
HAL Id: inria-00593306
https://hal.inria.fr/inria-00593306

Submitted on 13 May 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Accelerating linear system solutions using randomization
techniques

Marc Baboulin, Jack Dongarra, Julien Herrmann, Stanimire Tomov

To cite this version:
Marc Baboulin, Jack Dongarra, Julien Herrmann, Stanimire Tomov. Accelerating linear system solu-
tions using randomization techniques. [Research Report] RR-7616, INRIA. 2011. �inria-00593306�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49711035?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00593306
https://hal.archives-ouvertes.fr

appor t
de r ech er ch e

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
76

16
--

FR
+E

N
G

Domaine Informatique/Analyse numérique

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Accelerating linear system solutions using
randomization techniques

Marc Baboulin — Jack Dongarra — Julien Herrmann — Stanimire Tomov

N° 7616

Mai 2011

Centre de recherche INRIA Saclay – Île-de-France
Parc Orsay Université

4, rue Jacques Monod, 91893 ORSAY Cedex
Téléphone : +33 1 72 92 59 00

Accelerating linear system solutions using

randomization techniques

Marc Baboulin∗ , Jack Dongarra† , Julien Herrmann‡ , Stanimire

Tomov§

Domaine :
Équipe-Projet Grand-Large

Rapport de recherche n° 7616 � Mai 2011 � 16 pages

Abstract: We show in this paper how linear algebra calculations can be
enhanced by statistical techniques in the case of a square linear system Ax = b.
We study a random transformation of A that enables us to avoid pivoting and
then to reduce the amount of communication. Numerical experiments show that
this randomization can be performed at a very a�ordable computational price
while providing us with a satisfying accuracy when compared to partial pivoting.
This random transformation called Partial Random Butter�y Transformation
(PRBT) is optimized in terms of data storage and �ops count. We propose a
solver where PRBT and the LU factorization with no pivoting take advantage
of the latest generation of hybrid multicore/GPU machines and we compare its
G�op/s performance with a solver implemented in a current parallel library.

Key-words: dense linear algebra, linear systems, LU factorization, random-
ization, multiplicative preconditioning, Graphics Processing Units.

Also appeared as LAPACK Working Note 246

∗ Université Paris-Sud and INRIA, France (marc.baboulin@inria.fr).
† University of Tennessee and Oak Ridge National Laboratory, USA, and University of

Manchester, United Kingdom (dongarra@eecs.utk.edu).
‡ INRIA and Ecole Normale Supérieure Lyon, France (julien.herrmann@ens-lyon.fr).
§ University of Tennessee, USA (tomov@eecs.utk.edu).

Accélérer la résolution des systèmes linéaires

grâce à des transformations aléatoires

Résumé : Nous montrons dans ce papier comment les calculs d'algèbre linéaire
peuvent être accélérés en utilisant des techniques statistiques dans le cas d'un
système linéaire carré Ax = b. Nous étudions une transformation aléatoire de
A qui nous permet d'éviter de pivoter et ainsi de réduire le volume de com-
munications. Des expérimentations numériques montrent que cette transforma-
tion aléatoire peut être e�ectuée à un coût calculatoire très abordable tout en
donnant une précision satisfaisante lorsqu'on la compare avec le pivotage par-
tiel. Cette transformation aléatoire appelée Partial Random Butter�y Trans-
formation (PRBT) est optimisée en terme de stockage mémoire et de nombre
d'opérations arithmétiques. Nous proposons un solveur où le PRBT et la fac-
torisation LU sans pivoter tirent parti de la dernière génération de machines
hybrides multi-c÷urs/GPU et nous comparons les performances en G�op/s de
ce solveur avec une bibliothèque parallèle actuelle.

Mots-clés : algèbre linéaire dense, systèmes linéaires, factorisation LU, trans-
formation aléatoire, préconditionnement multiplicatif, processeurs graphiques.

3

1 Introduction

Pivoting is a classical method to ensure stability in linear system solutions. It
aims at preventing divisions by zero or too-small quantities in the process of
Gaussian Elimination (GE). The complete pivoting procedure permutes rows
and columns of the input matrix so that large nonzero matrix elements are
moved to the diagonal to be used as �pivot�. There is no �oating-point operation
in pivoting but it involves irregular movements (O(n3) comparisons for the
complete pivoting, where n is the matrix size). To reduce this overhead, the
usual technique is Gaussian Elimination with Partial Pivoting (GEPP) where
at each stage of the elimination, the pivot is searched within a column and only
rows are permuted, reducing the number of comparisons to O(n2). Note that
there also exists an intermediate pivoting strategy called �rook pivoting� where
the search for a pivot requires a number of comparisons comprised between
O(n2) and O(n3) ([11, p. 159]). The stability of GE is strongly related to the
growth factor [11, p. 165] that measures how large the entries of the matrix
become in the process of elimination. As in many numerical linear algebra
algorithms, the choice of a pivoting strategy is the result of a trade-o� between
stability concerns and G�op/s performance. In respect with that, a good GE
algorithm should minimize the growth factor (to provide backward stability) and
the amount of pivoting (to avoid penalizing performance). The upper bounds
on the growth factor for GEPP might be much larger than for complete and
rook pivoting (see [11, p. 169]) and it can be unstable for some very speci�c
examples [23]. However GEPP turns out to be very stable in practice and has
been implemented in standard linear algebra libraries (e.g. LAPACK [1]).

With the advent of architectures such as multicore processors or Graphics
Processing Units (GPU), the growing gap between communication and compu-
tation e�ciency made the communication overhead due to pivoting more crit-
ical. Moreover, in the LAPACK implementation of GEPP, rows are swapped
at once during pivoting, which inhibits the exploitation of more asynchronicity
between block operations. Several pivoting techniques, potentially less stable
than partial or complete pivoting, can be used to minimize the communica-
tion like pairwise pivoting [20] or threshold pivoting [7] (see [21] for a stability
analysis of these pivoting techniques). In particular pairwise pivoting has been
implemented in algorithms for multicore machines [4] but this generates a signif-
icant overhead since the rows are swapped in pairs of blocks. We also mention,
for multithreaded architectures, a pivoting technique called incremental pivot-
ing in [17] based on principles used for out-of-core solvers. Another pivoting
technique has been proposed in [10] that minimizes the number of messages
exchanged during the factorization, leading to a new class of algorithms often
referred to as �communication-optimal� algorithms. More speci�cally for GPUs,
the pivoting overhead was reduced by using an innovative data structure [22].

To illustrate the cost of pivoting, we plot in Figure 1 the percentage of time
due to pivoting in LU factorization (MAGMA1 implementation) for several sizes
of random matrices on a current hybrid CPU/GPU machine. We observe that
pivoting can represent more than 40% of the global factorization time for small
matrices and although the overhead decreases with the size of the matrix, it still
represents 17% for a matrix of size 10, 000.

1Matrix Algebra on GPU and Multicore Architectures, http://icl.cs.utk.edu/magma/

4

Figure 1: Cost of pivoting in LU factorization (CPU 1 × Quad-Core Intel Core2
Processor Q9300 @ 2.50 GHz GPU C2050 � 14 Multiprocessors (× 32 CUDA
cores) @ 1.15 GHz).

The fact that pivoting remains a bottleneck for linear system solutions is a
motivation to present in this paper an alternative to pivoting thanks to ran-
domization.

Statistical techniques have been widely used in linear algebra for instance for
solving linear systems using Monte Carlo methods [5] or computing condition
estimates [2, 13]. Statistical properties of Gaussian elimination have also been
studied for the non pivoting case [25] and for the partial and complete pivoting
case [21]. In this paper, we describe an approach based on randomization where
the original matrix A is transformed into a matrix that would be su�ciently
�random" so that, with a probability close to 1, pivoting is not needed. This
technique has been initially proposed in [15, 16] where the randomization is
referred to as Random Butter�y Transformation (RBT). It consists of a multi-
plicative preconditioning UTAV where the matrices U and V are chosen among
a particular class of random matrices called recursive butter�y matrices. Then
Gaussian Elimination with No Pivoting (GENP) is performed on the matrix
UTAV and, to solve Ax = b, we instead solve (UTAV)y = UT b followed by
x = V y. Note that, if we know in advance that we are not going to pivot,
GENP can be implemented as a very e�cient fully BLAS 3 [6] algorithm. We
study here the random transformation with recursive butter�y matrices and
minimize the number of recursion steps which are required to get a satisfying
accuracy. The resulting transformation will be called Partial Random Butter�y
Transformation (PRBT). We propose a packed storage for the recursive butter-
�y matrices and we show that the multiplication by UT and V can be e�ciently
computed by taking advantage of the particular structure of the recursive but-
ter�ies.

We also show that in practice, at most two levels of recursion are required
for recursive butter�ies to obtain an accuracy close to that of GEPP. Thus in
most cases we can avoid the computation of a full RBT (that would require

5

about n2log(n) �ops) and the cost for the preconditioning reduces to ∼ 8n2

operations, which is negligible when compared to the cost of pivoting.
For the sake of stability we add some iterative re�nement steps in the working

precision where the stopping criterion is the component-wise relative backward
error. For matrices that we use in our experiments, we never need more than
one iteration. An important observation is that the 2-norm condition number
of the initial matrix A is kept almost unchanged in the PRBT randomization.

Finally we present performance results for a PRBT solver on a state-of-the-
art hybrid multicore/GPU machine and we compare the G�op/s performance
of this solver with a solver from the parallel library MAGMA.

2 Randomization

2.1 De�nitions

We de�ne here two types of matrices that will be used in the random transfor-
mation. We follow the de�nitions given in [15] in the particular case on real
arithmetic entries.

De�nition 1 A butter�y matrix is de�ned as any n-by-n matrix of the form:

B =
1√
2

(
R0 R1

R0 −R1

)

where n ≥ 2 and R0 and R1 are random diagonal and nonsingular n/2-by-n/2
matrices.

Note that a butter�y matrix B can also be expressed as

B =
1√
2

(
In/2 In/2
In/2 −In/2

)(
R0 0
0 R1

)
,

where In/2 denotes the identity matrix of size n/2 i.e. B is a product of an or-
thogonal matrix and a random diagonal matrix. Then the possible orthogonality
properties of B depend on how the random diagonal is obtained.

De�nition 2 A recursive butter�y matrix of size n and depth d is a product of
the form

W<n,d> =

B
<n/2d−1>
1 · · · 0

...
. . .

...

0 · · · B
<n/2d−1>

2d−1

× ...×

B
<n/4>
1 0 0 0

0 B
<n/4>
2 0 0

0 0 B
<n/4>
3 0

0 0 0 B
<n/4>
4

×

(
B
<n/2>
1 0

0 B
<n/2>
2

)
×B<n>,

where the B
<n/2k−1>
i are butter�y matrices of size n/2k−1, k = 1, . . . , d.

6

Note that this de�nition requires that n is a multiple of 2d−1 which can
be always obtained by �augmenting� the matrix A with additional 1's on the
diagonal. Note also that it di�ers from the de�nition of a recursive butter�y
given in [15] which corresponds to the special case where d = log2n+1, i.e. the
�rst term of the product expressing W<n,d> is a diagonal matrix of size n.

For instance, if n = 4 and d = 2, then the recursive butter�y W<4,2> would
be de�ned by

W<4,2> =

(
B<2>

1 0
0 B<2>

2

)
×B<4>

=
1

2

r<2>
1 r<2>

2 0 0
r<2>
1 −r<2>

2 0 0
0 0 r<2>

3 r<2>
4

0 0 r<2>
3 −r<2>

4

r<4>
1 0 r<4>

3 0
0 r<4>

2 0 r<4>
4

r<4>
1 0 −r<4>

3 0
0 r<4>

2 0 −r<4>
4

=
1

2

r<2>
1 r<4>

1 r<2>
2 r<4>

2 r<2>
1 r<4>

3 r<2>
2 r<4>

4

r<2>
1 r<4>

1 −r<2>
2 r<4>

2 r<2>
1 r<4>

3 −r<2>
2 r<4>

4

r<2>
3 r<4>

1 r<2>
4 r<4>

2 −r<2>
3 r<4>

3 −r<2>
4 r<4>

4

r<2>
3 r<4>

1 −r<2>
4 r<4>

2 −r<2>
3 r<4>

3 r<2>
4 r<4>

4

 ,

where the r<j>i are real random entries.
Our motivation here is to minimize the computational cost of the RBT

de�ned in [15] by considering a number of recursions d such that d� n resulting
in the transformation de�ned below.

De�nition 3 A partial random butter�y transformation (PRBT) of depth d of
a square matrix A is the product:

Ar = UTAV

where U and V are recursive butter�ies of depth d.

Then, the process to solve the general linear system Ax = b is the following:

1. Compute the randomized matrix Ar = UTAV , with U and V recursive
butter�ies

2. Factorize Ar with GENP

3. Solve Ary = UT b

4. Solution is x = V y

We recall that the GENP algorithm which is performed on Ar is unstable,
due to a possibly large growth factor. We can �nd in [15] explanations about how
RBTmight modify the growth factor of the original matrixA. To ameliorate this
potential instability, we systematically add in our method iterative re�nement
in the working precision as indicated in [11, p. 232].

2.2 Packed storage for recursive butter�y matrices

We describe here how a butter�y matrix and a recursive butter�y matrix can
be stored compactly using respectively a vector and a matrix.

7

Following Section 2.1, a butter�y matrix has the form

B<n> =
1√
2

(
R0 R1

R0 −R1

)
where R0 and R1 are diagonal random matrices. Then B<n> can be stored
compactly in a vector w of size n, where the n/2 �rst values are the coe�cients
of R0 and the n/2 last ones are the coe�cients of R1.

Let us now consider a recursive butter�y of depth d expressed using butter�y
matrices as the product

W<n,d> =

B
<n/2d−1>
1 · · · 0

...
. . .

...

0 · · · B
<n/2d−1>

2d−1

× ...×
(
B
<n/2>
1 0

0 B
<n/2>
2

)
×B<n>.

We observe that each term of the product can be stored in a vector of size n.
Thus W<n,d> can be stored compactly in a matrix Wp of size n× d where the

k-th column represents the matrice

B
<n/2k−1>
1 · · · 0

...
. . .

...

0 · · · B
<n/2k−1>

2k−1

 , which

means that each vector Wp((i − 1) ∗ n
2k−1 + 1 : i ∗ n

2k−1 , k) stores the butter�y

matrix B<n/2
k−1>

i . As a result, W<n,d> can be obtained at once by choosing
randomly the corresponding n-by-d matrix Wp.

2.3 Computational cost of the randomized matrix

In the computation of UTAV , where U and V are recursive butter�ies, the
elementary operation is a multiplication of a dense matrix A to the left and to
the right by a butter�y matrix.

Let B =

(
R0 R1

R0 −R1

)
and B′ =

(
R′0 R′1
R′0 −R′1

)
be two butter�y matrices

stored in vectors w and w′ using the packed storage de�ned in Section 2.2. We
observe that a multiplication on both sides of A by B and B′ can be expressed as

BTAB′ =
1

2

(
R0 R0

R1 −R1

)
A

(
R′0 R′1
R′0 −R′1

)

=
1

2

(
R0 R0

R1 −R1

)(
A11 A12

A21 A22

)(
R′0 R′1
R′0 −R′1

)

=
1

2

(
R0 0
0 R1

)
C

(
R′0 0
0 R′1

)
=

1

2
diag(w) C diag(w′),

where C =

(
A11 +A12 +A21 +A22 A11 −A12 +A21 −A22

A11 +A12 −A21 −A22 A11 −A12 −A21 +A22

)
.

Then (BTAB′)i,j = wiCi,jw
′
j and the computation of B

TAB′ requires 4n2 �ops.

8

This kernel corresponds to a PRBT of depth 1 and will be applied for computing
the successive products of the form BTAB′ involved in the PRBT. For instance,
for d = 2 we have

W<n,2> = BT
(
BT1 0
0 BT2

)
A

(
B′1 0
0 B′2

)
B′

= BT
(
BT1 A11B

′
1 BT1 A12B

′
2

BT2 A21B
′
1 BT2 A22B

′
2

)
B′,

which involves four elementary products of the form BTAB′ with butter�ies of
size n/2 and one with butter�ies of size n. This requires 8n2 �ops.

More generally, let A be a square matrix of size n and M(n) the compu-
tational cost of a multiplication BTAB′ with B and B′ butter�ies of size n,
then the number of operations involved in the computation of Ar by a PRBT
of depth d is

C(n, d) =

d∑
k=1

((2k−1)2×M(n/2k−1)) =

d∑
k=1

((2k−1)2×4(n/2k−1)2) =
d∑
k=1

(4n2) = 4dn2.

Note that the maximum cost obtained in the case of an RBT as described
in [15] is

C(n, log2n+ 1) ' 4n2log2n,

and then this cost is signi�cantly reduced by considering numbers of recursions
d such that d� n.

Similarly to the product of a recursive butter�y by a matrix, the product of
a recursive butter�y by a vector does not require the explicit formation of the
recursive butter�y since the computational kernel will be a product of a butter�y
by a vector, which involves O(n) operations. As a result, the computation of
UT b and V y (steps (3) and (4) of the solution process given after De�nition 3)
can be performed in O(dn) �ops and will be neglected in the remainder of this
paper, for small values of d.

2.4 Condition number of the randomized matrix

A major concern in the multiplicative preconditioning involved in PRBT is
to keep the condition number as �unchanged� as possible. Let us denote by
cond2(A) the 2-norm condition number of a square matrix A and de�ned by
cond2(A) = ‖A‖2

∥∥A−1∥∥
2
. Then, with the notations of Section 2.1, we have

cond2(Ar) ≤ cond2(U) cond2(A) cond2(V) .

Ideally, a recursive butter�y matrix will have a condition number close to 1 so
that the condition number of Ar will be close to that of A. In general random
matrices tend to be well conditioned (see [8]) but let us study here the particular
case of the recursive butter�y matrices.

9

For an elementary butter�y matrix B of size n, we have

BTB =
1√
2

(
R0 R0

R1 −R1

)
.
1√
2

(
R0 R1

R0 −R1

)
=

(
R2

0 0
0 R2

1

)
= diag(r1, . . . , rn)

2,

where the ri are random entries and then we obtain (using e.g. [18, p. 231])

cond2(B) =
√
cond2(BTB) =

max |ri|
min |ri|

. (1)

It comes from Equation (1) that the random variables ri should not be too
small to avoid having a large condition number for B.

More generally, a recursive butter�y of depth d is a product of block-diagonal
matrices having the form B = diag(B1, . . . , Bp) where 1 ≤ p ≤ 2d−1 and the Bi
are butter�y matrices of size n/p. Therefore we have

BTB =

 BT1 B1 · · · 0
...

. . .
...

0 · · · BTp Bp

 ,

and cond2(B) can also be expressed as max |ri|
min |ri| where the ri are random numbers

that obviously take values di�erent from those in Equation (1).
If the ri are such that |ri| ∈ [α, β] (α > 0), then we have cond2(B) ≤ β

α and
thus, for U being a recursive butter�y of depth d, we get

cond2(U) ≤
(
β

α

)d
. (2)

This result will motivate the type of random values used in forming the
recursive butter�ies. In particular, since the bound on the condition number
grows with the number of recursions, β

α should be close to 1. In [15], the
random diagonal values used in the butter�ies are generated as exp(r10), where
r is randomly chosen in [− 1

2 ,
1
2], and this choice is justi�ed by the fact that

the determinant of a butter�y has an expected value 1. It satis�es also our
requirement because β

α = e0.1 ≈ 1.1052. Experiments will be performed in
Section 3.2 to con�rm the good behaviour of this randomization process in
terms of conditioning.

3 Numerical experiments

3.1 Accuracy of PRBT

In this section, we compare the accuracy of the linear system solution obtained
using GEPP (as it is implemented in LAPACK) and PRBT followed by GENP
(in the remainder, this solver will be simply denoted as PRBT). We also compare
with GENP and QR. We recall here that the Householder QR factorization is

10

always a good option for solving square linear systems because of its backward
stability property (see [11, p. 361]) and due to the fact that we do not have
to worry about large growth factors (however the computational cost is about
twice that of LU).

Experiments were carried out using Matlab version 7.12 (R2011a) on a ma-
chine with a precision of 2.22·10−16. In Table 1, we consider test matrices of size
1024 where the �rst 11 matrices come from the Matlab gallery and Higham's
Matrix Computation Toolbox [11], the 12-th matrix comes from [9], the test
cases number 13 to 16 come from [21] and the last 2 matrices are de�ned in [15].
Similarly to [15], the random diagonal matrices used to generate the butter-
�y matrices described in De�nition 1 have diagonal values exp(r10) where r is
chosen from the uniform distribution in [− 1

2 ,
1
2] (using the matlab instruction

rand). For all test matrices, we consider the exact solution x = [1 1 . . . 1] and
the right-hand side is set as b = Ax.

We report in Table 1 the 2-norm condition number of the original matrix
(Matlab function cond) and the component-wise backward error resulting from
the four solvers considered in this study. This error is de�ned in [14] and ex-
pressed by

ω = max
i

|Ax̂− b|i
(|A| · |x̂|+ |b|)i

,

where x̂ is the computed solution. We also report the number of recursion steps
(REC) used in the PRBT algorithm for the recursive butter�ies (parameter d
in De�nition 3). For better stability, we add systematically iterative re�nement
(in the working precision) when we use PRBT. Similarly to [3, 19], the iterative
re�nement algorithm is activated while ω > (n + 1)u, where u is the machine
precision. The number of iterations (IR) in the iterative re�nement process is
also listed in Table 1.

We observe that we never need more than two recursions, which involves for
PRBT an extra computational cost lower or equal to 8n2 operations. The two
matrices gfpp [12] and Foster [9] are well-known pathological matrices that
maximize the growth factor. For these matrices, PRBT destroys the original
structure and gives very accurate results (for these two matrices, one step of
iterative re�nement was also required for QR to get the best accuracy). GENP
fails for 4 matrices (fiedler, {−1, 1}, {0, 1}, |i−j|) and for each of them, PRBT
is as accurate as GEPP. For the matrices fielder, |i− j| and max(i, j), PRBT
gives results that are slightly better than QR.

For 3 matrices (chebspec, condex, randcorr), using PRBT is not useful
because GENP gives a good solution. However this shows that these matrices
are not degenerated by the randomization applied to them. On some matrices
(circul, augment, normaldata, [−1, 1], [0, 1]), the accuracy of GENP can be
improved just by adding iterative re�nement and PRBT is not useful. Itera-
tive re�nement turns out to be necessary in some cases when using PRBT but
with never more than one iteration. Note that when matrices are orthogonal
(orthog or proportional to an orthogonal matrix (Hadamard)), Gaussian elimi-
nation has not to be used. These 2 examples have been used only for purpose
of testing. In the case of integer-valued matrices (max(i, j), Hadamard), PRBT
destroys the integer structure and transform the matrix into a real-valued one.
Finally, in all test cases considered in these experiments, PRBT provides us
with a satisfying accuracy while requiring an extra computational cost of O(n2)

11

operations (coming from one or two recursions and possibly one step of iterative
re�nement).

Table 1: Comparison of linear system solution using PRBT with other solvers
on a collection of matrices.

Matrix Cond GENP GEPP QR PRBT REC IR

augment 4 · 104 1.28 · 10−14 2.28 · 10−15 2.99 · 10−16 2.81 · 10−16 1 1

gfpp 5 · 102 9.01 · 10−01 6.88 · 10−01 1.06 · 10−16 1.27 · 10−16 1 1

chebspec 2 · 1014 1.19 · 10−15 3.29 · 10−16 5.22 · 10−15 3.23 · 10−14 1 0

circul 1 · 103 1.74 · 10−13 1.66 · 10−15 2.66 · 10−15 2.66 · 10−15 1 0

condex 1 · 102 7.32 · 10−15 5.98 · 10−15 8.34 · 10−15 6.50 · 10−15 1 0

fiedler 7 · 105 Fail 2.11 · 10−15 1.54 · 10−14 7.90 · 10−15 1 0

Hadamard 1 · 100 0 · 100 0 · 100 7.58 · 10−16 8.33 · 10−15 1 0

normaldata 3 · 104 2.03 · 10−12 6.30 · 10−15 2.38 · 10−16 3.30 · 10−16 1 1

orthog 1 · 100 5.64 · 10−01 4.33 · 10−15 3.70 · 10−16 4.31 · 10−16 2 1

randcorr 3 · 103 5.12 · 10−16 4.04 · 10−16 5.73 · 10−16 5.92 · 10−16 1 0

toeppd 7 · 105 2.53 · 10−13 2.60 · 10−15 8.39 · 10−15 5.71 · 10−15 1 0

Foster 5 · 102 1 · 100 1 · 100 1.90 · 10−16 3.30 · 10−16 2 1

[−1, 1] 2 · 103 2.19 · 10−11 5.19 · 10−15 2.33 · 10−16 2.35 · 10−16 1 1

[0, 1] 4 · 104 1.97 · 10−12 2.85 · 10−15 2.15 · 10−15 1.79 · 10−15 1 1

{−1, 1} 4 · 103 Fail 3.96 · 10−15 2.38 · 10−16 2.70 · 10−16 2 1

{0, 1} 5 · 104 Fail 4.39 · 10−15 2.19 · 10−15 1.09 · 10−15 2 1

|i− j| 7 · 105 Fail 3.33 · 10−16 1.54 · 10−14 6.05 · 10−15 1 0

max(i, j) 3 · 106 2.16 · 10−14 1.21 · 10−15 1.46 · 10−14 2.27 · 10−15 1 1

3.2 Tests on condition numbers

In the previous experiments we also computed, for all test matrices, the con-
dition number of the randomized matrix. As expected from the comments in
Section 2.4, cond2(Ar) is of same order of magnitude as cond2(A) and therefore
is not listed in Table 1.

Let us now study in more details the condition number of the recursive but-
ter�ies resulting from the random distribution chosen in our experiments. We
represent in Figure 2 the 2-norm condition number (computed using the Matlab
function cond) of the recursive butter�ies used in the experiments described in
Section 3.1. We plot, for each recursion depth, the average condition number
obtained for a sample of 500 recursive butter�ies of size 1024 and the upper
bound on this condition number as expressed in Equation (2). We observe that
for small numbers of recursions, the average condition number is very close to

its bound (e.g. for d = 2, cond2(U) = 1.2026 and
(
β
α

)d
= 1.2214) and that for

larger numbers of recursions, the di�erence between these quantities becomes

larger (e.g. for d = 10, cond2(U) = 1.5183 and
(
β
α

)d
= 2.7183) and then the

upper bound becomes more pessimistic. This is not surprising since for small
values of d the di�erence comes mainly from the statistics and for large values,
the di�erence comes also from the nature of the upper bound which is a product
of d bounds as explained in Section 2.4. However, as shown in Section 3.1, two
recursions are in general enough to get a satisfying accuracy and in that case
recursive butter�ies are very well conditioned.

12

Figure 2: Average 2-norm condition number for recursive butter�y matrices
(samples of 500 matrices) for a �xed matrix size n = 1024 .

3.3 Preliminary performance results

In this section, we present a �rst implementation of PRBT on a current hybrid
CPU/GPU architecture. The GPU is a Fermi Tesla S2050 (1.15 GHz, 2687.4
MB memory) and its multicore host is a 48 cores system (4 sockets x 12 cores)
AMD Opteron 6172 (2.1 GHz). On the multicore we use LAPACK and BLAS
from MKL 10.2. The PRBT solver is compared with a GEPP solver as it is
implemented in the MAGMA 1.0 library. In both cases the multicore host is
involved just in the panel factorization, the update of the trailing matrix being
performed on the GPU. In our implementation of PRBT, the randomization is
performed on the CPU (with 2 recursions). Figure 3 shows the performance in
G�op/s for both solvers using double precision arithmetic and we observe that
PRBT achieves much better performance depending on the size of the matrix.
For small problems the gain is much bigger (from 100% for size 1,000 to 33% for
size 3,000). In the range 4,000-8,000, the gain obtained by using PRBT is about
20% and for matrix sizes larger than 9,000, the improvement is around 10%
showing that asymptotically, the two performances should be close. We point
out that these results are obtained using a GEPP implementation speci�cally
tuned for this architecture while PRBT could be still improved by additional
tuning and use of a scheduler (e.g. QUARK [24]). Improvement could also
be obtained by taking advantage of the multicore in the update of the trailing
matrix. In this respect, the performance results of PRBT are very promising.

4 Conclusion and future work

We proposed a linear system solver where the LU factorization is performed
without pivoting on a matrix randomized by PRBT. We showed that PRBT
does not alter the 2-norm condition number of the original matrix and that it
requires in practice a low computational cost (O(n2) operations) and a few ad-
ditional data storage. We demonstrated that the obtained accuracy is similar to

13

Figure 3: Performance for PRBT and GEPP in double precision arithmetic (4
× 12-Core AMD Opteron 6172 @ 2.1 GHz - GPU Fermi Tesla S2050 @ 1.15
GHz).

that of GEPP on a reasonable range of matrices. We also gave �rst performance
results on a current hybrid CPU/GPU architecture where the pre-processing due
to randomization is performed on the CPU and the LU factorization without
pivoting is a hybrid CPU/GPU program. The resulting PRBT solver outper-
forms the GEPP solver as it is implemented in the MAGMA library. The PRBT
method shall be integrated into the MAGMA library jointly with a fully BLAS
3 GENP solver. The latter could be indeed very useful to factorize e�ciently
matrices for which the growth factor is O(1) and therefore pivoting is not needed
(see examples of such classes of matrices in [11, p. 166]). Further experiments
will be performed on multicore architectures which will allow performance com-
parisons with other solvers (e.g. from the PLASMA2 library). which are not
necessarily based on GEPP and enable more extensive testing.

References

[1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Don-
garra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and
D. Sorensen. LAPACK User's Guide. SIAM, 1999. Third edition.

[2] M. Arioli, M. Baboulin, and S. Gratton. A partial condition number for
linear least-squares problems. SIAM J. Matrix Anal. and Appl., 29(2):413�
433, 2007.

[3] M. Arioli, J. W. Demmel, and I. S. Du�. Solving sparse linear systems with
sparse backward error. SIAM J. Matrix Anal. and Appl., 10(2):165�190,
1989.

2Parallel Linear Algebra for Scalable Multi-core Architectures,
http://icl.cs.utk.edu/plasma/

14

[4] A. Buttari, J. Langou, J. Kurzak, and J. Dongarra. A class of parallel tiled
linear algebra algorithms for multicore architectures. Parallel Computing,
35:38�53, 2009.

[5] I. Dimov. Monte Carlo Methods for Applied Scientists. Word Scienti�c,
2008.

[6] J. Dongarra, J. Du Croz, I. Du�, and S. Hammarling. A set of Level 3
Basic Linear Algebra Subprograms. ACM Trans. Math. Softw., 16:1�17,
1990.

[7] I. S. Du�, A. M. Erisman, and J. K. Reid. Direct Methods for Sparse
Matrices. Clarendon Press, Oxford, 1986.

[8] A. Edelman. Eigenvalues and condition numbers of random matrices. SIAM
J. Matrix Anal. and Appl., 9(4):543�560, 1988.

[9] L. V. Foster. Gaussian elimination with partial pivoting can fail in practice.
SIAM J. Matrix Anal. and Appl., 15(4):1354�1362, 1994.

[10] L. Grigori, J. W. Demmel, and H. Xiang. Communication avoiding Gaus-
sian elimination. 2008. In Proceedings of the IEEE/ACM SuperComputing
SC08 Conference.

[11] N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM,
2002. Second edition.

[12] N. J. Higham and D. J. Higham. Large growth factors in Gaussian elim-
ination with pivoting. SIAM J. Matrix Anal. and Appl., 10(2):155�164,
1989.

[13] C. S. Kenney, A. J. Laub, and M. S. Reese. Statistical condition estimation
for linear least squares. SIAM J. Matrix Anal. and Appl., 19:906�923, 1998.

[14] W. Oettli and W. Prager. Compatibility of approximate solution of linear
equations with given error bounds for coe�cients and right-hand sides.
Numerische Mathematik, 6:405�409, 1964.

[15] D. S. Parker. Random butter�y transformations with applications in com-
putational linear algebra. Technical Report CSD-950023, Computer Science
Department, UCLA, 1995.

[16] D. S. Parker and B. Pierce. The randomizing FFT: an alternative to piv-
oting in Gaussian elimination. Technical Report CSD-950037, Computer
Science Department, UCLA, 1995.

[17] G. Quintana-Orti, E. S. Quintana-Orti, R. A. van de Geijn, F. G. van Zee,
and E. Chan. Programming algorithms-by-blocks for matrix computations
on multithreaded architectures. ACM Trans. Math. Softw., 36(3):1�26,
2009.

[18] Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM, 2000. Second
edition.

15

[19] R. D. Skeel. Iterative re�nement implies numerical stability for Gaussian
elimination. Math. Comput., 35:817�832, 1980.

[20] D. C. Sorensen. Analysis of pairwise pivoting in gaussian elimination. IEEE
Trans. Comput., 34:274�278, 1984.

[21] L. N. Trefethen and R. S. Schreiber. Average-case stability of Gaussian
elimination. SIAM J. Matrix Anal. and Appl., 11(3):335�360, 1990.

[22] V. Volkov and J. W. Demmel. LU, QR and Cholesky factorizations us-
ing vector capabilities of GPUs. Technical Report UCB/EECS-2008-49,
University of California, Berkeley, 2008. Also LAPACK Working Note 202.

[23] S. J. Wright. A collection of problems for which Gaussian elimination with
partial pivoting is unstable. SIAM J. Sci. Statist. Comput., 14:231�238,
1993.

[24] A. YarKhan, J. Kurzak, and Dongarra J. QUARK users' guide: QUeueing
And Runtime for Kernels. Technical Report ICL-UT-11-02, University of
Tennessee, Innovative Computing Laboratory, 2011.

[25] M. Yeung and T. F. Chan. Probabilistic analysis of Gaussian elimination
without pivoting. SIAM J. Matrix Anal. and Appl., 18(2):499�517, 1997.

16

Contents

1 Introduction 3

2 Randomization 5

2.1 De�nitions . 5
2.2 Packed storage for recursive butter�y matrices 6
2.3 Computational cost of the randomized matrix 7
2.4 Condition number of the randomized matrix 8

3 Numerical experiments 9

3.1 Accuracy of PRBT . 9
3.2 Tests on condition numbers . 11
3.3 Preliminary performance results 12

4 Conclusion and future work 12

Centre de recherche INRIA Saclay – Île-de-France
Parc Orsay Université - ZAC des Vignes

4, rue Jacques Monod - 91893 Orsay Cedex (France)

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex
Centre de recherche INRIA Grenoble – Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier

Centre de recherche INRIA Lille – Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq
Centre de recherche INRIA Nancy – Grand Est : LORIA, Technopôle de Nancy-Brabois - Campus scientifique

615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex
Centre de recherche INRIA Paris – Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex
Centre de recherche INRIA Rennes – Bretagne Atlantique : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex

Centre de recherche INRIA Sophia Antipolis – Méditerranée : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399

	Introduction
	Randomization
	Definitions
	Packed storage for recursive butterfly matrices
	Computational cost of the randomized matrix
	Condition number of the randomized matrix

	Numerical experiments
	Accuracy of PRBT
	Tests on condition numbers
	Preliminary performance results

	Conclusion and future work

