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DassFlow v1.0: a variational data assimilation software
for 2D river flows

Résumé : Dassflow est un code de calcul d’hydraulique fluviale (rivière, inondation) des-
tiné à l’assimilation variationnelle de données. Le modèle direct est basé sur les équations
de Saint-Venant (shallow water 2D) avec friction, et un schéma volumes finis explicite du
type solveur de Riemann approché HLLC. Un grand nombre de conditions aux limites est
implémenté dont celles de type caractéristique. Le code direct est écrit en Fortran 95 et
destiné à être différencié automatiquement à l’aide du logiciel Tapenade. Ainsi, le logiciel
Dassflow comporte le code direct, le code adjoint, le processus complet d’optimisation (basé
sur la routine de minimisation locale L-BFGS, dénommée M1QN3) ainsi que des cas tests
(benchmarks). La génération de nouvelles expériences jumelles en assimilation de données
est facile. Ce code est interfacé avec divers outils de maillages (structuré, mixte triangles-
quadrangles), SIG et visualiseurs (commerciaux et logiciels libres), ce qui permet de traiter
des données réelles.

Mots-clés : Assimilation variationnelle de données, identification de paramètres, hy-
draulique fluviale, inondations.
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1 Introduction

The St-Venant equations (shallow water) can describe accurately river flows, in the main
channel (1D geometry) or in the major bed (flood plain, 2D geometry). Nevertheless, in or-
der to carry out a reliable numerical simulation, models require input parameters such as bed
elevation, roughness coefficients in addition to initial and boundary conditions. Generally,
these parameters are approximated (eg roughness coefficients), missing (eg inflow boundary
conditions or initial conditions) or subjected to uncertainties. Moreover, the governing equa-
tions themselves may model ideal configurations, which not necessarily correspond to real
configurations. Classicaly, expert-users of computational river flow softwares, see e.g. [?],
must perform many simulations (hence spend time) in order to calibrate the numerical model
related to a given configuration (trial-error tests). On the other hand, observations from
in-situ gauge stations (eg water elevation) or remote sensing observations (satellite images,
air photographs, video images) are very important sources of information on the flow state,
but they are not qualitatively integrated into the simulation process. To improve the quality
of the simulation, data assimilation methods combine in an optimal sense the information
from the model and observated data. This allows to identify some parameter values consis-
tent with reality, and /or initial conditions. Variational data assimilation method, see e.g.
[?], [?], is based on the optimal control theory, [?], and it aims to fuse the dynamical model
and observations by minimizing a cost function which measures the discrepancy between the
simulation results and physical measurements. This method is operational in meterology
and since more recently in oceanography. In river hydraulics, variational data assimilation
methods have been used for the identification of model parameters in 1D channels, [?, ?],
and in 2D, [?, ?, ?, ?, ?, ?, ?, ?].
In real configurations, observations are available only in very small quantities. At best, water
levels are measured at very few gauge stations (information very sparse in space); velocity
measurements are even more scarce since they require complex human interventions.

DassFlow is a river hydraulics simulation software designed for variational data assimila-
tion on simple hydraulic configurations for research purpose. The model is based on the bidi-
mensional shallow-water equations, solved by the finite volume method using the HLLC ap-
proximate Riemann solver. The minimization procedure is based on the L-BFGS algorithm,
[?]), which requires the computation of the gradient of the cost function. Since the forward
code is written in Fortran 95, the adjoint code is generated by the automatic differentiation
tool Tapenade [?] developped by the Tropics project-team at INRIA Sophia-Antipolis.
DassFlow software is interfaced with few free and commercial pre and post-processors (SIG
tools, mesh generators, visualization tools), which allows to performs computations with
real data.

In Section 2, we present the Shallow Water model. In section 3, we present the Varia-
tional Data Assimilation method (4D-Var). In Section 4, we detail the finite volume scheme,
then the way the adjoint code is automatically generated. In Section 5, we compare some
solutions of the forward model with either explicit solutions or real measures (benchmarks

INRIA
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for the forward code). In Section 6, we consider twin experiments which show the capabil-
ities of DassFlow (benchmarks for the data assimilation software). In appendix we detail
characteristics boundary conditions and Riemann invariants.

The present research report treats of the mathematical and numerical features of Dassflow
only. Concerning the code itself, we refer to the user manual [?] and the developer guide
[?].

2 The shallow water model (St Venant)

2.1 The equations

The river hydraulics model is based on the bidimensional shallow water equations in their
conservative formulation. The state variables are the water depth h and the local discharge
q = hu, where u = (u, v)T is the depth-averaged velocity vector. On a domain Ω and for a
computational time interval [0, T ], the equations are:






∂t h + div(q ) = 0 in Ω×] 0, T ]

∂t q + div
(

1
h q ⊗ q

)
+ 1

2g∇h2 + gh∇zb + g
n2‖q‖

2

h7/3
q = 0 in Ω×] 0, T ]

h(0) = h0, q(0) = q0

+ boundary conditions (see section 2.2)

(1)

where g is the magnitude of the gravity, zb the bed elevation, n the Manning roughness
coefficient, h0 and q0 the initial conditions for the state variables. The quantity c =

√
gh

denotes the local wave celerity.
It is important to notice that if the bed elevation is constant (∇zb = 0) and without the
friction term, (1) is an hyperbolic system.

Moreover, a transport equation related to a tracer Φ is considered:

∂t hΦ + div(qΦ ) = sf (2)

with initial and boundary conditions. sf is the tracer source term.

2.2 Boundary conditions

We split the boundary Γ of the domain Ω in three parts (see figure 2.1). We denote by:

• Γin the part where the flow is incoming (type INFLOW)

• Γout the part where the flow is outgoing (type OUTFLOW)

• Γwall the part where it is a closed boundary (type WALL)

RR n° 0123456789



6 Honnorat & Marin & Monnier & Lai

Figure 2.1: The simulation domain and its boundaries

The user has a large choice of boundary conditions, depending on the boundary condition
type.

2.2.1 Wall boundary conditions

On Γwall, we consider a slip condition:

u · n|Γc
(t) = 0 , ∂h

∂n |Γc
(t) = 0 ∀ t ∈ ]0, T ]

2.2.2 Inflow conditions

Few boundary conditions are possible at inflow ie on Γin.

Discharge imposed

We have:
(q · n)|Γin

= −qin(t) , ∂h
∂n |Γin

(t) = 0 ∀ t ∈ ]0, T ]

INRIA
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Incoming characteristics

The characteristic variables of the system are: w1 = u · n +
√

g
h0

h, w2 = u · τ and

w3 = u·n−
√

g
h0

h, associated to the eigenvalues λ1 = u0 ·n+c, λ2 = u0 ·τ and λ3 = u0 ·n−c

respectively. Let us recall that: c =
√

gh0.

We detail more concerning the characteristics in appendix A.
The characteristic wk is incoming if λk < 0 and outgoing otherwise. The characteristics
boundary conditions are implemented as follows:

. For each point of the boundary, we compute the three eigenvalues λk.

. For each λk,

– if λk ≥ 0, then wk is incoming; thus it is evaluated from external data,

– if λk < 0, then wk is outgoing; thus it is evaluated from the internal simulation
domain.

. Then, the model variables can be retrieved as follows:

– u · nbnd = w1+w3

2

– u× nbnd = w2

– hbnd =
√

h0

g
w1−w3

2

2.2.3 Outflow conditions

Few boundary conditions are possible at outflow ie on Γout.

Homogeneous Neumann

∂h
∂n |Γout

(t) = 0 , ∂q

∂n |Γout
(t) = 0 ∀ t ∈ ]0, T ]

Water elevation prescribed

h|Γout
(t) = zout(t) − zb|Γout

, ∂(u·n+2c)
∂n |Γout

(t) = 0 ∀ t ∈ ]0, T ]

This boundary condition should be applied only in case of sub-critical flow. We refer to

appendix B for a justification of the relation ∂(u·n+2c)
∂n |Γout

(t) = 0

RR n° 0123456789
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Incoming characteristics

This case is similar to those related to the inflow boundary Γin.

Rating curve

A rating curve is a relation between the normal discharge q · n and the water height h :
q ·n = f(h). Such a relation can be used to specify outflow boundary conditions if combined

with the relation: ∂(U+2
√

gh)
∂n = 0.

To this end, we solve the following non-linear system (see figure 2.2):
{

q · n = f(h)

u · n + 2
√

gh =
(
u · n + 2

√
gh
)
int

(3)

where
(
u · n + 2

√
gh
)
int

is computed from the interior of the domain.

h

Q
rating curve

relation based
on quantity
U + 2

√
gh

qr

hr

Figure 2.2: Outflow BC: Rating curve and U + 2
√

gh = 0

3 Variational data assimilation (4D-var)

The DassFlow software is designed for variational data assimilation (classicaly called 4D-var
method). Variational data assimilation is based on the optimal control theory, see [?], [?].
Briefly, this method consists to compute a control vector value k minimizing a cost function
which measures the discrepancy between the computed variable and available data.
In our case the control vector k can include the initial condition, boundary conditions,
manning coefficient and bed elevation. For example, if inflow discharge is prescribed and
water elevation is prescribed, we get:

k = (h0,q0, qin, zout, n, zb)
T

INRIA
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If we impose incoming characteristics for both inflow and outflow boundaries, we get:

k = (h0,q0, [w
in
1 , win

2 , win
3 ], [wout

1 , wout
2 , wout

3 ], zout, n, zb)
T

We set below the observation function H(k; h,q) and the cost function J(k) = H(k; h,q)
which measures the discrepancy between the state of the system (computed variable) and
observations. Then the optimal control problem we solve reads:

Mink J(k) (4)

where (h,q) is the solution of the forward model (1).

This optimization problem is solved numerically by a descent algorithm. Thus, we need
to compute the gradient of the cost function. This is classicaly done by introducing the
adjoint model.

Let us point out that initial conditions, boundary conditions, manning coefficients and
bed elevation are only potential control variables. In practice, one manages to identify very
few of them only at the same time.

3.1 Observations and cost function

Given observations, we define the cost function J which measures the discrepancy between
the computed variable (state of the system) and the available data.

In the present version, we assume that water depth and discharge are available at some
point and some time instant. In the forthcoming version of DassFlow, we will assume to
have some extra observations such as trajectories at surface (lagrangian data).

Given such (eulerian) observations, we define the cost function as the sum of three terms.

• The first term measures the discrepancy between observation data and computed state
variable :

Jobs(k) =
1

2

(∫ T

0

‖Ch h(k, t) − hobs(t)‖2
+

∫ T

0

‖Cq q(k, t) − qobs(t)‖2

)

where Ch and Cq are restriction operators.

• The second term measures the discrepancy of the flux:

Jflux(k) =
1

2

∫ T

0

∥∥G(k, t) − Gobs(k, t)
∥∥2

RR n° 0123456789



10 Honnorat & Marin & Monnier & Lai

with

G(k, t) − Gobs(k, t) =
∆t

|Ki|

4∑

j=1

T−1
ij

(
G̃1(UL, UR) − G̃1(ŨL, UR)

)

with ŨL = [hobs, hobsu, hobsv]T and G̃1(UL, UR) is the first component of the flux
computed by the HLLC solver (see section 4.1), ie the discharge through the edge
between cell L and cell R. That means that this cost function measures the difference
on the sum of the flux through all edges of the observed cell (see figure 3.3).

L

Figure 3.3: Flux through all edges of cell L

• The third term is a classical regularization term. For example, if we control inflow
discharge, we set:

Jp(k) =
1

2
‖∂2

ttqin‖
2

Finally, the cost function writes :

J(k) = αobsJobs(k) + αfluxJflux(k) + αpJp(k) (5)

where αobs, αflux and αp are scaling coefficients which must be setted by user.

3.2 Adjoint model

In order to compute efficiently all partial derivatives of the cost function J(k) with respect
to the components of the control vector k, we introduce the adjoint model, [?].[?].

INRIA



DassFlow v1.0: a variational data assimilation software for 2D river flows 11

Given the state of the system (h,q), solution of the forward model, we compute (h∗,q∗),
solution of the adjoint model:





∂t h∗ − 1
h2

[
(q · ∇)q∗] · q + gh div(q∗)

− g q∗ · ∇zb + 7
3g n2‖q‖

h7/3
q · q∗ = αobs CT

h

(
Ch h − hobs

)

+ αflux

[
Dk(G − Gobs)

]T
(G(k, t) − Gobs(k, t))

∂t q
∗ + ∇h∗ + 1

h (q · ∇)q∗ + 1
h (∇q∗)T q

− g n2‖q‖
h7/3

q∗ − g n2

h7/3‖q‖ (q⊗q)q∗ = αobs CT
q

(
Cq q − qobs

)

h∗(T ) = 0 , q∗(T ) = 0 .

(6)

Let us point out that the adjoint model is reverse in time, and it includes the observations.
Concerning its boundary conditions, for example in the case of inflow discharge prescribed
at inflow and water elevation prescribed at outflow, we get:

C.L. : q∗|Γin
= 0 , (q∗ · n)|Γwall

= 0 , (q∗ · τ)|Γout
= 0 ,

(∂nh∗)|Γin∪Γwall
= 0 ,

(
h∗ + 2(u · n)(q∗ · n)

)
|Γout

= 0 .
(7)

Given the state (h,q) and the adjoint state (h∗,q∗), one obtains the following expression
of the partial derivatives of the cost function (independent of the derivative of the state):

∂j

∂h0
(k) = −h∗(0) ,

∂j

∂q0
(k) = −q∗(0) ,

∂j

∂zb
(k) = −

∫ T

0

div
(
gh(t)q∗(t)

)
dt ,

∂j

∂n
(k) = 2 g n

∫ T

0

∥∥u(t)
∥∥ h(t)−

1

3

〈
u(t),q∗(t)

〉
Ω

dt ,

∂j

∂qin
(k) = αp∂

2
tt

T
∂2

ttqin − h∗|Γq
,

∂j

∂zout
(k) =

[
(q∗ · n)

(
c2 − (u · n)2

)]
|Γz

.

(8)

A single integration of the direct model (1) followed by a single integration backward in
time of the adjoint model (6)-(7) allow to compute all components of the gradient of the
cost function (see figure 3.4).

The optimal control problem (4) is solved using a local descent algorithm, more precisely
the L-BFGS algorithm (a quasi-Newton method), implemented in the M1QN3 routine, see
[?, ?]. Thus, these partial derivatives are used as input to the minimization algorithm

RR n° 0123456789



12 Honnorat & Marin & Monnier & Lai

M1QN3. The global optimization process is represented in Fig. 3.4.

In practice, we don’t implement the adjoint model presented above but we compute the
partial derivatives directly by differentiating the forward code using an automatic differen-
tiation tool, see next section.

Forward code

Adjoint code

First guess

cost function and 
its gradients

L−BFGS algorithm
(M1QN3 routine)

control variables

Optimal values
of control variables

if converged

S
IM

U
LA

T
O

R

0T

0 T

search

linear
Optimization

routine

Figure 3.4: Variational data assimilation process

4 Numerical implementation

In this section, we describe on one hand the finite volume scheme solving the forward model
and its implementation, on the other hand the automatic differentiation of the forward code
in order to obtain the partial derivatives of J . For more details concerning the numerical
implementation of the finite volume scheme, one can consult [?], [?].

INRIA
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4.1 Forward code and numerical scheme

The forward (or direct) model (1) is discretized using by a finite volume method based on
the approximate Riemann solver HLLC, see e.g. [?]. The 2D mesh can be a mix of triangular
and quadrangular cells.

4.1.1 The finite volume scheme

Equations (1) are rewritten as follows :

∂tU + ∂x(G(U)) + ∂y(H(U)) − (Sg(U) + Sf (U)) = 0, (x, y) ∈ Ω2 , t ∈ (0, T )

where U = [h, qx, qy]T ,
G(U) = [qx, q2

x/h + gh2/2, qxqy/h]T

H(U) = [qy, qxqy/h, q2
y/h + gh2/2]T

Sg(U) = [0, gh∂xzb, gH∂yzb]
T

zb is the topography term, Sf is the 2D friction term (Manning law) and g is the magnitude
of the gravity.

For the finite volume Ki of the mesh, we define the mean value of the state variable U :

Ui =
1

|Ki|

∫

Ki

U dΩ , (9)

where |Ki| denotes the surface of the cell. We integrate the equation over Ki, we use the
divergence theorem, we use the rotational invariance property of the equations [?], then we
obtain:

∫

Ki

∂tU dx +

Ni∑

j=1

∫

Eij

T−1
ij G(TijU) ds −

∫

Ki

(Sg(U) + Sf (U)) dx = 0 (10)

where Ni denotes the number of faces of the cell Ki (3 or 4), Eij is the cell interface and Tij

is the rotation of angle θij between the normal to Eij and the horizontal plane, Fig. 4.5:

T =




1 0 0
0 cos θ sin θ
0 −sin θ cos θ





Using the forward Euler scheme for temporal discretization, the equation becomes:

Um+1
i = Um

i − ∆t

|Ki|

Ni∑

j=1

T−1
ij Gm(TijUi) + ∆t Sm

g (Ui) + ∆t Sm̃+1
f (Ui) (11)

RR n° 0123456789



14 Honnorat & Marin & Monnier & Lai

where m = 0, ..., T/∆t is the time index, ∆t is the time step used for the 2D model integra-

tion. Sm̃+1
f denotes the friction term treated semi-implicitely in time.

The difficulty is to compute the numerical flux Gm(TijUi) =

∫

Eij

G(TijU) ds.

The rotational invariance property of the equations allows to reduce the 2D shallow-
water problem to a sum of 1D local Riemann problems. These 1D Riemann problems are
solved using the HLLC solver which consists to approximate the 1D flux G, see e.g. [?] and
[?].
Moreover, the topography term Sg is included in the HLLC solver (see section 4.1.2). Thus,
(11) writes :

Um+1
i = Um

i − ∆t

|Ki|

Ni∑

j=1

T−1
ij G̃m(TijUi) + ∆t Sm̃+1

f (Ui) (12)

Only the friction term is treated outside the HLLC numerical flux. It is discretized
semi-implicitely in time as follows:

Sm̃+1(Ui) =




0(
−g n2‖u‖

h4/3

)m

(qx)m+1

(
−g n2‖u‖

h4/3

)m

(qy)m+1




where n is the manning coefficient.

4.1.2 The local 1D Riemann problem

We detail below the computation of an approximation of the 1D flux G. This is done as
follows.

R

x̄

x

ȳ

y

θij

j

L ≡ Ki

Figure 4.5: Adjacent cells and use of the rotational invariance property of the equations
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1) First, we compute the state variable in local coordinates in the two cells KL and KR,
Fig. 4.5, using the rotation: Vi = TijUi. Subscripts L and R denote cells respectively
to the left and to the right of the interface.

2) If V = [H, Q~n, Q~τ ]T where (τ, n) denotes the tangential and normal unit vectors
respectively, we have the local normal 2D flux:

G(V ) = [Q~n, Q2
~n/H + gH2/2, Q~nQ~τH ]T

In the homogeneous case (Sg = 0), the 2D finite volume solver consists to solve, for
each edge, the following local 1D Riemann problem:

∂tV + ∂nG(V ) = 0

with V (x, 0) = VL if x~n < 0 ; V (x, 0) = VR if x~n > 0. The normal flux G(V ) is
computed using the HLLC solver, [?].
Finally, we obtain the new solution Um+1

i using (11).

In the non-homogeneous case (Sg 6= 0), the topography term is included in the flux
term, using the following modification of G2(V ) proposed by LeVeque [?] :

G̃(V ) = G(V ) +




0
1
2g(hL + hR)(zbR − zbL)

0




4.1.3 Stability condition

Since we use the forward Euler scheme in time, we do not have linear system to solve but
the time step must respect a stability condition (CFL type). In the present case, this CFL
stability condition is, see [?]:

CFL = ∆t
max (‖u‖ + c)

min(dL,R)
≤ 1 , (13)

where dL,R is the distance between the cell L and the center of the edge separing it from
cell R.

4.1.4 Boundary conditions

In this section, we describe the way we impose the different boundary conditions described
in section 2.2.

Let us consider a ”boundary cell” L, ie it has no neighboor through its edge i, (see figure
4.6). In the context of a finite volume scheme, we have to evaluate the flux through the edge
i. Thus, it becomes natural to define a ”ghost-cell” R, for each boundary cell L.
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L Ri

Figure 4.6: Internal cell L at boundary and ghost cell R

In order to impose a boundary condition (e.g. inflow dicharge, incoming characteristics
etc), we set a particular value to UR = (hR, uR, vR)T such that the boundary condition is
imposed when solving the local Riemann problem through the edge i (ie by computing the
numeric flux G̃(UL, UR)). Let us detail the values UR required for each type of boundary
conditions.

Wall conditions On Γwall, we consider slip type conditions, then:

• Homogeneous Neumann condition on h is imposed by setting hR = hL

• Slip condition on u is imposed by setting uR = −uL and vR = vL

Inflow conditions On Γin, we impose one of the two following boundary conditions.

. Inflow discharge

The inflow discharge is imposed (unit in m3s−1). This corresponds to the discharge
through the whole boundary and it is distributed in each cell such that the normal
velocity uL is constant along the boundary.

– Homogeneous Neumann on h are prescribed by setting hR = hL.

– The inflow discharge is prescribed by setting uR = − qin(t)
An , where An is the

boundary wet section area, and vR = vL.

. Incoming characteristics
Once incoming and outgoing characteristics w1, w2 and w3 are computed in the ghost
cell as described in appendix A, we set:

– hR = w1−w3

2c

– uR = w1+w3

2hR

– vR = w2

INRIA
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Outflow conditions On Γout, we impose one of the four following boundary conditions.

. Water elevation

– We impose hR = zprescribed − (zb)R, where (zb)R is the bathymetry in the ghost-
cell.

– vR = vL

– We impose (uR +2
√

ghR) = (uL +2
√

ghL), that is uR = (uL +2
√

ghL−2
√

ghR).

. Homogeneous Neumann We impose hR = hL, uR = uL and vR = vL.

. Incoming characteristics
Once incoming and outgoing characteristics w1, w2 and w3 are computed in the ghost
cell as described in appendix A, we set:

– hR = w1−w3

2c

– uR = w1+w3

2hR

– vR = w2

. Rating curve

– As described in section 2.2.3, we solve:

{
qR = f(hR)

uR + 2
√

ghR = uL + 2
√

ghL

(14)

– In addition we impose: vR = vL

4.2 Adjoint code

In practice, there exists three approaches to compute the adjoint state variable, then the
gradient of the cost function.

1. The discretized continuous gradient can be obtained from the adjoint model (6)-(7)
discretized using an appropriate numerical scheme which is then implemented.

2. The discrete gradient can be obtained from the adjoint of the direct numerical scheme
and its implementation.

3. The ”computational gradient” is obtained from the differentiation of the forward code
directly.
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This last approach ensures a better consistency between the computed cost function (includ-
ing all types of errors -errors of discretization, rounding errors, iterative algorithms etc-) and
its gradient since it is the computed cost function which is differentiated. A large part of
this extensive task can be automated using algorithmic differentiation, see [?]. In the case
of DassFlow, the direct code is written in Fortran 95 and it is derived using the automatic
differentiation tool Tapenade [?].

4.2.1 How to use the adjoint code?

We describe how to define the direct code, then what is the response of the adjoint code
automatically generated and finally how to use it.
Let K be the space of control variables and Y the space of the forward code response. In
the case of DassFlow, we have :

k = (y0, qin, zout, n, zb, )
T and Y =

(
y, j
)T

Let us point out that we include both the state and the cost function in the response of the
forward code.

We can represent the direct code as the operator M : K −→ Y, see figure 4.7.

Yk
M

Figure 4.7: Representation of the direct model.

The tangent model becomes ∂M
∂k

(k) : K −→ Y. It takes as input variable a perturba-
tion of the control vector dk ∈ K, then it gives the variation dY ∈ Y as output variable,
see figure 4.8) :

dY =
∂M
∂k

(k) · dk

The adjoint model is defined as the adjoint operator of the tangent model. This can be
represented as follows:

(
∂M
∂k

(k)
)∗

: Y ′ −→ K′. It takes dY ∗ ∈ Y ′ an input variable and
provides the adjoint variable dk∗ ∈ K′ at output, see figure 4.9:

dk∗ =

(
∂M
∂k

(k)

)∗
· dY ∗

Now, let us make the link between the adjoint code and the ”computational gradient”.
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dYdk ∂M
∂k

(k)

Figure 4.8: Representation of the tangent model.

dY ∗ dk∗(
∂M
∂k

(k)

)∗

Figure 4.9: Representation of the adjoint model.

By definition of the adjoint, we have :
〈 (

∂M
∂k

)∗· dY ∗, dk
〉

K′×K
=
〈
dY ∗,

(
∂M
∂k

)
· dk

〉

Y′×Y
(15)

or, using the relations presented above:
〈
dk∗, dk

〉
K′×K =

〈
dY ∗, dY

〉
Y′×Y . (16)

If we set dY ∗ = (0, 1)T and by denoting the perturbation vector dk = (δy0, δn, δzb, δq
in)T ,

we obtain:

〈(
0
1

)
,

(
dy∗

dJ∗

)〉

Y′×Y
=

〈



δy∗
0

δn∗

δz∗b
δqin∗

δz∗out




,




δy0

δn
δzb

δqin

δzout




〉

K′×K

Moreover, we have by definition:

dJ = ∂J
∂y0

(k) · δy0 + ∂J
∂n (k) · δn + ∂J

∂zb
(k) · δzb + ∂J

∂qin
(k) · δqin + ∂J

∂zout
(k) · δzout

Therefore, the adjoint variable dk∗ (output of the adjoint code with dY ∗ = (0, 1)T ) corre-
sponds to the partial derivatives of the cost function J :

∂J
∂y0

(k) = y∗
0

∂J
∂n (k) = n∗

∂J
∂zb

(k) = z∗b
∂J

∂qin
(k) = q∗in

∂J
∂zout

(k) = z∗out
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In summary, in order to compute the ”computational gradient” (partial derivatives of
the cost function J using differentiation of the forward code), first, one runs the direct code
then one runs the adjoint code with dY ∗ = (0, 1)T as input.

Automatic differentiation Tapenade [?] is an automatic differentiation tool for Fortran
programs. It is devopped by the Tropics team [?] at INRIA Sophia-Antipolis. Tapenade

works using source code transformation : it builds the tangent and/or adjoint code auto-
matically from the direct code written in Fortran. One refers also to [?] to get a detailed
description of how automatic differentiation works.

4.2.2 Adjoint code validation

We describe below how we check the validity of the adjoint code. Classicaly, we check that it
is actually the adjoint of the tangent linear code (scalar product test) and that it computes
correctly the partial derivative of the cost function (gradient test).

Scalar product test

The objective of this test is to check if the adjoint code is actually the adjoint of the
tangent linear code. In other words, we check the relation (15) :

• Given an arbitrary dk ∈ K, we compute using the tangent linear code :
dY =

(
∂M
∂k

)
· dk

• Given an arbitrary dY ∗ ∈ Y, we compute using the adjoint code :
dk∗ =

(
∂M
∂k

)∗· dY ∗

• Then, we compute the following scalar products :

. sp1 =
〈
dY ∗, dY

〉
Y

. sp2 =
〈
dk∗, dk

〉
K

• And we check if sp1 = sp2 or not.

Figure 4.10 (b) shows an example of the scalar product test.

Gradient test

The objective of this test is to check if the adjoint variables dX∗ computed by the adjoint
code correspond to the partial derivatives of the cost function.
The Taylor expansion of the cost function j at k for a small perturbation α δk (where
α ∈ R

+) writes :

j(k + α δk) = j(k) + α ∂j
∂k

(k) · δk + o
(
α‖δk‖

)
. (17)
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We set:

Iα =
j(k + α δk) − j(k)

α ∂j
∂k

(k) · δk
. (18)

According to (17), one must have: lim
α→0

Iα = 1.

The gradient test consists to check this property:

• For an arbitrairy k, we compute ∂j
∂k

(k) with the adjoint code.

• With the direct code, we compute j(k).

• For n = 0, . . . , N :

• We compute α = 2−n ;

• With the direct code, we compute j(k + α δk) ;

• We compute Iα ;

• We check if lim
α→0

Iα = 1 or not.

Figure 4.10 (a) shows a result of the gradient test. |Iα−1| is plotted against α in logarith-
mic scale. The convergence is good until α > 10−7. When α is smaller, the approximation
of the partial derivatives is not reliable anymore due to truncation errors, see e.g. [?].

5 Benchmarks of the forward code

5.1 Explicit solutions

Academical tests cases with the exact solution known are performed in order to check the
finite volume solver (forward code).

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

10−8 10−6 10−4 10−2 100

|I
α−

1
|

α

####################################

## TEST DU PRODUIT SCALAIRE ##

####################################

Appel du code linaire tangent...

Appel du code adjoint...

<Xd,Xb> = -682.277083033688

<Yd,Yb> = -682.277082428555

relative error : -8.869324203484993E-010

(a) Gradient test (b) Scalar product test

Figure 4.10: Adjoint code validation

RR n° 0123456789



22 Honnorat & Marin & Monnier & Lai

5.1.1 Water at rest

The first test is the water at rest with a variable topography. We check if the finite volume
solver is ”well balanced” or not, see e.g. [?]. That means that it must preserves at least
water at rest solutions.

5.1.2 Steady solution and Manning-Strickler formula

This test case aims to check the well known Manning-Strickler formula that links water
height, discharge and manning coefficient in the case of a steady and uniform state.

Figure 5.11: Steady state solution for the Manning test case

In the present case (a rectangular and very large channel), the water height h can be
computed by:

h = q3/5 n3/5 L−3/5 i−3/10 (19)

where q is the water discharge, n the Manning coefficient, L the canal length and i = sin(α).

This test case consists to compare the steady state solution obtained by DassFlow, to the
expression (19).

This test case allows to validate or not the balance between the topography term and the
friction term.

5.1.3 Dambreak

This test case simulates a dam-break with a flat bottom and without friction. The domain
dimension is 50m× 10m, the topography is constant. There is a discontinuity at x = 25m.
The initial condition is the following :

h(x, y) =

{
1 if x ≤ 25

0.1 if x > 25
see fig. 5.12.
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and

u(x, y) =

{
2.5 if x ≤ 25

0 if x > 25

x

z

Figure 5.12: Initial condition on h for the dambreak test case

The simulation time is 3s and the time step is 0.01. We perform this test case with a
regular structured mesh (with nx = 200 and ny = 20) and with an unstructured triangular
mesh (based on the same mesh for boundaries). Results are shown in figure 5.13.

5.2 Real data test case: Moselle river

In this section, we present a forward run on real data and compare the results with available
measures.
The study concerns the flood event from Feb.25 1997, 12h00 to Mars.2 1997, 12h00 of Moselle
river. The mesh has 2340 cells and 2430 nodes, and it is a mix of triangles and quadrangles,
see fig. 5.15. It includes the topography defined at the center of cells and was generated
using the ArcGIS software. Time step is dt = 2s.
This flood event test case is studied in [?] and data come from [?].

Boundary conditions are imposed using real measures obtained during the flood event.
The hydrographs showing the inflow discharge prescribed at inflow boundary and the water
elevation prescribed at outflow boundary are shown in figure 5.14.

In order to validate the numerical solution, we compare it to measures available at the
EDF gauge station located approximatively in the middle of the main channel, see fig. 5.16.
concerning data assimilation experiments conducted on this configuration we refer to [?].
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Figure 5.13: Dam break test case (all y values are superposed). a) and b) on a regular
structured mesh, c) and d) on an unstructured triangular mesh. a) and c) represent h, b)
and d) represent u.

6 Benchmarks for the full code (data assimilation)

In this section, we present some twin experiments results. A ”twin experiment” means that
a first run of the direct model provides observations. Then control variables are changed
(we set them as a ”first guess”) and we run DassFlow in the data assimilation mode in order
to try to retreive the control variable values that generated the observations.
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a) b)

Figure 5.14: Moselle river. a) Inflow discharge imposed. b) Elevation prescribed at outflow
boundary.

Figure 5.15: Moselle river. Mesh and water depth computed on Feb.26 1997 14h00
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Figure 5.16: Moselle river. Comparison of the measured and computed hydrographs at EDF
gauge station

6.1 Identification of a local topography

Our first twin experiment concerns the identification of the topography in a small scale and
academic case. The domain is 30 m long and 4 m large, and the topography is defined by :

zb(x, y) = 0.9 exp
(
− 1

4 (x − 10)2
)
exp

(
−(y − 1)2

)

+ 0.7 exp
(
− 1

8 (x − 20)2
)
exp

(
−2(y − 3)2

) (20)

The inflow boundary is at x = 0, the outflow boundary at x = 30. Boundaries y = 0 and
y = 4 are walls. We use a rectangular structured mesh of dimension 90 × 20.
Bed roughness, defined by its Manning coefficient, is uniform (n = 0.025). We impose a
constant discharge qin = 8 m3/s at x = 0 and a constant water height hout = 1.4 m at
x = 30. We obtain a steady state solution after about 80 s of simulation. Figure 6.17 shows
the water height of this steady state solution and the topography.

From this steady state solution, we extract the forthcoming observations: hobs and uobs

every 0.02 s during 20 s on each volume. The objective of this test case is to retreive the
topography. The first guess used is a flat bottom.
We use the datassim mode, see [?], with the following cost function :

j1(zb) =
1

2

∫ T

0

(∥∥h(t) − hobs(t)
∥∥2

Ω
+
∥∥q(t) − qobs(t)

∥∥2

Ω

)
dt , (21)

Figure 6.18 shows the cost function and the norm of its gradient normalized by its initial
values, vs iterates (a) and the identified topography (b). We can notice that convergence is
obtained and the reference topography is well retreived.
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Figure 6.17: Identification of the topography. Topography and steady state elevation.
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Figure 6.18: Value of the cost function and of the norm of its gradient, normalized by their
initial values (a) and the identified topography (b)

Further similar assimilation experiments but using lagrangian floaters are conducted in
[?].
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6.2 Identification of inflow discharge

We consider a toy test case which includes many features of real cases (eg. Moselle river).
The computational domain contains a main channel (river) and floodplains, see figures 6.19
and 6.20).

Again, the present test case is a twin experiment. At the inflow boundary, we set the
inflow discharge shown if figure 6.21 (a) simulating a flood event.

Then we perform a forward run to generate observations at points 1 and 2 shown with
black stars in figure 6.20(a).
Then, we suppose that the inflow discharge is constant (4.95 m3s−1), and we try to retreive
its real value by assimilating observations.

We present in Figure 6.21 the identified inflow discharge for different experiments. In
Fig. 6.21(a), observations are h and q at each cell and each time step. In Fig. 6.21(b),
observations are h at point 1 and (h, q) at point 2, both at each time step. In Fig. 6.21(c),
observations are h at point 1 only, but at each time step.

We can notice that the identified inflow discharge is good even with the observation of
h at point 1 only. Also, we can notice that the end of the flood event is not well identified.
This is the ”blind period” phenomena: for example in case (c), the inflow discharge after
270 s can not be identified because the information from the inflow boundary did not reach
yet the gauge station.

(a) (b)

Figure 6.19: Toy test case mesh (a) and bathymetry (b)
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(a) (b)

Figure 6.20: Toy test case domain with mesurment points (a) and observation data available
at point 1 (b)

6.3 Identification of Manning coefficients

We consider the same toy test case presented above but we seek to identify manning coef-
ficients in given land-use. Manning coefficients are defined using five different land uses as
follows, see figure 6.22:

• In the main channel : n = 0.025 (gravelly main channel)

• Right to the main channel : n = 0.066 (flood plain with bushes)

• Left to the main channel : n = 0.04 (flood plain with little vegetation)

• Near gauging station number 1 : n = 0.03 (pasture, farmland)

• Near outflow boundary condition : n = 0.10 (urban)

Again, this test case is a twin experiment: a forward run generates the observations. For
the present test case, the observations are water height at any time at gauge station 1, see
figure 6.20(a).
As first guess we consider a constant Manning (n = 0.010). The data assimilation process
allows to recover perfectly the values used to generate the observations:

Area Manning value
Main channel 0.025000487

Flood plain (right) 0.065991635
Flood plain (left) 0.039996868

Near gauging station 1 0.029999658
Near outflow 0.10001384
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(a) Observations everywhere (b) 2 observation points

(c) 1 observation point

Figure 6.21: In green : reference inflow discharge. In red : identified inflow discharge. (a):
Observation of (h,q) everywhere; (b): Observation of h at point 1 and (h,q) at point 2. (c):
Observation of h at point 1 only.

Extra numerical experiments with real data (Moselle river, see [?]), show the efficiency
of the present approach.

INRIA



DassFlow v1.0: a variational data assimilation software for 2D river flows 31

Figure 6.22: Manning coefficients
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A Characteristics boundary conditions

In this section, we explain how we define the open boundary conditions based on the theory
of characteristics. We refer to [?] and [?].
Let us consider (1) near the boundary, in the non-conservative form and linearized around
a mean value (h0, u0, v0), with a flat bottom and without friction :






∂u
∂t + u0

∂u
∂x + v0

∂u
∂y g ∂h

∂x = 0
∂v
∂t + u0

∂v
∂x + v0

∂v
∂y + g ∂h

∂y = 0
∂h
∂t + u0

∂h
∂x + v0

∂h
∂y + h0

(
∂u
∂x + ∂v

∂y

)
= 0

(22)

In a matrix form, this gives:

Ut + A1 Ux + A2 Uy = 0 (23)

with U = [h, u, v]T , A1 =




u0 0 g
0 u0 0
h0 0 u0


, and A2 =




v0 0 0
0 v0 g
0 h0 v0




Let n = [n1, n2]
T and τ be respectively the normal and the tangent vector to the boundary

(see Fig A.23). The matrix A = n1 A1 + n2 A2 has 3 eigenvectors: w1 = u · n +
√

g
h0

h,

w2 = u · τ and w3 = u · n−
√

g
h0

h. They are associated to the eigenvalues λ1 = u0 · n + c,

λ2 = u0 · τ and λ3 = u0 · n − c (c =
√

gh0) respectively. These eigenvectors w1, w2 and w3

are the so-called characteristic variables.

We rewrite (23), using w1, w2 and w3:






∂w3

∂t + λ3
∂w3

∂xn

+ u0 · τ ∂w3

∂xτ
− c ∂v

∂xτ
= 0

∂w2

∂t + λ2
∂w2

∂xn

+ u0 · τ ∂w2

∂xτ
+ c

2
∂(w1−w3)

∂xτ
= 0

∂w1

∂t + λ1
∂w1

∂xn

+ u0 · τ ∂w1

∂xτ
− c ∂v

∂xτ
= 0

(24)

If we neglect the variations along xτ , (24) becomes a system of transport equations of wk

at speed λk in the normal direction n. Given an open boundary, wk is incoming if λk < 0
and outgoing otherwise.

Then, the characteristics boundary conditions are implemented as follows:

• For each point of the boundary, we compute the eigenvalues λ1, λ2 and λ3.

• For each λk,

– if λk < 0, then wk is incoming and must be specified from external data.

– if λk ≥ 0, then wk is outgoing and must be computed from internal data.
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• Then the state variables can be recovered from characteristics values by:

– u · nbnd = w1+w3

2

– u · τbnd = w2

– hbnd =
√

h0

g
w1−w3

2

The remaining question is to compute the outgoing characteristics using internal data.
Since the finite volume solver is explicit, at current time step n, we need values of the state
variable in ghosts cells at time step n − 1, see section 4.1.4. This is done using a simple
linear extrapolation in the normal direction of the normal, see figure A.23.

��

��

�
�
�
�

boundary

extrapolation points (u, h) (hence wk) in the ghost
cell computed by extrapolation

n

τ

Figure A.23: Computation of characteristic variables in a ghost cell using a linear extrapo-
lation of the values in cells (black points).

B Riemann invariants and boundary conditions

This section details why the relation
∂

∂n
(u ·n + 2c) = 0 is imposed if either water elevation

or a rating curve is prescribed. We refer to ([?], section 1.3).

Let us consider the 1D shallow water equations with flat topography and without source
term:

Ut + B Ux = 0 (25)
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with U = [h, U ]T , B =

(
U A/b
g U

)
, and b(x) is the canal width.

The matrix B has 2 eigenvalues λ1 = U +
√

g A
b and λ2 = U −

√
g A
b . The corresponding

left eigenvectors are Λ1 =

[
g,
√

g A
b

]T

and Λ2 =

[
g, −

√
g A
b

]T

. Then (25) gives by linear

combination:

g

(
∂h

∂t
+ λ1

∂h

∂x

)
+

√
g A

b

(
∂U

∂t
+ λ1

∂U

∂x

)

or

dU

dt
+

g√
gA
b

dh

dt
= 0

where d
dt = ∂

∂t + λ1
∂
∂x represents the Lagrangian derivative in the direction of the curve

of slope λ1.

The idea is to transform this equation in the form :

d

dt
(U + ω) = 0 (26)

where ω is a quantity to be determined. Since
√

gA
b is not constant, we have to solve :

dω =

√
gb

A
dh (27)

In case of a rectangular channel, we obtain: w = 2
√

gh.
This means that (U + 2

√
gh) and (U − 2

√
gh) are conserved along characteristic curves of

direction λ1 and λ2 respectively.

For an outflow boundary (u · n > 0), λ1 > 0 and (U + 2
√

gh) must be computed from
the interior of the domain. Since the present finite volume solver is explicit in time, we need
values of the state variable on the boundary at time n− 1 when computing those of time n.
Then, we use a simple extrapolation in the direction of the normal to compute the quantity
(U + 2

√
gh) on the boundary.

Using a 0-order extrapolation, we find the well-known condition :

∂(U + 2
√

gh)

∂n
= 0

Link with the characteristics boundary conditions
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One can notice that the transported quantities obtained are different from those of ap-
pendix A. This can be explained by the use of linearized equations in appendix A.

Let us linearize (26) around (h0, U0) :

{
h(x, t) = h0 + h′(x, t)

U(x, t) = U0 + U ′(x, t)

We get: ω = 2
√

gh0 +
√

g
h0

h′ + o(h′). By setting in (26), we get:

d

dt
(u0 + 2

√
gh0) +

d

dt

(
u′ +

√
g

h0
h′
)

+
d

dt
(o(h′))

Assuming h′ and U ′ are small, we find the expression of section A :

d

dt

(
u′ +

√
g

h0
h′
)

= 0
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