r-node it
depends: it is the node of their up-µop .

4.3 Simulation

The simulation kernel consists of three processing stages. The stages mimic
the order that a superscalar core uses to process memory requests. Instruction
requests are issued to the uncore during the fetch stage, load requests are is-
sued during out-of-order execution, and store requests are issued after commit.

Effect Logs [21].

RR n° 7795



12 Velásquez & Michaud & Seznec

(a)

(b)

(c)

Figure 3: Example of BADCO model building : (a) Traces T0 and TL con-
taining the same 12 dynamic µops in sequential order, (b) µop-by-µop process-
ing of the traces, (c) final BADCO model featuring 7 nodes (RT=retirement
time, IT=issue time, CT=completion time, DT=dependence time, S=node
size, W=node weight, d=origin of the dependence edge).

We found that some benchmarks accuracy is very sensitive to the distinction
between load requests and store requests.

In-order fetch request processing. The first stage fetches sequentially the
nodes from the trace and then processes the instruction requests. When all
instruction requests have been processed, the node is ready to be enqueued into
the ROB. A fetched node can be enqueued into the ROB, if the number of in-
flight µops is smaller than the ROB size. The number of in-flight µops is equal
to

∑x=i

j Sx where i and j are the IDs of the head and tail nodes inside the ROB,
and Sx is the size of the node in µops. If the ROB is full, the fetch stage stalls
until the fetched node is enqueued.

Out-of-order load request processing. The second stage is a modified
version of the ROB occupancy analysis proposed by Lee et al. [15]. The ROB

Inria
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size controls which nodes can issue load requests to the uncore. Inside the ROB,
the processing of different nodes requests is done out-of-order. Before a node
issues requests to the uncore, it must have its dependencies fulfilled. That is,
the parent node, i.e., the node from which the dependence edge d originates,
must complete the processing of all its requests.

During out-of-order processing, nodes must compete for the limited resources
to access the uncore. The number of outstanding requests is limited according
to the size of DL1-MSHR for DL1-requests and to the size of DTLB-MSHR for
DTLB requests.

Nodes are retired from the ROB in order. A node is ready to commit W
cycles after all its load requests are completed and actually commits when it
has reached the head of the ROB.

Note that W guarantees that, in case a request has a null latency, the ex-
ecution time is the same as recorded in T0. Retired nodes with pending store
requests are enqueued in a post-retirement queue where they remain until all
the store request are processed. We call this queue the store queue.

In-order store request processing. This stage processes in order the nodes
in the store queue. Just the node in the head of the queue can issue its requests to
the uncore. The store-requests compete with load-request to access the uncore.
Note that a node with store-request will complete execution after commit. This
is accounted to resolve the dependencies among nodes.

5 Experimental Setup

As explained before, we use the Zesto simulator to obtain the traces T0 and
TL for BADCO, and the PDCM trace. Zesto was instrumented to capture all
the accesses to the L2 cache and perform the attribution of requests to µops.
We also modified Zesto to perform the model simulation. In this context the
model simulation uses the cycle accurate simulation of the Zesto uncore. We
replaced the code of the core by the simulation kernel of the model: BADCO
or PDCM. The integration is totally transparent for the uncore, and it allows
to compare the same collected statistics in the L2 cache, the last-level cache
(LLC), etc. Zesto is also used as the reference cycle-accurate simulator in all
the experiments.

5.1 Machine Model

Table 1 presents the baseline Zesto configuration used during most of the ex-
periments. This configuration is an approximation for the Nehalem micro-
architecture. All the configurations use a real branch predictor, data and in-
struction prefetchers.

Section 6.1 evaluates the quantitative accuracy of PDCM and BADCO mod-
els for different ROB sizes. The configuration for such experiment is given in
Table 2. The 128 entries ROB configuration is identical to the baseline config-
uration in table 1. The 64 and 32 entries configuration are derived from the
baseline by scaling buffers sizes linearly with the ROB size and by keeping the
dispatch, issue and commit width approximately proportional to the square root
of the ROB size [19]. Section 6.2 analyzes the qualitative accuracy of PDCM
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14 Velásquez & Michaud & Seznec

Decode/issue/commit
width

4/6/4

RS/LDQ/STQ/ROB 36/36/24/128 entries

ALU/IMUL/IDIV 3/1/1 units, 1/3/24 cyc. lat.

FADD/FMUL/FDIV/CPLX 1/1/1/1 units, 3/5/32/58
cyc. lat.

IL1 cache 2 cyc.s, 32KB, 4-way, 64B
line size, LRU, nextline
prefetcher

ITLB 2 cyc., 128 sets, 4-way, LRU

DL1 cache 2 cyc., 32KB, 8-way, 64B
line size, 8 entries MSHR,
8 entries WB-buffer, LRU,
write-alloc., write-back, IP
+ nextline prefetchers

DTLB 2 cyc., 256 sets, 4-way, LRU,
4 entries MSHR

Branch direction pred. TAGE 4KB

Branch target pred. BTAC 7.5KB

Indirect branch target
pred.

2LEVBTAC 2KB

Return address pred. Stack 16 entries

Table 1: Baseline Machine Setup

and BADCO models changefor 5 different uncore configurations. Those con-
figurations are listed in Table 3. Configuration 1 is the uncore baseline. For
all configurations, the L2 cache has the following features :8 way associative,
8 entries MSHR, 8 entries write-back buffer, LRU replacement policy and 2
prefetchers (IP + nextline). The LLC has the following features : 16 way asso-
ciative, 16 entries MSHR, 8 entries write-back buffer, LRU replacement policy
and 2 prefetchers (IP + stream).

parameter rob=128 rob=64 rob=32

rs_size 36 18 12

ldq_size 36 18 12

stq_size 24 12 8

dl1_mshrs 16 8 4

dtlb_mshrs 8 4 2

decode_width 4 3 3

alloc_width 4 3 3

exec_width 6 5 4

commit_width 4 3 3

Table 2: Microarchitecture setup for ROB sizes of 128, 64 and 32 entries
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parameter cfg1 cfg2 cfg3 cfg4 cfg5 cfg6

L2_size(KB) 256 1024 256 256 1024 256

L2_lat(cyc) 2 8 2 2 8 2

LLC_size(MB) 2 16 2 2 16 2

LLC_lat(cyc) 12 24 12 12 24 12

LLC_BW(B/cyc) 64 64 4 64 64 4

fsb_width(B) 8 8 2 8 8 2

dram_lat(cyc) 200 200 200 500 500 500

Table 3: Uncore configurations

bench. input bench. input

cactusADM benchADM.par leslie3d leslie3d.in
mcf inp.in h264ref fore. ref base.

omnetpp omnetpp.ini bwaves bwaves.in
sjeng ref.txt soplex ref.mps
astar BigLakes2048 bzip2 input.source

libquantum ref hmmer nph3.hmm
zeusmp zmp_inp perlbench diffmail
vortex lendian1.raw crafty crafty.in

gcc 200.i

Table 4: Inputs used for SPEC benchmarks

5.2 Benchmarks

For all the experiments, we use 15 of the 29 SPEC CPU2006 benchmarks and
2 SPEC CPU2000 benchmarks (vortex and crafty). The criterion to select
the benchmarks subset was that each benchmark must run in Zesto without
problems for the duration of the simulation, with at least one of the reference
input datasets. 22 CPU2006 benchmarks fulfilled the requirement. We also ex-
clude from the statistics 7 benchmarks, namely calculix, namd, gromacs, gobmk,
dealII, milc and povray, for the reason that they are mostly CPU bound, with
very few level-1 misses. Actually, BADCO models these 7 benchmarks per-
formance with excellent accuracy (< 0.5%) and provides very high simulation
speedups (> 100x), which is not surprising. We added vortex and crafty in
our list of benchmarks because they experience a relatively high number of in-
struction misses and branch mispredictions, which is interesting for testing the
model. All benchmarks were compiled using GCC-3.4 and optimization flag
-O3. The benchmarks that we have used for the statistics are listed in Table 4.
We have used Simplescalar EIO traces (also featured in Zesto) to obtain deter-
ministic simulations. The EIO traces have been generated by skipping the first
40 Billion instructions and simulating the next 100 Million instructions. No
cache warming was done.

5.3 Metrics

As noted previously, the primary goal of behavioral core modeling is to allow
reasonably fast simulations for studies where the focus is not on the core itself,
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in particular studies concerning the uncore. Ideally, a core model should strive
for quantitative accuracy. That is, it should give absolute performance numbers
as close as possible to the performance numbers obtained with cycle-accurate
core simulations. Nevertheless, perfect quantitative accuracy is difficult, if not
impossible to achieve in general. Yet, qualitative accuracy is often sufficient for
many purposes. Qualitative accuracy means that if we change a parameter in
the uncore (i.e., memory latency), the model will predict accurately the relative

change of performance. Indeed, if we use behavioral core modeling in a design
space exploration for example, more important than being accurate in the final
cycle count is being able to estimate relative changes in performance among the
different configuration in the design space. We use several metrics to evaluate
the PDCM and BADCO core models :

CPI error. The CPI error for a benchmark is defined as

CPI error =
CPIref − CPImodel

CPIref

where CPIref is the CPI (cycles per instruction) for the cycle accurate simula-
tor Zesto, and CPImodel is the CPI for the behavioral core model (PDCM or
BADCO). The CPI error is proportional to the cycle count difference between
Zesto and the behavioral model. The smaller the CPI error in absolute value,
the more quantitatively accurate the behavioral core model. The average CPI

error is the arithmetic mean of the absolute value of the CPI error for the bench-
marks listed in Table 4. The CPI error may be positive or negative, while the
average CPI error is always positive.

Relative performance variation and variation error . The relative per-
formance variation (RPV) of an uncore configuration cfgX is defined as

RPV =
CPIcfg1 − CPIcfgX

CPIcfg1

where CPIcfg1 is the CPI of the baseline uncore configuration cfg1 (see Table
3) and CPIcfgX is the CPI of uncore configuration cfgX . A positive RPV
means that we have increased the performance compared to the baseline uncore
configuration. The model variation error for configuration cfgX is defined as

Variation error = |RPVref −RPVmodel|

where RPVref is the RPV as measured with the Zesto cycle-accurate core
and RPVmodel is the RPV obtained with the behavioral core model (PDCM
or BADCO). The smaller the variation error, the more qualitatively accurate
the behavioral core model. When the variation error is null, it means that the
behavioral core model predicts for configuration cfgX the exact same change
in performance compared to the baseline as the cycle-accurate core model. The
average variation error is the arithmetic mean of the variation error on all the
benchmarks listed in Table 4 and on all the uncore configurations listed in Ta-
ble 3 but cfg1. The maximum variation error is the maximum of the variation
errors on all benchmarks and all uncore configurations.
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6 Experimental evaluation

We evaluate the PDCM model and our BADCO model in two aspects. The
first is the CPI error for different core microarchitectures, and the second is the
relative performance variation due to changes in the uncore.

6.1 Quantitative accuracy

Figure 4 shows the CPI error for PDCM and for BADCO. The CPI error is
presented for 3 different ROB sizes : 32, 64 and 128 entries. For PDCM, the
average CPI error is 8.1%, 6.1% and 6.6% for a ROB size of 32, 64 and 128
entries respectively. On the other hand, the average CPI error for BADCO is
4.7%, 4.9% and 3.8% respectively. The maximum CPI error we have observed
with PDCM is 36.3% (on libquantum with a 32-entry ROB). For BADCO,
the maximum CPI error is 15.9% (on zeusmp with a 32-entry ROB). BADCO
is more accurate than PDCM not just in average error but also in maximum
error.

The PDCM model seems to be more accurate for benchmarks with a high
misprediction rate, such as perlbench, gcc and crafty. The reason for this may
be the way requests in the wrong path are attached to µops. PDCM captures all
the requests in the wrong path and attaches them to the mispredicted branch.
On the other hand, BADCO captures only the requests on the wrong path that
are actually reused by the correct path. For instance, BADCO overestimates
the performance on gcc, which may indicate that pollution in the L2 cache (and
perhaps in the LLC) is significant for gcc 3.

On the other hand, BADCO is clearly more accurate than PDCM on libquan-
tum and hammer. These two benchmarks have as common characteristic that
they exhibit a huge number of delayed hits in the L1 data cache. PDCM does
not model correctly the impact of delayed hits. Indeed, the null miss penalty
for uncore requests during trace generation prevents the capture of all possible
delayed hits that may occur in a long latency penalty. BADCO overcomes this
problem because the requests (including delayed hits) are captured in trace TL,
for which the request latency was set to a high value.

6.2 Qualitative accuracy

A comparison among the RPVs of Zesto, PDCM model and BADCO model
is presented in figure 5 for five different uncore configurations, and for a 128-
entry ROB. The uncore configurations are listed in Table 3. Configuration cfg1
is used as the reference, i.e. all changes in performance are relative to this
baseline configuration. It must be noted that both PDCM and BADCO predict
the sign of the performance change almost perfectly. For PDCM, the average
variation error is 6.3% and the maximum variation error is 53.8%. On the
other hand, for BADCO, the average variation error is 2.8% and the maximum
variation error is 16.1%. For both models, we observed the worst accuracy
on configurations cfg3 and cfg6, which both have a small L2, a small LLC,
and a small memory bandwidth. These experiments demonstrate the power of
behavioral core models for estimating changes in performance for various uncore
configurations.

3 Some solutions for decreasing cache pollution have been proposed [13].
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Figure 4: CPI error for a ROB size of 32, 64 and 128 entries : (a) PDCM model,
(b) BADCO model.

6.3 Simulation speed

The main purpose of a behavioral core model is to accelerate simulations. We
measure simulation speedups with the help of a profiling tool. First we mea-
sure the fraction of the total simulation time corresponding to the core in the
cycle-accurate simulation. Then we measure the fraction of the total simulation
time corresponding to the BADCO kernel in the BADCO simulation. The core

simulation speedup is the ratio of these two values. We are still working on
optimizing the BADCO kernel. Nevertheless, in its current state we observe
core simulation speedups in the range of 3.2x to 42.5x. The average speedup is
17.2x.

It is also possible to define a global speedup, i.e., the total simulation time
with Zesto divided by the total simulation time with the BADCO kernel. Of
course, the global speedup depends on the uncore. When including the con-
tribution of the Zesto uncore in the simulation time, the average speedup is
13.6x.

7 Conclusion

We introduced BADCO, a new behavioral application-dependent model of a
modern superscalar core. A behavioral core model is like a black box emitting
requests to the uncore at certain times. A BADCO model can be connected
to a cycle-accurate uncore model for studies where the focus is not the core
itself, e.g., design space exploration of the uncore or study of multiprogrammed
workloads. A BADCO model is built from two cycle-accurate simulations. Once
the time to build the model is amortized, important simulation speedups can
be obtained. We have compared the accuracy of BADCO with that of PDCM,
a previously proposed behavioral core model. Compared to PDCM, BADCO
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is better able to model the effect of delayed L1 data cache hits. BADCO is on
average more accurate than PDCM and can estimate the thread execution time
with an error typically under 5%. From our experiments, we found that the
maximum error of BADCO is less than half the maximum error of PDCM. We
have studied not only the ability of BADCO to predict raw performance but also
its ability to predict how performance changes when we change the uncore. Our
experiments demonstrate a very good qualitative accuracy of BADCO, which is
important for design space exploration. The simulation speedups obtained with
BADCO are typically greater than 10.
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Figure 5: Relative performance variation (RPV) of Zesto, PDCM and BADCO
for uncore configurations in Table 3 (ROB size is 128, baseline uncore is cfg1) :
(a) configuration cfg2, (b) configuration cfg3, (c) configuration cfg4, (d) config-
uration cfg5, and (e) configuration cfg6.
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