
HAL Id: hal-00909202
https://hal.archives-ouvertes.fr/hal-00909202

Submitted on 26 Nov 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Constraint Solver for PHP Arrays
Ivan Enderlin, Alain Giorgetti, Fabrice Bouquet

To cite this version:
Ivan Enderlin, Alain Giorgetti, Fabrice Bouquet. A Constraint Solver for PHP Arrays. ICSTW -
Sixth International IEEE Conference on Software Testing, Verification and Validation Workshops -
2013, Mar 2013, Luxembourg, Luxembourg. pp.218-223, �10.1109/ICSTW.2013.80�. �hal-00909202�

https://hal.archives-ouvertes.fr/hal-00909202
https://hal.archives-ouvertes.fr

A Constraint Solver for PHP Arrays
Ivan Enderlin, Alain Giorgetti and Fabrice Bouquet

Institut FEMTO-ST (UMR 6174) - University of Franche-Comté - INRIA CASSIS Project
16 route de Gray - 25030 Besançon cedex, France

Email: {ivan.enderlin,alain.giorgetti,fabrice.bouquet}@femto-st.fr

Abstract—In previous works, we have proposed Praspel, a
framework for contract-based testing in PHP. Among others, it
includes a specification language and a unit test generator which
automatically generates test data from formal preconditions. The
generator sometimes rejects data, when they do not satisfy parts
of the preconditions. In many cases, generation with rejection
is not efficient enough. Thus we investigate practical contexts
where more efficient generation algorithms can be designed and
we extend Praspel with their implementation.

After strings, that we have already considered, the most
frequent data type in PHP is arrays. They cover most of the
needs for collections, because they can store key-value pairs of
any kind, they do not have a specific length or depth, and they
are efficiently implemented. In this paper, we report on a study to
know what are the most popular constraints on PHP arrays. Then
we formalize these constraints and we present an implementation
in PHP of a constraint solver for these constraints. In this context,
the constraint-based approach removes all the rejections.

Keywords-array, constraint, solver, php, realistic domain,
praspel

I. INTRODUCTION

Contract-based testing [1] is a promising approach to in-
crease software safety and security. It is based on the notion
of Design by Contract, introduced by Meyer [2] with the Eiffel
language [3]. A contract is a formal specification associated
to the code of a program. It mainly consists of invariants, pre-
and postconditions. Invariants describe properties that should
hold at each step of the execution. Pre- and postconditions
respectively represent conditions that have to hold for a
method to be invoked, and conditions that have to hold after
execution of the method.

Various contract languages extend programming languages
with contracts: JML extends Java [4], ACSL extends C [5],
Spec# extends C# [6], etc. Among the numerous advantages
of contracts, formal properties can be exploited for (unit)
testing. Indeed, the information contained in invariants and
preconditions can be used to generate test data. In addition,
these assertions can be checked at run time and thus provide
a (partial) test oracle for free.

In previous works, we have introduced Praspel [7], a tool-
supported specification language for contract-based testing in
PHP [8]. Praspel extends contracts with the notion of realistic
domain, which makes it possible to assign a domain of values
to data (class attributes or method parameters). A library of
predefined realistic domains is already available along with a
test environment [9].

Funded by the FUI project SQUASH.

Validating PHP web applications often involves to ma-
nipulate strings and arrays. Strings have been already ad-
dressed [10] by introducing grammar-based testing in Praspel.
This paper focus on PHP arrays, which are always associative
arrays. They cover most of the needs for collections, because
they can store key-value pairs of any kind (they can be
homogeneous and heterogeneous), they do not have a specific
length or depth, and they are efficiently implemented. When
generating arrays for testing, the main difficulty is to satisfy
their properties, which are formalized by predicates in their
specification. We address this issue in the context of PHP and
Praspel, by designing a specific constraint solver.

Our contributions are twofold. First, after studying the
most popular conditions on PHP arrays, we propose a syntax
to specify them in Praspel and a semantics of these array
specifications. Second, we propose a new constraint solver in
PHP for PHP, to generate arrays satisfying these conditions.
These two contributions are embedded in realistic domains and
can be used in Praspel annotations of a PHP program.

The paper is organized as follows. Section II briefly intro-
duces the notion of realistic domain and its implementation
in Praspel for PHP. Section III presents a language of array
conditions in Praspel, inspired by a study to know what are
the most popular conditions expressed on arrays in popular
PHP code. Section IV presents the constraint solver. Then,
Section V reports on an experimentation validating our ap-
proach and tool, and showing its usefulness and efficiency in
practice. Related works are presented in Section VI. Finally,
Section VII concludes and presents future works.

II. REALISTIC DOMAINS AND PRASPEL

This section is a reminder of [7]. It shortly presents the
notion of realistic domain and its application to PHP programs.
Realistic domains are designed for test generation purposes.
They specify which values can be assigned to a data in a given
program. They are well-suited to PHP, since this language is
dynamically typed (i.e. no types are syntactically assigned to
data) and realistic domains thus introduce a specification of
data types mandatory for test data generation. We first intro-
duce general features of realistic domains. Then we present
their implementation in PHP and the Praspel framework.

A. Features of Realistic Domains

Realistic domains refine usual datatypes (integer, string,
array, etc.). They are intended to specify data domains relevant
for specific application contexts. For example, email addresses

constitute a realistic domain: many applications identify a user
by her email address, so we need to validate and generate such
data, and an email address is more than a string: it obeys to
a specific syntax that makes it not obvious to generate.

The first feature of a realistic domain (named its predi-
cability) is to carry a characteristic predicate of its values,
used to check if a value belongs to the possible set of values
described by the realistic domain. The second feature of a
realistic domain (named its samplability) is to propose a
value generator, called the sampler, that generates values in
the realistic domain. For instance, a sampler for the realistic
domain of email addresses can generate strings representing
syntactically correct email addresses defined by a regular
expression.

B. Realistic Domains in PHP

In PHP, we have implemented realistic domains as classes
providing at least two methods, corresponding to the two
features of realistic domains. The first method is named
predicate($q) and takes as input a value $q: it returns
a boolean indicating the membership of the value to the
realistic domain. The second method is named sample()
and generates values that belong to the realistic domain.

Our implementation of realistic domains in PHP exploits
the PHP object programming paradigm and takes benefit from
the following three principles:

1) Inheritance: PHP realistic domains can inherit from
each other. A realistic domain child inherits the two features of
its parent, namely predicability and samplability, and is able
to redefine them. Consequently, we say that all the realistic
domains constitute a hierarchical universe.

2) Interfaces: All data are represented by realistic domains.
Some of them implement interfaces which characterize them.
Useful interfaces for our current concerns are:

• Constant: represents an immutable realistic domain
with only one value, such as 42, true, etc.

• Interval: represents an interval by its lower and upper
bounds, that can be dynamically reduced,

• Nonconvex: allows to discredit values, i.e. to specify
that a value no longer belongs to a realistic domain and
should therefore not be generated,

• Finite: allows to count the number of values,
• Enumerable: allows to iterate over all the values.

Thus, a realistic domain that implements the Interval and
Nonconvex interfaces is an interval with “holes”. Counting
and exhaustive generation of a finite realistic domain take
discredited values into account.

3) Parameterization: Realistic domains may have param-
eters, like a function does. Data given to a realistic domain
are called arguments. This feature helps generating structured
data such as arrays, objects, graphs, automata, etc.

Example 1 (Realistic domains with arguments). The realis-
tic domain string(0x61, 0x7a, boundinteger(4,
12)) admits as arguments two integers (that represent two
Unicode code-points) and a domain of integers to specify its

possible length. The realistic domain boundinteger(X,
Y) contains all the integers between X and Y . We can also
write X..Y as syntactic sugar for this domain. The realistic
domain string(X, Y , L) is intended to contain all the
strings of length (in the domain) L built of characters from X
to Y code-points.

When describing parameters, because all data are realistic
domains, we can multi-type hint the parameters, i.e. filter with
multiple realistic domain names. For instance, the first two
parameters of the realistic domain string() are described
as Constinteger | Conststring, so can be a constant
integer or a constant string. Then, the syntax string(’a’,
’z’, 4..12) is strictly equivalent to the previous one. If
we write string(true, ’z’, 4..12), an error will be
thrown. The realistic domain itself handles the cast.

C. Praspel and Contract-Based Testing in PHP

Praspel means PHP Realistic Annotation and SPEcification
Language. It is a language and a framework for contract-based
testing in PHP, based on realistic domains.

Praspel annotations are written inside comments in the
source code. Invariants document classes and pre- and post-
conditions document methods. The general form of Praspel
annotations is shown in Figure 1. For lack of space, named
behaviors and specification of exceptions are not presented. In
this specification, I1, . . . , Ih are invariant clauses, assumed
to be satisfied at the beginning and at the end of each
method invocation. Formulas R1, . . . , Rn and A1, . . . , Ak

are precondition clauses, that have to hold at the invocation of
the foo method. Formulas E1, . . . , Em are postconditions that
have to be established when method foo terminates without
throwing an exception. In postconditions, Praspel provides the
two additional constructs \result and \old(e), which
respectively designate the value returned by the method, and
the value of expression e at the pre-state of the method
invocation.

PHP does not provide a type system, but Praspel contracts
make it possible to give typing informations, assigning realistic
domains to data (class attributes or method parameters). The
construction i: t1(. . .) or . . . or tn(. . .) associates at
least one realistic domain, among t1(. . .), . . . , tn(. . .), to
the identifier i. Every identifier holds a realistic domain
disjunction, thanks to the or keyword. Identifiers can also
be passed into arguments of realistic domains.

Example 2 (Identifiers in Praspel). The declarations:

length: 4..12
str : string(’a’, ’z’, length)

show a dependency between two identifiers: The third argu-
ment of the realistic domain of the second identifier str is
the first identifier length.

Praspel provides a set of more than 30 predefined realistic
domains, called the standard library. Some of them correspond
to scalar types (integer, float, boolean. . .), other ones
to classes and arrays (detailed in Section III).

Contractual assertions are made of realistic domain declara-
tions, possibly completed with additional predicates, expressed
in PHP using the \pred construct.

class C {
/** @invariant I1 and . . . and Ih */
/** @requires R1 and . . . and Rn;
* @ensures E1 and . . . and Ej; */
function foo ($x1. . .) { body } }

Figure 1. Syntax of contracts in Praspel

Test generation in Praspel is decomposed into two steps.
First, a test generator computes test data from contracts.
Second, a dedicated test execution framework runs the test
cases (i.e. invokes the methods with the computed test data,
and checks the assertions at run time) so as to establish the
test verdict.

III. ARRAYS IN PRASPEL

In PHP, an array is always an associative array (or map,
or dictionary), i.e. a collection of key-value pairs, where each
key appears at most once. Keys can be null, booleans (casted
into integers), integers, floats (reduced to their integer parts)
or strings. Values can be of many kinds. An array can be
homogeneous or heterogeneous. In an homogeneous array
all the keys have the same type, and all the values too. In
an heterogeneous array keys may have distinct types, and/or
values may have distinct types. Keys can be auto-incremented,
by adding 1 to the last integer index starting by 0. The length
(or size) of an array is its number of elements. An array
has no predefined length, but its length (stored internally by
the PHP engine) can be retrieved thanks to the PHP function
count(). An array has also no predefined depth, i.e. it can
contain arbitrary arrays.

A. Array Description

In Praspel, array(D,L) denotes the realistic domain of
arrays whose domains and codomains are described by D and
whose length is in the disjunction L of realistic domains of
non-negative integers. D is a comma-separated list, between
[and], of array descriptions of the form from K to V ,
where K and V are realistic domain disjunctions, respectively
for keys and values. When the from keyword is missing, it
is transformed into a realistic domain representing an auto-
incremented integer starting at 0 with a step of 1.

Example 3 (Homogeneous and heterogeneous arrays). This
syntax is illustrated by the following array declarations:

a1: array([to boolean()], 7..42)
a2: array([from 0..5 or 10 to integer()], 7)
a3: array([from 0..10 to boolean(),

from 20..30 to float()], 7)
a4: array([from 0..10 or 20..30

to boolean() or float()], 7)

The identifier a1 is declared as a homogeneous array of
booleans with a length between 7 and 42. This length is a
realistic domain that implements the Interval interface.
The identifier a2 is declared as a homogeneous array of length

7, whose keys are integers between 0 and 5 or simply 10, and
whose values are integers. Its length is a realistic domain that
implements the Constant interface, the domain for its keys is
the disjunction of two realistic domains (0..5 and 10..23)
which implement the Interval interface, etc. The identifiers
a3 and a4 are declared as heterogeneous arrays. Both arrays
can contain the pairs (5,true) and (15,4.2), but a4 can
contain the pair (5,4.2), whereas a3 can not contain it.

Actually, we introduce a normal form that removes disjunc-
tions in array descriptions (in from . . .to . . . constructs). An
array description is in normal form when it can not be reduced
by the rewriting rule (from F1 or F2 to T1 or T2 → from
F1 to T1, from F1 to T2, from F2 to T1, from F2 to
T2).

Example 4 (Array description in normal form). The following
declaration of a4 is in normal form:

a4: array([from 0..10 to boolean(),
from 0..10 to float(),
from 20..30 to boolean(),
from 20..30 to float()], 7)

B. Collecting Information

When generating test data, the Praspel testing tool calls the
sample() method on a realistic domain and then checks
whether the predicates declared with \pred() hold. For an
array with conditions, a random generator may produce a lot
of rejected data before getting a valid one. The idea is to
determine the most popular conditions on arrays expressed in
PHP (usually written in the \pred() construct), to allow
them inside Praspel, and to use a solver to satisfy these
conditions.

To achieve this, we have selected 61 PHP projects, from
Github and SourceForge, for their popularity, impact on the
industry and complexity. All these projects represent 28 066
files and 5 220 547 lines of code. In this code we count the
number of occurrences of each array function available in
the PHP standard library. It appeared that the three most
used functions are: count(), array_key_exists() and
in_array(). The count() function counts the number
of values in an array, the array_key_exists() function
checks whether a key is present in an array (independently of
its associated value, e.g. it returns true even if the value is
null), and finally, the in_array() function checks whether
a value is present in an array. All these functions work on one
array at a time. This study suggests that we could consider
these side-effect-free Boolean functions as the most frequent
conditions on arrays.

C. Array Conditions

We extend the syntax of the array declaration a :
array(D,L) in Praspel with the following conditions on
arrays.

A pair condition is of the form a[K]: V where K
and V are realistic domain disjunctions. The condition means
that the pairs constituted of all the keys in K and at least
one value in V are present in the array a. K only accepts

realistic domains that implements the Constant, Interval
and Enumerable interfaces. This is equivalent to use the
array_key_exists() and in_array() functions com-
bined.

If we would like to express a constraint only on K, we
can use the symbol _. The condition a[K]: _ means
that all the keys from K must be present in the array a. It
is equivalent to use only the array_key_exists function
with all values in K in conjunction.

The condition a[_]: V means that all the values in
V must be present in the array a. It is equivalent to use the
in_array function with all the values in V in conjunction.

Instead of the : symbol, we can use the symbol !: to
express a negation. The condition a[K]!: V means that
all the keys in K have a value in the array a and that this
value is not in V . It works similarly with the symbol _. For
example, the condition a[K]!: _ means that no key in K
appears in a.

Keys of an array are always unique, but not its values.
We can express a unicity condition on values by writing the
condition a is unique. In this case, we cannot have the
same value twice in the array a.

Example 5 (Array Conditions). To illustrate all kinds of
conditions, we will use the following example that uses a:

length: 0..5 or 10
a : array([to string(’a’, ’e’, 1)], length)
a[0]: ’b’ or ’d’
a is unique

IV. CONSTRAINT SOLVER

Given a conjunction of array conditions on an array a, we
propose to invoke a constraint solver to construct an array
satisfying all these conditions. This section explains how array
conditions are transformed into constraints for the solver. One
of these conditions is assumed to be an array declaration of
the form a: array(D,L), where D is assumed to be in
normal form, without loss of generality. In other words, D
is a list of p constructs from Fi to Ti with 1 ≤ i ≤ p.
We also assume that L is L1 or . . . or Lm (with m ≥ 1),
where L1, . . . , Lm are realistic domains that inherit from the
Integer realistic domain and that are non-negatives.

In Example 5, p = 1, m = 2, L1 = [0..5] and L2 = {10}.
In the array description, no domain is declared. In this case the
default realistic domain integerpp(0,1) is used (an auto-
incremented integer: 0, 1, 2, 3, etc). In this example F1 =
integerpp(0,1) and T1 = string(’a’,’e’,1).

Without risk of confusion, a domain disjunction D1 or . . .
or Dn will often be identified with the set D1 ∪ · · · ∪Dn.

A. Variables

The constraint variables are: (i) the array size –noted S–
which is a non-negative integer, (ii) the sets X and Y , which
respectively are the array domain (set of keys) and codomain
(set of values), (iii) the array content noted H , which is a
total function from X to Y , since keys are unique in a PHP

array, (iv) the realistic domains1 X1, . . . , Xp (resp. Y1, . . . ,
Yp), which are subsets of the realistic domains F1, . . . , Fp

(resp. T1, . . . , Tp) compatible with all the array conditions.
We are essentially interested in finding the content of X and

the values of the function H , i.e. the content of H considered
as a hashtable, possibly also the values of the Xis and Yis for
checking purposes. The other variables are introduced only to
simplify the expression of constraints.

When x ∈ X holds, H(x) = y means that the key-value
pair (x, y) is in the array. We extend H to subsets of X by
the function Ĥ defined by Ĥ(E) = {H(x) s.t. x ∈ E} for
any subset E of X .

B. Cardinality Constraints

Let card(E) denote the cardinality of the finite set E. The
constraints card(X) = S and S ≥ 0 say that the array size is
its number of keys and is non-negative.

By default, there is no unicity constraint on the codomain,
so we only have the constraint card(Y) ≤ card(X) How-
ever, in presence of the array condition a is unique, this
constraint becomes card(Y) = card(X).

C. Constraints on the Array Size

When propagating constraints, the solver may refine the
domains L1, . . . , Lm of possible values for the array size
S for i in {1, . . . ,m}, and the array size S should be in one
of these sets, i.e. the constraint to define domain of S is:

S ∈ L1 ∪ · · · ∪ Lm

In Example 5, we have L1 ⊆ [0..5] and L2 ⊆ {10}. The
size S is constrained by S ∈ L1 ∪ L2.

D. Constraints on Domains and Codomains

The domain X and codomain Y of H are related by the
constraint Y = Ĥ(X).

We expect that the constraint solver proposes us the ar-
ray domain X (resp. codomain Y) as a disjunction X1 or
. . . or Xp (resp. Y1 or . . . or Yp) of realistic domains
compatible with all the array conditions. We should have
the equalities X =

⋃
1≤i≤p

Xi and Y =
⋃

1≤i≤p

Yi, and the

inclusions: Xi ⊆ Fi and Yi ⊆ Ti for i in {1, . . . , p}. The
pair (Xi, Yi) with 1 ≤ i ≤ p should also satisfy the constraint
Ĥ(Xi) = Yi meaning that Yi is the codomain of the restriction
of H to Xi (⊆ X).

E. Constraints on Pairs

For each array condition a[K]: V where K and V are
domain disjunctions, we introduce the constraints: K ⊆ X
and Ĥ(K) ⊆ V . A negated pair condition a[K]!: V is
translated into the constraints: K ⊆ X and Ĥ(K) ∩ V = ∅.
For the condition a[0]: ’b’ or ’d’ in Example 5, we
have K = {0} and V = {’b’,’d’}. The constraints are
{0} ⊆ X and Ĥ({0}) ⊆ {’b’,’d’}.

1In fact, the solver will not handle realistic domains, but only sets.

F. Constraints on Keys or Values

The condition a[K]: _ is translated into the constraint
K ⊆ X , and its negation a[K]!: _ into the constraint
K ∩ X = ∅. The condition a[_]: V is translated into
the constraint V ⊆ Y , and its negation a[_]!: V into the
constraint V ∩ Y = ∅.

G. Propagation and consistency

Propagation of constraints uses an AC3 algorithm [11]
implemented in PHP. So, we use five kinds of domains
associated to five kinds of realistic domains: Constant,
Interval, Nonconvex, Finite and Enumerable (see
Section II-B2). For each kind of domain, we have implemented
a revise method to allow the domain reduction. So, the
consistency is also checking that there is no empty domain
for the four variables S, H , X and Y but not for Xi and Yi.
The goal is to detect inconsistencies as soon as possible.

H. Labelling

The labelling is the process of finding a value for each
variable. In order to make the solver converge quickly to a
solution, we use a heuristic that consists in chosing a value
for the variable S at first. This helps to unfold the ∀ and ∃
quantifiers (because Fi and Ti are enumerables, we manipulate
finite sets). Then, the solver tries to compute the sets Xi

and Yi. We use a random generator to generate a value in a
realistic domain, to select a realistic domain in a disjunction,
etc. The generated value is then propagated. If an inconsistency
is detected, we add a new constraint to discredit the value,
and then generate another one. For instance, if S = 5 leads
to an inconsistency, we add the constraint S 6= 5. The added
constraint is removed during the backtracking step.

When all variables are labelled, i.e. each one has a valid
value, the solver returns the solution.

V. EXPERIMENTATION

In all that follows, the word system stands for the expres-
sion “conjunction of array conditions”. This section presents
an experimentation evaluating the solver efficiency, i.e. its
capability to avoid or reduce rejection when generating data
from systems. We measure the number of backtracks in the
solver, the time to generate data from satisfiable systems of
array conditions, and how many unsatisfiable systems are
detected. The experimentation is composed of three steps:
system generation, then data generation (i.e. system solving)
and finally a measuring step. We generate systems on arrays
containing strings and integers, and of length 5 to 20.

The Praspel language (and in particular its sublanguage
of array conditions) is described by a grammar. In order to
generate systems, we re-use a previous work in grammar-based
testing [10] proposing three algorithms generating data from
grammars: a uniform random generator, a bounded exhaustive
test generator, and a rule-coverage-based test generator. Since
the grammar of array conditions is small, the last generator
does not generate a sufficiently wide collection of systems.
Bounded exhaustive testing is more costly than random testing,

n generated backtracks backtracks per rejected generation
systems system systems time (ms)

10 14 0 0 0 6.484
15 86 34 0.40 0 42.167
18 210 91 0.43 0 141.694
19 275 103 0.37 0 229.001
20 492 114 0.23 0 372.241

Table I
EXPERIMENTATION RESULTS.

but it is more precise and well adapted to small grammars. We
retain the bounded exhaustive test generator: for increasing
values of n it enumerates all the systems composed of a
sequence of n tokens: In this generator, a single token value of
each variable token (i.e. interval bounds and particular array
lengths, keys and values) is generated at random.

With n = 3, we can generate conditions of the form arr
is unique. With n = 6, we can generate constraints of the
form arr[0]: 0. With n = 8, we can generate constraints of
the form arr[0]: 0 or 1. With n = 11, we can generate
for instance the system in Example 5.

The second step calls the solver with each produced system
to generate an array satisfying it. Every generated array is
evaluated by the predicate associated to the system of array
conditions, to check the solver soundness. During the data
generation step, some marks are placed to count only the array
generation time, without counting the compiling time. We also
measure the number of backtracks in the solver and the number
of rejected systems. When a system is rejected, its backtracks
are not counted.

Since our grammar-based testing algorithms use an isotropic
random generation to generate token values, these values can
differ from one system to another. It may lead to different
generation times and numbers of backtracks. To avoid peaks
in the results, we report the average of 100 generations of
systems sharing the same pattern.

Table I shows our experimentation results. In the first
column, n is the length of the generated sequences of tokens
representing systems of array conditions. Column 2 gives the
number of distinct system patterns with this length. Columns
3, 5 and 6 respectively give average numbers of backtracks
and rejected systems for 100 runs, and an average generation
time. Column 4 gives the rate of backtracks per system pattern.

For n ≤ 20, we observe that no system is rejected,
which is a great improvement by comparison with random
generation. All generated data satisfy their specification. The
solver successfully and quickly generates data with a low
number of backtracks. For n = 20, which represents ap-
proximatively 3 constraints with disjunctions, the exhaustive
generation algorithm generates 492 distinct systems of array
conditions and the execution produces only 114 backtracks,
so approximatically 1 backtrack for 4 systems. This is a
good result. Nevertheless, we were not able to characterize
the number of backtracks with the number of constraints.
Finally, this experimentation allowed us to find a bug in our
solver. This bug always led to a rejection when only a certain
constraint was analyzed. Thus, it shows that the validation

process also helps finding bugs.

VI. RELATED WORKS

Various works consider Design-by-Contract for unit test
generation [12], [13]. Our specification language is based on
JML [4] and ACSL [5]. Thanks to an expressive specification
language, Praspel performs general runtime assertion checks.
Realistic domains present some similarities with Eiffel’s
types [3], especially regarding inheritance between realistic
domains. Nevertheless, the two properties of predicability and
samplability displayed by realistic domains do not exist in
Eiffel. Moreover, Praspel adds clauses that Eiffel contracts do
not support, as @throwable and @behavior, which are
inspired from JML.

Euclide [14] is a constraint-based testing tool that could take
as input additional safety properties defined in ACSL [15].
Our approach differs by handling conditions directly in the
contract. All constructions present in Praspel are well-handled
for both aspects: validation and generation. The CLP frame-
work INKA [16] helps computing structural test data from a
C program. It transforms the problem of automatic test data
generation into a CLP problem over finite domains. In the
same way, FDCC [17] is a combined approach for solving
constraints over finite domains and arrays. The tricky part
of FDCC lies in a bi-directional communication mechanism
between two solvers. Our constraints are more specific but we
use only one solver.

VII. CONCLUSION AND FUTURE WORKS

We have presented in this paper an extension of the Praspel
language to specify usual conditions on PHP arrays. We have
expressed its semantics by constraints. We have designed and
implemented in PHP a constraint solver to generate test data
from these constraints. It uses a random generator to ensure
a diversity of generated solutions. This solver is integrated
in realistic domains and can be used within the Praspel
framework. A first validation shows cases where rejection has
been totally removed. It also shows that the solver dramatically
increases the generation speed.

In a near future, we plan to lead a more complete exper-
imentation. Then, we plan to formalize more constraints and
extend our solver. We also plan to transform constraints into
the formalism proposed by MiniZinc [18] in order to compare
our solver to other ones regarding performances and capabili-
ties to find solutions. As a string is an array of characters, we
would like to apply the same process on strings with the help
of existing and promising solving techniques [19].

REFERENCES

[1] B. K. Aichernig, “Contract-based testing,” in Formal Methods at the
Crossroads: From Panacea to Foundational Support, ser. Lecture Notes
in Computer Science. Springer, 2003, vol. 2757, pp. 34–48.

[2] B. Meyer, “Applying “design by contract”,” Computer, vol. 25, no. 10,
pp. 40–51, 1992.

[3] ——, “Eiffel: programming for reusability and extendibility,” SIGPLAN
Not., vol. 22, no. 2, pp. 85–94, 1987.

[4] G. T. Leavens, A. L. Baker, and C. Ruby, “JML: A notation for
detailed design,” in Behavioral Specifications of Businesses and Systems,
H. Kilov, B. Rumpe, and I. Simmonds, Eds. Boston: Kluwer Academic
Publishers, 1999, pp. 175–188.

[5] P. Baudin, J.-C. Filliâtre, T. Hubert, C. Marché, B. Monate, Y. Moy, and
V. Prevosto, ACSL: ANSI C Specification Language (preliminary design
V1.2), 2008.

[6] M. Barnett, K. Leino, and W. Schulte, “The Spec# Programming
System: An Overview,” in Proceedings of the International Workshop
on Construction and Analysis of Safe, Secure and Interoperable Smart
devices (CASSIS’04), ser. LNCS, vol. 3362. Marseille, France: Springer-
Verlag, March 2004, pp. 49–69.

[7] I. Enderlin, F. Dadeau, A. Giorgetti, and A. B. Othman, “Praspel: A
specification language for contract-based testing in php,” in ICTSS, ser.
Lecture Notes in Computer Science, B. Wolff and F. Zaı̈di, Eds., vol.
7019. Springer, 2011, pp. 64–79.

[8] PHP Group, “The PHP website,” 2010, URL: http://php.net.
[9] I. Enderlin, “Hoa project, a set of PHP libraries,” 2010, URL: http://hoa-

project.net.
[10] I. Enderlin, F. Dadeau, A. Giorgetti, and F. Bouquet, “Grammar-Based

Testing Using Realistic Domains in PHP,” in ICST, G. Antoniol,
A. Bertolino, and Y. Labiche, Eds. IEEE, 2012, pp. 509–518.

[11] A. Macworth, “Consistency in network of relations,” Journal of Artificial
Intelligence, vol. 8, no. 1, pp. 99–118, 1977.

[12] Y. Cheon and G. T. Leavens, “A Simple and Practical Approach to Unit
Testing: The JML and JUnit Way,” in ECOOP 2002 — Object-Oriented
Programming, 16th European Conference, ser. LNCS, B. Magnusson,
Ed., vol. 2374. Berlin: Springer, Jun. 2002, pp. 231–255.

[13] P. Madsen, “Unit Testing using Design by Contract and Equivalence
Partitions,” in XP’03: Proceedings of the 4th international conference
on Extreme programming and agile processes in software engineering.
Berlin, Heidelberg: Springer, 2003, pp. 425–426.

[14] A. Gotlieb, “Euclide: A Constraint-Based Testing Framework for Critical
C Programs,” in ICST. IEEE Computer Society, 2009, pp. 151–160.

[15] ——, “Tcas software verification using constraint programming,”
Knowledge Eng. Review, vol. 27, no. 3, pp. 343–360, 2012.

[16] A. Gotlieb, B. Botella, and M. Rueher, “A CLP Framework for Comput-
ing Structural Test Data,” in Computational Logic, ser. Lecture Notes in
Computer Science, J. W. Lloyd, V. Dahl, U. Furbach, M. Kerber, K.-K.
Lau, C. Palamidessi, L. M. Pereira, Y. Sagiv, and P. J. Stuckey, Eds.,
vol. 1861. Springer, 2000, pp. 399–413.

[17] S. Bardin and A. Gotlieb, “FDCC: A Combined Approach for Solving
Constraints over Finite Domains and Arrays,” in CPAIOR, ser. Lecture
Notes in Computer Science, N. Beldiceanu, N. Jussien, and E. Pinson,
Eds., vol. 7298. Springer, 2012, pp. 17–33.

[18] N. Nethercote, P. J. Stuckey, R. Becket, S. Brand, G. J. Duck, and
G. Tack, “Minizinc: Towards a standard cp modelling language,” in CP,
ser. Lecture Notes in Computer Science, C. Bessiere, Ed., vol. 4741.
Springer, 2007, pp. 529–543.

[19] V. Ganesh, A. Kiezun, S. Artzi, P. J. Guo, P. Hooimeijer, and M. D.
Ernst, “Hampi: A string solver for testing, analysis and vulnerability de-
tection,” in CAV, ser. Lecture Notes in Computer Science, G. Gopalakr-
ishnan and S. Qadeer, Eds., vol. 6806. Springer, 2011, pp. 1–19.

