
HAL Id: hal-00909111
https://hal.inria.fr/hal-00909111

Submitted on 25 Nov 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Kadeploy3: Efficient and Scalable Operating System
Provisioning for Clusters

Emmanuel Jeanvoine, Luc Sarzyniec, Lucas Nussbaum

To cite this version:
Emmanuel Jeanvoine, Luc Sarzyniec, Lucas Nussbaum. Kadeploy3: Efficient and Scalable Operating
System Provisioning for Clusters. USENIX Association, USENIX Association, 2013, 38 (1), pp.38-44.
�hal-00909111�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49710485?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00909111
https://hal.archives-ouvertes.fr


Kadeploy3: Efficient and Scalable Operating

System Provisioning for Clusters

Emmanuel Jeanvoine, Luc Sarzyniec, Lucas Nussbaum

AlGorille team (Inria Nancy Grand Est – LORIA)

Installing an operating system can be very tedious when it must be repro-
duced on several computers, for instance, on large scale clusters. Since it is
not realistic to install the nodes independently, disk cloning or imaging with
tools such as Clonezilla[1], Rocks [5], SystemImager [6] or xCAT [8] is a com-
mon approach. In that case the administrator must keep updated only one node
(sometimes called golden node), that will be replicated to other nodes. This
article presents Kadeploy3, a tool designed to perform operating system provi-
sioning using disk imaging and cloning. Thanks to its efficiency, scalability, and
reliability, it is particularly suited for large scale clusters.

1 A Reliable Deployment Process with Kadeploy3

Kadeploy3 belongs to the family of the disk imaging and cloning tools. It takes
as input an archive containing the operating system to deploy, called an envi-

ronment, and copies it on the target nodes. As a consequence, Kadeploy3 does
not install an operating system following a classical installation procedure and
the user has to provide an archive of the environment (as a tarball, for Linux
environments).

Kadeploy3 does not directly take control of the nodes since it would require
some specific and uncommon hardware support. Instead, it uses common network
boot capabilities based on the PXE protocol [4] and it manages the associated
PXE profiles.

Using such a mechanism, combined to the capability to dynamically update
the PXE profiles of the nodes and with the capability to reboot the nodes in a
reliable way thanks to out-of-band control interfaces (Baseboard Management
Controller, Remote Supervisor Adapter) or the power distribution unit’s capa-
bilities, it is possible to take the control of the nodes and to specify what they
are booting.

As shown in figure 1, a typical deployment with Kadeploy3 is composed of
three major steps, called macro steps.

1. Minimal environment setup: the nodes reboot into a trusted minimal envi-
ronment that contains all the tools required for the deployment (partitioning
tools, archive management, ...) and the required partitioning is performed.

2. Environment installation: the environment is broadcast to all nodes and
extracted on the disks. Some post-installations operations can also be per-
formed.

3. Reboot on the deployed environment.



Configure PXE profiles
on TFTP or HTTP server

Trigger reboot
Wait for nodes

to reboot

Configure nodes
(partition disk, . . . )

Broadcast system image
to nodes

Do post-installation
customization of nodes

Configure PXE profiles
on TFTP or HTTP server

Trigger reboot
using IPMI or SSH

Wait for nodes to reboot
on deployed environment

M
ac
ro
st
ep

1
M
in
.
e
n
v
.
se
tu

p

M
ac
ro
st
ep

2
E
n
v
.
in
ta
ll
a
ti
o
n

M
ac
ro
st
ep

3
F
in
a
l
re
b
o
o
t

Fig. 1. Kadeploy deployment process, composed of three macro-steps

Eachmacro step can be executed via several different mechanisms to optimize
the deployment process depending upon required parameters and the specific
infrastructure. For instance, the Reboot on the deployed environment step can
perform a traditional reboot or it might instead rely on a call to kexec(8) for a
shorter reboot.

Reconfiguring a set of nodes involves several low-level operations that can
lead to failures for various reasons, e.g., temporary loss of network connectivity,
reboot taking longer than planned, etc. Kadeploy3 reliability is achieved thanks
to two ways. First the deployment process has a powerful error management
and second, critical reboot operations required for the node control are based on
reboot commands escalation in order to be able to take control of the nodes in
any situation.

1.1 Reliability of the Deployment

Kadeploy3 is designed to detect failures as quickly as possible and improve de-
ployment reliability by providing a macro step replay mechanism on the nodes
of interest. To illustrate that, let’s consider the last deployment macro step that
aims at rebooting on the deployed environment. Kadeploy3 implements, among
others, the following strategies:

1. directly load the kernel inside the deployed environment thanks to kexec;

2. perform a hard reboot using an out-of-band management hardware without
checking the state of node.

Thus it is possible to describe strategies such as: try to launch the first strategy;
then if some nodes fail, try to launch the second strategy several time if required.

Since all the steps involved in the deployment process rely on system calls
(hard disk operations, network communications, specific hardware management),
a special attention has been paid to the error handling. Thus, Kadeploy3 collects
the result of every operation (exit status, stdout, stderr), even when it is



performed on remote nodes. As a consequence, some steps can be replayed on
nodes where a problem occurs..

Furthermore, some operations are likely to last too long (e.g., network boot,
file-system creation, etc). Kadeploy3 also provides administrators with the ca-
pability to define specific timeouts for some operations in order to adapt the
deployment process to the infrastructure. That allows to identify some problems
quickly and to replay some operations on the related nodes.

1.2 Reliability of Reboot Operations

Since reboot operations are essential to control the cluster nodes, and ultimately
the entire deployment process itself, they must behave correctly and reliably.
Several methods can be used to reboot a nodes, for instance:

1. direct execution of the /sbin/reboot command;
2. use the capability of out-of-band management hardware with protocols such

as IPMI. Various kinds of reboot can be executed: reset, power cycle, etc;
3. use the power management capability of the power distribution unit (PDU).

Performing a /sbin/reboot is the best solution with regards to speed and
cleanliness. But it may not be an option if the target node is unreachable via in-
band methods such as SSH (e.g., the node is already down, the OS has crashed,
an unfriendly operating system is installed, etc). In this scenario, we would use
IPMI-like features if available. Also, it might be better for speed to perform a
reset rather than a power cycle since it bypasses the power on self test, but
sometimes this is not sufficient. Finally, if onboard management hardware is
unreachable, we may be required to use the capabilities of a remotely manageable
PDU.

Kadeploy3 provides administrators with a way to specify several levels of
commands in order to perform escalation if required. This allows them to per-
form highly reliable deployments if the clusters have the appropriate hardware.
Unfortunately, depending on the methods chosen, reboot escalation comes at a
cost and a balance must be struck between desired reliability and the time to
deployment.

2 Scalability

In addition to have a reliable node control mechanism, deploying large scale
clusters in a reasonable time require to be able to execute efficiently several
commands and to send large files on a large number of nodes.

2.1 Parallel commands

The deployment workflow contains several operations that reduce to executing
a command on a large set of nodes.



Thanks to SSH, one can execute commands remotely and retrieve their out-
puts. Launching SSH commands on a large number of nodes in sequence does not
scale at all. Furthermore, launching all commands simultaneously can impose an
extreme load on the server and can saturate all of its file descriptors.

Several tools have been built to overcome these limitations. For instance,
Pdsh [3] and ClusterShell [2] are designed to execute SSH commands on many
nodes in parallel. Both tools use windowed execution to limit the number of
concurrent SSH commands and both also allow retrieval of command outputs
on each node.

We choose to leverage TakTuk [9] as our mechanism for parallel command
execution and reporting. TakTuk is based upon a model of hierarchical connec-
tion. This allows it to distribute the execution load on all the nodes in a tree
and to perform commands with low latency. Using such a hierarchical mecha-
nism would normally require the tool to be installed on all nodes. Fortunately,
TakTuk includes a convenient auto-propagation feature that assures the tool’s
existence on all necessary nodes. The tool also uses an adaptive work-stealing
algorithm to improve performance, even on heterogeneous infrastructures.

2.2 File broadcast

The broadcast of the system image to all nodes is a critical part of the deploy-
ment. In cluster environments where the most important network for applica-
tions is using Infiniband or Myrinet, the Ethernet network is often composed
of a hierarchy of switches (e.g., one switch per rack) that is hard to leverage
for a high-performance broadcast. File distribution to a large number of nodes
via any sequential push or pull method is not scalable. Kadeploy3 provides sys-
tem administrators with three scalable file distribution approaches during the
Environment installation macro step to minimize deployment time.

With tree-based broadcast, a file is sent from the server to a subset of nodes,
which in turn send the file to other subsets until all the nodes have received.
The size of the subsets, called tree arity, can be specified in the configuration.
A large arity can reduce the latency to reach all nodes but transfer times might
increase because global bandwidth is equal to the bandwidth of a network link
divided by the tree arity. The opposite effect occurs when the arity is small.
In general, this broadcast method does not maximize bandwidth and should be
used primarily for the distribution of small files. This method is also inefficient
when used in hierarchical networks. We implement tree-based broadcast using
TakTuk.

Chain-based broadcast facilitates the transfer of files with high bandwidth.
A classical chain-based broadcast suffers from the establishment time of the
chain in large scale clusters. Indeed, since each node must connect to the next
node in the chain (usually via SSH), a sequential initialization would drastically
increase the entire broadcast period. Thus we perform the initialization of the
chain with a tree-based parallel command. This kind of broadcast is near-optimal
in a hierarchical network if the chain is well ordered since, as shown in Figure
2, all the full-duplex network links can be saturated in both directions, and



images
server

Fig. 2. Topology-aware chained broadcast. Data is pipelined between all nodes. When
correctly ordered, this ensures that inter-switches links are only used once in both
directions.

the performance bottleneck becomes the backplane bandwidth of the network
switches. For this method, we implement chain initialization using TakTuk and
perform transfers using other custom mechanisms.

BitTorrent-based broadcast is able to send files at large scale without making
any assumptions about the quality of the network. Furthermore, BitTorrent is
able to efficiently handle churn, an important property in large scale systems
like petascale and future exascale clusters. Currently, our experiments show that
there are two scenarios in which the performance of this broadcast method is
inferior to the other methods. The first pathological case is one in which we
are broadcasting on a small-scale cluster with a high-speed network, and the
second is one in which we are broadcasting small files. In both cases, BitTorrent
exhibits high latency and the overhead of the protocol dominates the time to
broadcast. The large number of established connections between nodes induced
by the protocol can lead to bottlenecks depending on the network topology.

In a default configuration, Kadeploy3 uses tree-based broadcast for the files
used in the deployment process (e.g., disk partition map) and chain-based method
for the environment broadcast which is usually a large file. However, this behav-
ior can be modified in the configuration.

3 Other advanced features

In addition to being reliable and scalable, Kadeploy has many useful features.

Multi-cluster support

Kadeploy3 can be configured to manage several clusters at the same time,
through a hierarchical set of YAML configuration files. In a Grid-like environ-
ment, it is also possible to initiate and control deployments on several Kadeploy
servers from a unique Kadeploy client.



Hardware and software compatibility

Kadeploy3 does not generally rely on vendor-specific mechanisms. Vendor-specific
remote control systems used to trigger nodes reboots can be easily used, even if
they do not support the IPMI protocol.

Environments can be stored either as tarballs (for Linux environments) or as
raw partitions, which enables the deployment of Windows or BSD-based systems.

Rights management and environments library

Kadeploy3 can be used to provide users with a Cloud-like experience with bare-
metal system reservation. It can integrate with a cluster batch scheduler used
to manage reservations, to delegate system deployment rights to specific users
for the duration of a job. Kadeploy3 can also manage a set of environments
and their visibility (public, private) in order to provide default environments, on
which users can base their work to create and register custom environments.

Statistics collection

It is often hard to identify defunct nodes in a cluster, especially when failures
are transient. Kadeploy3 integrates a statistics collection mechanism that enables
the detection of nodes that often fail during the deployment process.

4 Performance Evaluation

4.1 Grid’5000 experimental testbed

Kadeploy3 has been used intensively on the Grid’5000 testbed (http://www.
grid5000.fr) since the end of 2009 (and previous versions of Kadeploy were
used since 2004). In that time, approximately 620 different users have performed
117,000 deployments. On average each deployment has involved 10.3 nodes. The
largest deployment involved 496 nodes. To our knowledge, the deployed operating
systems are mostly based on Linux (all flavors) with a sprinkling of FreeBSD.
Although the Grid’5000 use case does not exercise all the goals targeted by
Kadeploy3 (e.g., scalability), it shows the tool’s adequacy with regard to most
characteristics, such as reliability.

4.2 Curie Petascale Supercomputer

We had the opportunity to evaluate Kadeploy3 on the Curie[7] supercomputer
owned by GENCI (http://www.genci.fr/) and operated by CEA (http://
www.cea.fr). 2088 nodes were available to perform the test and the goal was
to deploy the production environment. After a single administrative cycle, 2015
nodes where successfully deployed. This prove the efficiency and the reliability
of Kadeploy3 in a large scale production infrastructure.



4.3 Virtual testbed

Validating scalability on large physical infrastructures can become complex (we
only had access several hours to the Curie supercomputer since it is used for pro-
duction purpose) because it requires privileged rights on many components (e.g.,
access to management cards, modification of PXE profiles, etc). Thus we chose
to build our own large-scale virtual testbed on Grid’5000, leveraging important
features such as link-layer isolation, and Kadeploy3 of course.

We performed an experiment where we used 635 physical nodes of the Grid’5000
testbed. Depending on the nodes capabilities, we launched a variable number
of KVM virtual machines. In total, 3,999 virtual machines were launched and
participated in a single virtual network (despite the physical nodes where lo-
cated on four different geographical sites). Then we installed all the required
servers: DHCP, TFTP, MySQL, HTTP server, Kadeploy3. Once the testbed
was launched, we were able to perform deployments within a single cluster of
3,999 nodes. During the largest run, a 430 MB environment was installed on
3,838 virtual machines in less than an hour. 161 virtual nodes were lost due to
network or KVM issues. A significant amount of time was also wasted because
of the high latency between distant geographical sites (10-20 ms), which affected
some infrastructure services like DHCP and the PXE protocol.

5 Wrapping-up

We think that Kadeploy3 can help system administrators of large scale clusters
to save a precious time by reducing the OS provisioning time. The best way to be
convinced is to have a try. Kadeploy3 is free software (CeCill 2 license) written in
Ruby and available from http://kadeploy3.gforge.inria.fr/. Source code
can be downloaded as well as Debian and RPM packages. Kadeploy3 is configured
thanks to few YAML files and to help administrators, a complete guide describes
the entire installation and configuration steps.

References

1. Clonezilla. http://clonezilla.org.
2. ClusterShell. http://cea-hpc.github.com/clustershell.
3. Parallel Distributed Shell. http://sourceforge.net/projects/pdsh.
4. Preboot Execution Environment (PXE) Specification. http://download.intel.

com/design/archives/wfm/downloads/pxespec.pdf.
5. Rocks: Open-Source toolkit for real and virtual clusters. http://www.

rocksclusters.org.
6. SystemImager. http://systemimager.org.
7. The Curie supercomputer. http://www-hpc.cea.fr/en/complexe/tgcc-curie.

htm.
8. xCAT: Extreme Cloud Administration Toolkit. http://xcat.sourceforge.net.
9. Benoit Claudel, Guillaume Huard, and Olivier Richard. TakTuk, adaptive deploy-

ment of remote executions. In International Symposium on High Performance Dis-
tributed Computing (HPDC), pages 91–100, 2009.


