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Équipe-Projet Coprin

Rapport de recherche n° 7057 — October 2009 — 13 pages

Abstract:

We consider the general problem of computing intervals that contain the
real eigenvalues of interval matrices. Given an outer estimation of the real
eigenvalue set of an interval matrix, we propose a filtering method that improves
the estimation.

Even though our method is based on an sufficient regularity condition, it is
very efficient in practice, and our experimental results suggest that, in general,
improves significantly the input estimation. The proposed method works for
general, as well as for symmetric matrices.
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1 Introduction

To model real-life problems and perform computations we must deal with un-
certainty and inexactness; they are due to measurement, due to simplification
of physical models, due to variations of the parameters of the system, and fi-
naly due to computational errors. Interval analysis is an efficient and reliable
tool that allows us to handle the aforementioned problems, even in the worst
case where all together are encoutered simultaneously. The input quantities are
given with some interval estimation, and the algorithms output verified intervals
as results, that, even though they usually have the drawback of overestimation,
they cover all the possibilities for the input quantities.

In this paper we are interesting in the interval real eigenvalue problem. That
is, given a family of matrices, that is an interval matrix, the task is to estimate
the set of all possible eigenvalues. Moreover, there is a need to distinguish
general interval matrices from the symmetric ones. Applications arise mostly
in the field of mechanics and engineering. We name, for instance, automobile
suspension system [21], mass structures [20], vibrating systems [7], robotics [4],
and even principal component analysis [8] and independent component analy-
sis [5], which could be considered as a statistics oriented applications. Using
the well-known Jordan–Wielandt transformation [9, 13, 19], given a solution
to the interval real eigenvalue problem, we can provide and approximation for
the singular values and the condition number; both of which have numerous
applications.

The first general results for the interval real eigenvalue problem are due to
Deif [6], and Deif & Rohn [26]. However, their solution depends on theorems that
have very strong assumptions. Later, Rohn [23], introduced a boundary point
characterization of the eigenvalue set. Approximation methods were addressed
by Qiu et al. [21] and by Hlad́ık et al. [11]. The latter work is based on a branch
and prune approach and yields results that depend on a given, arbitrarily high,
accuracy.

The symmetric eigenvalue problem is very important in practice. However,
it is hard to handle it, in its interval form, since the correlations between the
entries of the matrices, make the algorithms that depend on interval analysis
to overestimation, usually a lot, the results. The symmetric case was pioneered
by Deif [6]. Another theoretical result is due to Hertz [10], see also [25], for
determining two extremal points of the eigenvalue set. Diverse approximation
algorithms has also been developed. An evolution strategy method by Yuan et
al. [29] yields inner approximation of the eigenvalues set. Matrix perturbation
theory was used by Qiu et al. [20], who proposed an algorithm for approximating
the bounds, and by Leng & He [17] for outer estimation of the eigenvalue set.
Outer bounds that are easy and fast to compute were presented by Hlad́ık et al.
[12]. Outer estimation for general parametric case was considered by Kolev [16].

In this paper, we propose a filtering method for reducing the overestimation
produced by many methods. Generally, filtering is very useful approach used
in constrained programming, but few is known for the interval eigenvalue prob-
lem. We can, of course, apply any filtering for the interval nonlinear system
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of equations arising from eigenvalue definition, but no such approach has been
successful yet; cf. [11]. To the best of our knowledge, there is only one paper
by Beaumont [2] giving an iterative algorithm based on convex approximation
of eigenpairs. We present a new filtering method which is more simple and ap-
plicable for both the symmetric and unsymmetric case. Because we do not take
into account eigenvectors, the filtering is much more efficient.

The rest of the paper is structure are follows. In the next section we present
the basic definitions and our main theoretical result. In Sec. 3 we present our
algorithm, while in Sec. 4 we exploit it on numerical examples. Sec. 5 presents
our conclusions.

2 Basic definitions and main theorem

Let us introduce some notions from interval analysis. An interval matrix is
defined as a family of matrices

A := [A, A] = {A ∈ R
m×n; A ≤ A ≤ A},

where A, A ∈ R
m×n, A ≤ A, are given matrices, and the inequality is considered

element-wise. By

Ac :=
1

2
(A + A), A∆ :=

1

2
(A − A)

we denote the midpoint and radius of A, respectively.
Let A ⊆ R

n×n be a square interval matrix. Its eigenvalue set is defined as

Λ(A) := {λ ∈ R; Ax = λx, x 6= 0, A ∈ A}.

An outer approximation of Λ(A) is any set having Λ(A) as a subset.
An important class of matrices is that of symmetric ones. Its generalization

to interval matrices is as follows. A symmetric interval matrix is defined as

A
S := {A ∈ A | A = AT },

and its eigenvalue set is denoted similarly to generic case, that is

Λ(AS) := {λ ∈ R; Ax = λx, x 6= 0, A ∈ A
S}.

A symmetric interval matrix AS is a proper subset of A, and so its eigenvalue
set, Λ(AS), is in general a subset of Λ(A).

Since a real symmetric matrix A ∈ R
n×n has always n real eigenvalues, we

can sort them in a non-increasing order as follows

λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A).

We extend this notation for symmetric interval matrices, that is

λi(A
S) :=

{
λi(A) | A ∈ A

S
}
.

INRIA



A filtering method for the interval eigenvalue problem 5

These sets form n compact intervals, which can be disjoint or may overlap, see
for example [12]. The union of these interval results Λ(AS). We denote their
outer approximations by

ωi(A
S) ⊇ λi(A

S), i = 1, . . . , n.

Let ρ(·) be the spectral radius, and | · | the matrix absolute value, understood
componentwise. Our main theoretical result is the following. It employs the
sufficient regularity conditions by Beeck [3] and Rump [27]; compare Rex &
Rohn [22].

Theorem 1. Let λ0 6∈ Λ(A) and define M := A−λ0I. Then (λ0 +λ) 6∈ Λ(A)
for all real λ satisfying

|λ| <
1 − 1

2 ρ
(
|I − QMc| + |I − QMc|T + |Q|M∆ + MT

∆|Q|T
)

1
2 ρ (|Q| + |Q|T )

, (1)

where Q ∈ R
n×n, Q 6= 0, is an arbitrary matrix.

Proof. It suffices to prove that every λ satisfying (1) the interval matrix M −
λI = A − λ0I − λI is regular, i.e., consists of nonsingular matrices only.

It is known [22] that an interval matrix B is regular if for any matrix Q one
has

ρ(|I − QBc| + |Q|B∆) < 1.

Substituting B := M − λI we obtain a sufficient condition for λ not to be an
eigenvalue

ρ(|I − Q(Mc − λI)| + |Q|M∆) < 1.

By theory of non-negative matrices [13], ρ(A) ≤ ρ(B) provided 0 ≤ A ≤ B. In
our case, we have

ρ(|I − Q(Mc − λI)| + |Q|M∆) ≤ ρ(|I − QMc| + |λ||Q| + |Q|M∆).

It holds [14] that ρ(B) ≤ 1
2ρ(B + BT ) for any B ≥ 0. Thus, we obtain

ρ(|I−QMc|+|λ||Q|+|Q|M∆) ≤
1

2
ρ

(
|I − QMc| + |I − QMc|

T + |λ|(|Q| + |Q|T ) + |Q|M∆ + MT
∆|Q|T

)
.

The resulting matrix in the right-hand side is symmetric, thus we can exhibit
the well-known Weyl’s theorem [9, 13, 19, 28] on spectral radius of sum of two
symmetric matrices: For A, B symmetric, ρ(A + B) ≤ ρ(A) + ρ(B). Thus

1

2
ρ(|I − QMc| + |I − QMc|

T + |λ|(|Q| + |Q|T ) + |Q|M∆ + MT
∆|Q|T )

≤
1

2
|λ| ρ

(
|Q| + |Q|T

)
+

1

2
ρ

(
|I − QMc| + |I − QMc|

T + |Q|M∆ + MT
∆|Q|T

)
.

Now, the sufficient condition states as follows

≤
1

2
|λ| ρ

(
|Q| + |Q|T

)
+

1

2
ρ

(
|I − QMc| + |I − QMc|

T + |Q|M∆ + MT
∆|Q|T

)
< 1.

By eliminating |λ| we get the final form (1). Note that the denominator is zero
iff Q = 0.
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Note that M∆ = A∆ and Mc = Ac − λ0I, so one can simply rewrite (1) by
means of A and λ0.

By putting Q := M−1
c we have the most convenient and simple form of the

formula (1) as stated below. Note however that using floating point arithmetics
may affect validity of these conditions. Thus, from the numerical stability point
of view, it is recommended to use the original form with Q being an approximate
inverse of Mc.

Corollary 1. Let λ0 6∈ Λ(A) and define M := A−λ0I. Then (λ0 +λ) 6∈ Λ(A)
for all real λ satisfying

|λ| <
1 − 1

2 ρ
(
|M−1

c |M∆ + MT
∆|M−1

c |T
)

1
2 ρ

(
|M−1

c | + |M−1
c |T

) . (2)

Another simple consequence is obtained for the case of a symmetric interval
matrix and its unsymmetric counterpart. Indeed, for A and AS the results are
the same as long as A∆ and Ac are symmetric.

Corollary 2. Let λ0 6∈ Λ(AS) and define MS := AS − λ0I. Then (λ0 + λ) 6∈
Λ(AS) for all real λ satisfying

|λ| <
1 − 1

2 ρ (|I − QMc| + |I − McQ| + |Q|M∆ + M∆|Q|)
1
2 ρ(|Q|)

, (3)

where Q ∈ R
n×n, Q 6= 0, is an arbitrary symmetric matrix.

These results allow us to propose an efficient filtering method for reducing
outer estimations of the eigenvalue set. The detailed algorithm is presented in
the following section.

3 Algorithm

In this section we propose a filtering algorithm which is based on Theorem 1. Let
an interval a = [a, a] be given. A filtering method is a method which iteratively
cuts off some parts (margins) from a that do not include any eigenvalue. Finally,
we obtain an interval b ⊆ a such that (a \ b) ∩ Λ(A) = ∅.

To avoid infinitely many iterations we limit the number by a constant T . To
omit the steps that cut off very narrow pieces, we repeat the main loop while the
reduction is significant; that is, we prune away at least εa∆ part of the interval,
where ε ∈ (0, 1) is given accuracy. The pseudo-code that follows presents our
filtering method that “filter” the input intervals from above. Filtering from
below is analogous.

The filtering method is quite straightforward. The input interval a could be
any initial outer estimation of Λ(A), or we can split such an outer estimation
into several pieces and call the filtering algorithm for all of them. The former
approach does not detect gaps which are inside the non-convex set Λ(A), while

INRIA



A filtering method for the interval eigenvalue problem 7

Algorithm 1 (Filtering a from above)

1: b := a;
2: t := 0;
3: λ := εb∆ + 1;
4: while λ > εb∆ and t < T do

5: t := t + 1;
6: M := A − bI;
7: compute Q := M−1

c ;

8: λ :=
2−ρ(|I−QMc|+|I−QMc|

T +|Q|M∆+MT

∆
|Q|T )

ρ(|Q|+|Q|T ) ;

9: if λ > 0 then

10: b := b − λ;
11: end if

12: if b < b then

13: return b := ∅;
14: end if

15: end while

16: return b.

the latter is able to identify them, provided some genericity condition for the
splitting.

Algorithm 1 is also applicable for the symmetric eigenvalue problem, but the
filtering of Λ(AS) yields the same result, as in the generic case, Λ(A). The only
advantage of the symmetric case is that we can filter directly outer approxima-
tions of the eigenvalue sets λi(A

S), i = 1, . . . , n. These eigenvalue sets have no
gaps inside, so it is the most convenient utilization of the filtering. However,
the filtering is applicable only for non-overlapping parts; if they overlap, then
we will cut off nothing. As we will see in Section 4, the filtering runs very fast,
and the reduction is significant. However, it does not converge to the optimal
boundaries in general, because it is based on the sufficient condition for interval
matrix regularity.

4 Numerical results

Herein we present some examples and numerical results illustrating properties of
the proposed filtering method. In all the examples, we call Algorithm 1 with the
accuracy coefficient ε := 0.01 and the maximum number of iterations T := 100.

The results were carried on an Intel Pentium(R) 4, CPU 3.4 GHz, with
2GB RAM, and the program was written in C++. We use GLPK v.4.23 [18] for
solving linear programming problems, CLAPACK v.3.1.1 for its linear algebraic
routines, and PROFIL/BIAS v.2.0.4 [15] for interval arithmetic and basic op-
erations. We have to notice, however, that routines of GLPK and CLAPACK[1]
do not produce verified solutions, and for real-life problems preferably verified
software or interval arithmetic should be used.

RR n° 7057
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Example 1. Let us adopt an example by Hlad́ık et al. [12]

A =




[−5,−4] [−9,−8] [14, 15] [4.6, 5] [−1.2,−1]
[17, 18] [17, 18] [1, 2] [4, 5] [10, 11]

[17, 17.2] [−3.5,−2.7] [1.9, 2.1] [−13,−12] [6, 6.4]
[18, 19] [2, 3] [18, 19] [5, 6] [6, 7]
[13, 14] [18, 19] [9, 10] [−18,−17] [10, 11]




.

The Rohn’s outer estimation [12, 24] of Λ(A) is [−22.1040, 35.4999]. Calling
Algorithm 1 we obtain the following sequences of improvement:� from above: 35.4999 → 28.0615 → 25.6193 → 24.7389 → 24.4086;� from bellow: (−22.1040) → (−18.4018) → (−17.8239) → (−17.7346).

So we need only seven iterations to achieve the much more tighter outer ap-
proximation [−17.7346, 24.4086].

Using Proposition 2 of [12] we have an outer approximation [−24.4860, 4.5216]∪
[12.1327, 29.3101]. We will filter both the intervals. In the former case we obtain� from above: 4.5216 → 2.4758 → 0.8342 → (−0.0951) → (−0.5335) →

(−0.7149);� from bellow: (−24.4860) → (−18.8351) → (−17.8926) → (−17.7438);

and in the latter one� from above: 29.3101 → 26.0645 → 24.9010 → 24.4704 → 24.3053 →
24.2412;� from bellow: 12.1327 → 13.4809 → 14.4703 → 15.1443 → 15.5761 →
15.8462 → 16.0127 → 16.1143 → 16.1760.

Thus, we have in 21 iterations the filtered outer approximation [−17.7438, −0.7149]∪
[16.1760, 24.2412]. We can compare this result with the exact solution

Λ(A) = [−17.5116,−13.7578]∪ [−6.7033,−1.4582]∪ [16.7804, 23.6143].

It was obtained by the algorithm of Hlad́ık et al. [11]. We see that the filtered
approximation is very tight. There is still one gap remaining which we cannot
detect unless we divide the initial approximation into more sub-intervals.

Example 2. Consider the example given by Qiu et al. [20] (see also [12, 29]):

A
S =




[2975, 3025] [−2015,−1985] 0 0
[−2015,−1985] [4965, 5035] [−3020,−2980] 0

0 [−3020,−2980] [6955, 7045] [−4025,−3975]
0 0 [−4025,−3975] [8945, 9055]




S

.
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A filtering method for the interval eigenvalue problem 9

To call the filtering method we need some initial outer approximation of the
eigenvalue sets. We use the following one by [12]

ω1(A
S) = [12560.6296, 12720.2273], ω2(A

S) = [6990.7616, 7138.1800],

ω3(A
S) = [3320.2863, 3459.4322], ω4(A

S) = [837.0637, 973.1993].

Even though this approximation is quite tight, the filtering makes it more
tighter. Calling Algorithm 1 we get in only ten iterations

ω
f
1 (AS) = [12560.8129, 12720.2273], ω

f
2 (AS) = [6999.7862, 7129.2716],

ω
f
3 (AS) = [3332.7164, 3447.4625], ω

f
4 (AS) = [841.5328, 968.5845].

What if we start with another initial outer approximation? We use that
produced by of the method of Leng & He [17]

ω̃1(A
S) = [12550.53, 12730.53], ω̃2(A

S) = [6974.459, 7154.459],

ω̃3(A
S) = [3299.848, 3479.848], ω̃4(A

S) = [815.1615, 995.1615].

Although this estimation is not so tight we obtain tighter result

ω̃
f
1 (AS) = [12560.8129, 12720.2472], ω̃

f
2 (AS) = [6999.8026, 7129.2716],

ω̃
f
3 (AS) = [3332.7944, 3447.4628], ω̃

f
4 (AS) = [841.5328, 968.5505],

and the total number of iteration is 13. We can compare this outer approxima-
tion with the exact description [12]

λ1(A
S) = [12560.8377, 12720.2273], λ2(A

S) = [7002.2828, 7126.8283],

λ3(A
S) = [3337.0785, 3443.3127], λ4(A

S) = [842.9251, 967.1082],

Again, we see that the filtering method converges quickly to the tight solution.
Moreover, the results are not sensitive to the initial estimation chosen.

Example 3. To be fully convinced about the quality of the filtering method
we carried out number of randomly generated examples. Components of the
midpoint matrix Ac are taken randomly with uniform distribution in [−20, 20].
Components of the radius matrix A∆ are taken randomly with uniform dis-
tribution in [0, R], where R is a given positive real number. We applied our
algorithm on the interval matrix M := A

T
A since such kinds of symmetric

interval matrices often appear in practice. The filtering method was called for

all the eigenvalue sets λ(MS) =
(
λ1(M

S), . . . , λn(MS)
)T

.
The results are displayed in Table 1. Each row shows results of a series of

100 tests carried out for a given dimension n and the parameter R. We provide
average cut off and its standard deviation, number of iterations (for all parts
of an outer approximation together) and average running time. The cut off
provides information about the filtering efficiency. It is measured by the ratio

1 −
eT ω

f
∆(MS)

eT ω∆(MS)
,
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where e = (1, . . . , 1)T denotes the vector of all ones, ωf (MS) an initial outer
approximation of λ(MS), and ωf (MS) the result of the filtering procedure.
This quotient says how much we cut off from the whole outer approximations
of the eigenvalue sets, but the real efficiency (how much we eliminate from the
overestimation addition) is much better.

The results show that the proposed filtering method is not only very fast,
but also efficient and eliminates quite large parts of given outer approximation
of eigenvalue sets. This is particularly true when the input intervals of A are
narrow. If they are wide then the filtering method is not so successful, partially
because some of the eigenvalue sets overlap.

n R cut off quotient iterations time

average std. deviation

5 0.001 0.186185 0.034635 15.25 0.0012 s

5 0.01 0.182395 0.042879 16.23 0.0010 s

5 0.1 0.142715 0.041260 16.51 0.0011 s

5 1 0.015686 0.011977 3.99 0.0004 s

10 0.001 0.233480 0.022064 33.41 0.0062 s

10 0.01 0.207711 0.032813 37.63 0.0068 s

10 0.1 0.074682 0.024832 22.13 0.0031 s

10 1 0.003388 0.002995 1.42 0.0005 s

15 0.001 0.242457 0.021210 54.13 0.0239 s

15 0.01 0.181559 0.022123 56.44 0.0250 s

15 0.1 0.025517 0.010055 13.48 0.0082 s

15 1 0.001410 0.001704 0.94 0.0011 s

20 0.001 0.243601 0.017704 76.69 0.0650 s

20 0.01 0.154207 0.021279 67.92 0.0595 s

20 0.1 0.009844 0.006030 7.42 0.0114 s

20 1 0.000493 0.000890 0.60 0.0012 s

25 0.001 0.238694 0.016706 97.15 0.1373 s

25 0.01 0.122852 0.017385 73.67 0.1122 s

25 0.1 0.004785 0.003815 3.84 0.0123 s

25 1 0.000117 0.000369 0.33 0.0033 s

30 0.001 0.232266 0.015133 117.90 0.2679 s

30 0.01 0.093589 0.015072 74.07 0.1812 s

30 0.1 0.002288 0.001849 2.78 0.0121 s

30 1 0.000031 0.000150 0.09 0.0036 s

50 0.001 0.194401 0.011126 184.75 1.5238 s

50 0.01 0.028148 0.006065 48.19 0.5169 s

50 0.1 0.000428 0.000545 1.05 0.0225 s

50 1 0.000000 0.000000 0.00 0.0166 s

Table 1: Filtering procedure for outer estimates of eigenvalue sets of random
interval symmetric matrices A

T
A.

INRIA



A filtering method for the interval eigenvalue problem 11

5 Conclusion

We propose a filtering method for improving an outer approximation of the
eigenvalue set of an interval matrix. Our method is applicable for both generic
and symmetric matrices. Even though the proposed algorithm does not converge
always to the optimal bounds, our numerical experiments show that in general
they compute very fast, quite accurate results. The algorithm performs well
even when the initial (input) outer approximation is not very tight, thus it is
not sensitive with respect to the input estimation. A drawback of our approach
is that it can not detect (possible) gaps inside the initial outer approximation.
Such cases should be handled by splitting into smaller sub-intervals or using
another kind of initial approximation. This is problem that further research is
needed.
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ichungssystemen. In K. Nickel, editor, Interval Mathemantics: Proceed-

ings of the International Symposium on Interval Mathemantics, volume 29,
pages 150–159, Berlin, 1975. Springer.

[4] D. Chablat, P. Wenger, F. Majou, and J. Merlet. An interval analysis
based study for the design and the comparison of 3-dof parallel kinematic
machines. Int. J. Robot. Res., 23(6):615–624, 2004.

[5] P. Comon et al. Independent component analysis, a new concept? Signal

processing, 36(3):287–314, 1994.

[6] A. S. Deif. The interval eigenvalue problem. Z. Angew. Math. Mech.,
71(1):61–64, 1991.

[7] A. D. Dimarogonas. Interval analysis of vibrating systems. J. Sound Vib.,
183(4):739–749, 1995.

[8] F. Gioia and C. N. Lauro. Principal component analysis on interval data.
Comput. Stat., 21(2):343–363, 2006.

[9] G. H. Golub and C. F. Van Loan. Matrix computations. 3rd ed. Johns
Hopkins University Press, 1996.

[10] D. Hertz. The extreme eigenvalues and stability of real symmetric interval
matrices. IEEE Trans. Autom. Control, 37(4):532–535, 1992.

RR n° 7057



12

[11] M. Hlad́ık, D. Daney, and E. Tsigaridas. An algorithm for the real in-
terval eigenvalue problem. Research Report RR-6680, INRIA, France,
http://hal.inria.fr/inria-00329714/en/, October 2008. sumbitted to
J. Comput. Appl. Math.

[12] M. Hlad́ık, D. Daney, and E. Tsigaridas. Bounds on eigenvalues and sin-
gular values of interval matrices. Research Report inria-00370603:1, IN-
RIA, France, http://hal.inria.fr/inria-00370603/en/, March 2009.
sumbitted to SIAM J. Matrix Anal. Appl.

[13] R. A. Horn and C. R. Johnson. Matrix analysis. Cambridge University
Press, Cambridge, 1985.

[14] R. A. Horn and C. R. Johnson. Topics in matrix analysis. Cambridge
University Press, Cambridge, 1994.
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