
HAL Id: hal-00909630
https://hal.inria.fr/hal-00909630

Submitted on 26 Nov 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Powerful Resource Discovery for Arigatoni Overlay
Network

Raphael Chand, Michel Cosnard, Luigi Liquori

To cite this version:
Raphael Chand, Michel Cosnard, Luigi Liquori. Powerful Resource Discovery for Arigatoni Over-
lay Network. Future Generation Computer Systems, Elsevier, 2008, Future Generation Computer
Systems, FGCS, 24 (1), pp.31-48. �10.1016/j.future.2007.02.009�. �hal-00909630�

https://hal.inria.fr/hal-00909630
https://hal.archives-ouvertes.fr

Powerful Resource Discovery

for Arigatoni Overlay Network ⋆

Raphael Chand a,1 and Michel Cosnard b and Luigi Liquori b,∗

aUniversity of Geneva, Switzerland
bInria Sophia Antipolis, France

Abstract

Arigatoni is a structured multi-layer overlay network providing various services with
variable guarantees, and promoting an intermittent participation in the overlay
since peers can appear, disappear, and organize themselves dynamically. Arigatoni

provides fully decentralized, asynchronous and scalable resource discovery; it also
provides mechanisms for dealing with an overlay with a dynamic topology. This
paper introduces a non trivial improvement of the resource discovery protocol by
allowing the registration and request of multiple instances of the same service, ser-
vice conjunctions, and multiple services. Adding multiple instances is a non trivial
task since the discovery protocol must keep track (when routing requests) of peers
that accept to serve and peers that deny the service. Adding service conjunctions
allows a single peer to offer different services at the same time. Simulations show
that it is efficient and scalable.

Key words: Overlay networks, Resource discovery, Virtual organizations,
Dynamic graphs, Peer-to-peer, Global computing, Grid computing.

1 Introduction

The explosive growth of the Internet gives rise to the possibility of design-
ing large overlay networks and virtual organizations consisting of Internet-
connected global computers, able to provide a rich functionality of services

⋆ This work is supported by the AEOLUS FET Global Computing Proactive IST-
015964, Algorithmic Principles for Building Efficient Overlay Computers.
∗ Corresponding author.

Email addresses: Raphael.Chand@cui.unige.ch (Raphael Chand),
Michel.Cosnard@inria.fr (Michel Cosnard), Luigi.Liquori@inria.fr (Luigi
Liquori).
1 Work partly done while the author was at INRIA Sophia Antipolis, France.

Preprint submitted to Elsevier Science 21 January 2007

that makes use of aggregated computational power, storage, information re-
sources, etc. Arigatoni (1) is a structured multi-layer overlay network which
provides resource discovery with variable guarantees in a virtual organization
where peers can appear, disappear and organize themselves dynamically. In a
nutshell, the main units in Arigatoni are:

• A Global Computer Unit, GC, i.e. the basic peer of the global computing
paradigm; it is typically a small device, like a PDA, a laptop or a PC,
connected through IP in a various way (wired, wireless, etc.).

• A Global Broker Unit, GB, i.e. the basic unit devoted to subscribe and
unsubscribe GCs, to receive service queries from client GCs, to contact po-
tential server GCs, to negotiate with them services, to authenticate clients
and servers, and to send all the information necessary to allow the client GC

and the servers GCs to communicate. Every GB controls a colony of collab-
orating global computers. Hence, communication intra-colony is initiated
via only one GB, while communication inter-colonies is initiated through a
chain of GB-2-GB message exchanges whose security is guaranteed via PKI

mechanisms. In both cases, when a client GC receives an acknowledgment
of a service request from the direct leader GB, then the GC is served directly
by the server(s) GC, i.e. without a further mediation of the GB, in a pure
peer-to-peer fashion. Registrations and requests are performed via a simple
query language Ã la SQL and a simple orchestration language Ã la LINDA,
or BPEL.

• A Global Router Unit, GR i.e. the basic unit close to GCs and GBs that is
devoted to send and receive packets, using the resource discovery protocol
(2; 3), and to forward the “payload” to the units which are connected with
this router. The connection GB-GR-GC is ensured via a suitable API.

• A Colony is a simple virtual organization composed of exactly one leader GB

and a set (possibly empty) of individuals. Individuals are global computers
(think it as an Amoeba), or sub-colonies (think it as a Protozoa). The two
main characteristics of a colony are:

(1) a colony has exactly one leader GB and at least one individual (the GB

itself);
(2) a colony contains individuals (GC’s, or other sub-colonies).

The main challenges in Arigatoni lie in the management of an overlay net-
work with a dynamic topology, the routing of queries, and the discovery of
resources in the overlay. In particular, resource discovery is a non-trivial prob-
lem for large distributed systems featuring a discontinuous amount of resources
offered by global computers and an intermittent participation in the overlay.
Thus, Arigatoni features two protocols: the virtual intermittent protocols, VIP,
and the resource discovery protocol RDP. The VIP protocol deals with the dy-
namic topology of the overlay, by allowing individuals to login/logout to/from
a colony. This implies that the routing process may lead to failures, because
some individuals have logged out, or are temporarily unavailable, or because

2

they have been manu militari logged out by the broker because of their poor
performance or greediness (4).

The total decoupling between GCs in space (GCs do not know each other),
time (GCs do not participate in the interaction at the same time), and syn-
chronization (GCs can issue service requests and do something else, or may
be doing something else when being asked for services) is a major feature of
Arigatoni overlay network. Another important property is the encapsulation of
resources in colonies. All those properties play a major role in the scalability
of Arigatoni’s RDP.

The version V1 of the RDP protocol (2) enabled one service at the time to be
requested, e.g. a CPU, or a specific file. In (3), the protocol was enhanced (V2)
to take into account multiple instances of the same service. Adding multiple
instances is a non trivial task because the broker must keep track (when
routing requests) of how many resource instances were found in its own colony
before delegating the rest of the instances to the surrounding colonies.

The version V3, presented in this paper, adds multiple services and service
conjunctions. Adding service conjunctions allows a global computer to offer
several services at the same time. Multiple services requests can be also asked
to a GB; each service is processed sequentially and independently of others.
As an example of multiple instances, a GC may ask for 3 CPUs, or 4 chunks
of 1GB of RAM, or one chunk of 10GB of HD, or one gcc compiler; as an
example of a service conjunction, a GC may ask for another GC offering at the
same time one CPUs, and one chunk of 1GB of RAM, and one chunk of 10GB

of HD, and one gcc compiler.

If a request succeeds, then via the orchestration language of Arigatoni (not
described in this paper), the GC client can synchronize all resources offered by
the servers GC’s. To sum up, the contributions of this paper are:

• A complete description of the resource discovery protocol RDP V3, which
allows multiple instances, multiple services, and service conjunctions.

• A new version of the simulator taking into account the non trivial improve-
ments in the resource discovery protocol.

• Simulation results that show that our enhanced protocol is scalable.

The rest of the paper is structured as follows: after Section 2 describing the
main machinery underneath the protocol features, Section 3 introduces the
pseudocode of the protocol. Then, Section 4 shows our simulation results and
finally Section 5 provides related work analysis and concluding remarks. This
paper is an extended and improved version of (3).

3

2 Resource Discovery Protocol RDP V3

Suppose a GC X registers to its GB and declares its availability to offer a
service S, while another GC Y issues a request for a service S′. Then, the
GB looks in its routing table and filters S′ against S. If there exists a solu-
tion to this filter equation, then X can provide a resource to Y. For exam-
ple, S

△

= [CPU=Intel, Time<10sec] filters against S′
△

= [CPU=Intel, Time>5sec],
with attribute values Intel and Time between 5 and 10 seconds. In RDP V2, a
global computer asks not only for a service S, but also for a certain number
of instances of S; this is denoted by SREQ:[(S, n)]. In RDP V3:

• every GC registers in the colony with a tuple of (services,instances) like
SREG:[(Si, ni)]

i=1...h, and may ask for a tuple like SREQ:[(Sj, nj)]
j=1...k. Each

service is processed sequentially and independently of others. This is achie-
ved by wrapping the RDP V2 code inside a

for each j = 1 . . . k do . . . V2 code . . . end foreach

• a service request may also have the shape SREQ:[((
∧

i=1...n Si), n)], i.e. the
system is no longer asked to find n occurrences of a single service, but rather
n occurrences of a conjunction of services. That is, the system has to look for
n distinct GCs, each GC being able to provide all the services in

∧
i=1...n Si.

Each GB maintains a routing table T representing the services that are regis-
tered in its colony. The table is updated according to the dynamic registration
and unregistration of GC in the overlay. For a given S, the table has the form
T [S] = [(Pj, mj)]

j=1...k, where (Pj)
j=1...k are the address of the direct children

in the GB’s colony, and (mj)
j=1...k are the instances of S available at Pj. For

a single atomic service request SREQ:[(S, n)], the steps are:

• Look for q distinct GCs able to provide S in the local GB’s colony.
• If q<n, then search r≤(n−q) remaining instances in local sub-colonies.
• If r<(n−q), then delegate (n−q−r) remaining instances to the leader of the

colony.

A GC receiving a service request chooses the services that it accepts/rejects to
serve; then, it generates a SRESP message containing the lists of accepted/re-
jected services, and sends it to its GB. The response messages are then prop-
agated back in the overlay, following the reverse path.

A Service Request SREQ:[(S, n)] may arrive bottom-up to the GB directly
from its colony, or top-down from its own leader. In both cases, the leader
tries to locate n distinct GC that can provide S. More precisely, the list

4

[(Pj, mj)]
j=1...k contains all the direct children in GB’s colony that can pro-

vide S (child Pj with mj instances of S).

The discovery protocol features two search modes, selective and exhaustive.
Let SREQ:[(S, n)], and T [S] = [(Pj, mj)]

j=1...k.

• The selective search mode is resource conservative at the price of important
delays in case of low acceptance rates. The selective mode consist in:
· If

∑k
i=1 mi≥n, then there are enough resources in the GB’s colony to

provide S. Let y≤k be the smallest index such that
∑y

i=1 mi≥n, and
∑y−1

i=1 mi<n. Then, SREQ:[(S, mi)] is sent to all Pi (i≤y−1), and SREQ:[(S,

n−
∑y−1

i=1 mi)] is sent to Py.
· If

∑k
i=1 mi<n, then there are not enough GCs in the GB’s colony to provide

S. Then, SREQ:[(S, mi)] is sent to all Pi (i≤k), and SREQ:[(S, n−
∑k

i=i mi)]
is delegated to the GB’s leader. The rationale is that one first try to ask
for as many resources in GB’s colony, and then ask GB’s leader for the
remaining resources.

• The exhaustive mode is resource eager, but is independent of the acceptance
rate. The exhaustive search mode consists in sending SREQ:[(S, min(mi, n))]
to all Pi (1≤i≤k), and to delegate SREQ:[(S, n−

∑k
i=1 min(mi, n))] to the

GB’s leader. The rationale is to first ask for all resources in the GB’s colony,
and then ask the GB’s leader for the remaining resources.

A Service Response SRESP:ACC:[(S, a)], or SRESP:REJ:[(S, d)], may follow
service requests for services S. That is, “a” GCs accepted to provide S, and
“d” denied. Due to the asynchrony of Arigatoni, more replies can arrive to
the colony’s leader (i.e. a+d≥n). As for requests, there exists two modes that
tell the way the acceptances are propagated back to the leader of the colony.
In the selective reply mode, at most the number of instances of S that were
asked by the leader are returned, whereas in the exhaustive reply mode, all
acceptances are returned.

As for acceptances, there exists two modalities that determine the way those
acceptances are propagated back to the colony’s leader.

• In the selective search mode, the whole colony is asked for n instances of
S, at most. This implies that exactly d instances of S must now be looked
for to fulfill the original request. Hence, one first try to find d instances of
S in other sub-colonies. One then delegate the instances that could not be
found to the colony’s leader. Finally, the remaining instances are reported
back as rejected.

• In the exhaustive search mode, each sub-colony is asked for n instances of S,
at most. Hence, there may be other sub-colonies that have not replied yet,
and which may reply with enough acceptances to fulfill the request. The

5

remaining instances must be delegated to the colony’s leader.

3 RDP pseudo-code

In this section, we detail the pseudo-code of the RDP V3. Five global vari-
ables are used for each Arigatoni’s interaction “ask-route-reply-route-back”:
Path, asked, downstream, upstream, and SendList. Each message (SREQ or
SRESP) contains a unique identifier id, which is initially set to the address
of the GC that sends the initial SREQ message. The variable Path is a simple
hash “keyed” by the identifier of the message. The other variables are double
hashes which first key is the identifier of the message, and second key is a
given service S. The intuitive meaning of those variables is listed below.

• Path{id}: Peer address: identifies the peer from which the original SREQ

message came from.
• asked{id}{S}: Integer: instances of S asked and not replied, i.e., the re-

maining number of instances of S to find to fulfill the request.
• downstream{id}{S}: Integer: instances of S asked in colony and not replied.
• upstream{id}{S}: Integer: instances of S delegated but not replied.
• SendList{id}{S}: (Peer address, Integer)∗: the list of direct children that

are potentially able to provide S.

The pseudo-code of RDP V3 is showed in Algorithms [1 − 8].

Algorithm 1 Receiving SREQid:[(Si, ni)]
i=1...k from Pfrom (executed by P)

1: Path{id} ← Pfrom // To trace back the reverse route
2: for each (S, n) ∈ SREQ do

3: if SendList{id}{S} = ∅ then

4: SendList{id}{S} ← Filter(S, Pfrom) // Filter S in P’s routing table
5: end if

6: (RoutingList, remaining)← Route(Pfrom, S, n, search mode) // Build a routing list
7: asked{id}{S} ← asked{id}{S}+ n

8: if remaining 6= 0 then // Remaining instances to find

9: if L 6= ∅ and L 6= Pfrom then // L exists and is different from Pfrom

10: Insert L:(S, remaining) in RoutingList

11: upstream{id}{S} ← upstream{id}{S}+ remaining

12: else // P’s colony is isolated
13: Send SRESPid:REJ:[(S, remaining)] to Pfrom

14: asked{id}{S} ← asked{id}{S} − remaining

15: end if

16: end if

17: end for

18: for each Q:(S, m) ∈ RoutingList do

19: Send SREQid:[(S, m)] to Q // Send SREQid to every element in RoutingList

20: end for

Case of service request (Algorithm 1). Consider a global broker P re-
ceiving a service request SREQid from a neighbor Pfrom, and let L be P’s leader.

6

The same steps are performed for each tuple (S, n) ∈ SREQ.

• In line 1, the originator of the request is first recorded in Path{id}, so as
to allow reply messages to follow the reverse path.

• In line 4, the Filter function (Algorithm 6) determines the SendList{id}{S}
corresponding to service S, i.e., the list of direct children of the GB poten-
tially able to provide S.

• In line 6, theRoute function (Algorithm 8) builds (RoutingList, remaining),
i.e., the list of children that will receive a particular service request, accord-
ing to the selected search mode, and the positive number of the remaining
instances for which no server has been found. The RoutingList contains a
list of mappings of the form Q:[(S, m)] which means that we send a service
request SREQ:[(S, m)] to a neighbor Q.

• In line 9, if L exists and is not the originator of the request (to avoid routing
loops), then the entry L:(S, remaining) is appended to RoutingList (line
10), and the upstream counter is incremented, accordingly (line 11); else
(line 12, L exists and it is the originator of the request), since servers can be
found for remaining instances of service S, a rejection reply is sent back to
the originator of the request (line 13), and the asked counter is decremented,
accordingly (line 14).

• In line 19, a service request is sent to each neighbor Q having an entry in
the RoutingList.

Algorithm 2 Receiving SRESPid:ACC:[(Si, ai)]
i=1...k from Pfrom (exec. by P)

1: case search mode is

“selective” :

2: Send SRESPid:ACC:[(S, a)] to Path{id} // Forward the SRESP

3: “exhaustive” :

4: for each (S, n) ∈ SRESP do

5: if Pfrom = L then // Top-down request
6: upstream{id}{S} ← max(upstream{id}{S} − a; 0)

7: else // Bottom-up request
8: downstream{id}{S} ← max(downstream{id}{S} − a; 0)
9: end if

10: if asked{id}{S} ≥ a then // More instances asked than accepted
11: asked{id}{S} ← asked{id}{S} − a

12: acc return← a

13: else // More instances accepted than asked
14: acc return← asked{id}{S} − a

15: asked{id}{S} ← 0
16: end if

17: case reply mode is

“selective” :

18: Send SRESPid:ACC:(S, a) to Path{id} // Accepted “a” instances
19: “exhaustive” :

20: Send SRESPid:ACC:(S, acc return) to Path{id} // Accepted “acc return” instances
21: end case

22: end for

23: end case

Case of service response (Algorithms 2,3). Consider a global broker P

receiving a reply message SRESPid from a neighbor Pfrom. The operation of

7

the resource discovery algorithm is explained hereafter. The same steps are
performed for each tuple in SRESP.

• Acceptance (Algorithm 2). For each (S, a) ∈ SREQ, let SRESPid:ACC:[(S, a)]
arrive from Pfrom at P, i.e., “a” global computers in P’s colony accepted to
provide S.

If the selective search mode is used to route the original service request
SREQid : (S, n), issued by Path{id}, then the whole colony is asked for at
most n instances of S. Hence, no more than n acceptances may arrive from
P’s colony. Thus, the reply message is simply forwarded back to Path{id}
(line 2).

If the exhaustive search mode is used, then each child is asked for at
most n instances of S. Hence, it is possible that a number of acceptances
higher than n arrives from L’s colony. To do this, counters asked, upstream,
downstream, and acc return are updated, accordingly (lines 6 − 15).

The selective reply mode simply replies back to Path{id} with a ac-
ceptance instances (line 18), while the exhaustive reply mode replies with
acc return instances (line 20).

• Rejections (Algorithm 3). For each (S, d) ∈ SREQ, let SRESPid : REJ:[(S, d)]
arrive from Pfrom at P, i.e., “d” global computers in GB P’s colony refused to
provide S. This implies that all global computers in P’s colony have received
a request for a service S.

If the sender of the message is the leader L, then no other potential servers
for the d instances of S can be found. Consequently, the rejection message
is simply forwarded back (line 2), and counters asked and upstream are
updated, accordingly (lines 3 and 4).

If L is not the sender of the rejected message, then there may be other po-
tential servers in the colony or in other surrounding colonies. The operation
of the protocol depends on the search mode that is used.
· (exhaustive search mode) Then there are no other potential servers in

L’s colony but there may be in other surrounding colonies. Hence, the
number of instances of S that need to be found to fulfill the request is first
determined.

If asked≤downstream+upstream (line 9), then there are enough poten-
tial servers in the colony or in surrounding colonies that have not replied
yet, to fulfill the request. Consequently, we simply wait for more replies
(line 11).

In contrast, if asked≥downstream+upstream, then one looks for more
potential servers in order to fulfill the request. Then, there are (asked−
downstream−upstream) of them to be found (line 13). As said before,
servers may be found by delegating to the leader L. Hence, the latter
receives a request for the remaining instances of S, if possible, (line 16), or
a rejection is sent back to the original sender of the request (line 19). The
upstream or asked counters are updated, accordingly (lines 15 and 18).

· (selective search mode) Then there may be other potential servers in P’s

8

Algorithm 3 Receiving SRESPid:REJ:[(Si, di)]
i=1...k from Pfrom (exec. by P)

1: if Pfrom = L then // Return rejections
2: Send SRESPid:REJ:[(S, d)] to Path{id}
3: asked{id}{S} ← asked{id}{S} − d

4: upstream{id}{S} ← upstream{id}{S} − d

5: else // Retry at other children or delegate
6: case search mode is

“exhaustive” : // Try to delegate or reject
7: for each (S, n) ∈ SRESP do

8: downstream{id}{S} ← max(downstream{id}{S} − d; 0)
9: if asked{id}{S} ≤ downstream{id}{S}+ upstream{id}{S} then

10: // Less instances asked than down/upstream’ed
11: Wait for more replies from other children

12: else // More instances asked than down/upstream’ed
13: remaining ← asked{id}{S} − downstream{id}{S} − upstream{id}{S}
14: if L 6= ∅ and L 6= Path{id} then

15: upstream{id}{S} ← upstream{id}{S}+ remaining

16: Send SREQid:(S, remaining) to L

17: else

18: asked{id}{S} ← asked{id}{S} − remaining

19: Send SRESPid:REJ:(S, remaining) to Path{id}
20: end if

21: end if

22: Remove Pfrom from SendList{id}{S}
23: end for

24: “selective” : // Try other children, delete, or reject
25: for each (S, n) ∈ SRESP do

26: Remove Pfrom from SendList{id}{S} // Don’t send requests to Pfrom anymore
27: (RoutingList, remaining)← Route(Pfrom, S, d, search mode)

28: if remaining 6= 0 then // Still remaining instances to treat

29: if L 6= ∅ and L 6= Pfrom then // L exists and is different from Pfrom

30: Insert L:(S, remaining) in RoutingList

31: upstream{id}{S} ← upstream{id}{S}+ remaining

32: else // P’s colony is isolated
33: Send SRESPid:REJ:(S, remaining) to Path{id}
34: asked{id}{S} ← asked{id}{S} − remaining

35: end if

36: end if

37: end for

38: for each Q:{(S, e)} ∈ RoutingList do

39: Send SREQid:[(S, e)]to Q // Send an SREQ for every element in RoutingList

40: end for

41: end case

42: end if

colony. The process is the same as in Algorithm 1, except that one do
not consider children that have already received a request (line 22, 24). For
that purpose, one use the SendList that is originally created by the Filter
function (during the processing of the original service request message),
and produce another RoutingList with the Route function (line 27).

Finally, one proceeds as in Algorithm 1 (lines 28 − 41).

Algorithm 4 Receiving SREQ:[(Si, 1)] from L (executed by a GC)
1: for each i = 1 . . . k do

2: if accept then

3: Acc
append
←− Si

4: end if

5: end for

6: Send SRESP:ACC:[(Si, 1)]
i∈Acc to L

7: Send SRESP:REJ:[(Si, 1)]
i/∈Acc to L

9

Algorithm 5 Receiving SRESP:ACC:[(S, a)] from L (executed by a GC)
1: Initiate P2P negotiation with GCs (embedded in message)

RDP embedded in GCUs (Algorithms 4,5). We show the cases of re-
ceiving a service request and a positive service response. The case of negative
service response is trivial since the GC do simply nothing. Note that each reply
message is formally of the form SRESP:ACC:[(S, Pi)]

i=1...k where the Pi are the
GCs that accepted to provide S (the same for rejections). Those algorithms
are quite intuitive and need not to be commented.

Algorithm 6 The Filter(S, Pfrom) function for RDP V2

1: for each entry T [S′] = [(Pj , nj)]
j=1...k in T do

2: if S filters S′ then

3: for each j = 1 . . . k such that Pj 6= Pfrom do

4: SendList{id}{S}{Pj} ← SendList{id}{S}{Pj}+ nj // Add/update SendList{id}{S}{Pj}
5: end for

6: end if

7: end for

8: return SendList{id}{S}

Algorithm 7 The Filter(S
△

= (
∧

i=1...n Si), Pfrom) function for RDP V3
1: for each i = 1 . . . n do

2: tmp← 0 // Auxiliary vector

3: for each entry T [S′] = [(Pj , nj)]
j=1...k in T do

4: if Si filters S′ then // Handle all conjunctions
5: for each j = 1 . . . k such that Pj 6= Pfrom do

6: tmp[j]← tmp[j] + nj

7: end for

8: end if

9: end for

10: if SendList{id}{S} = ∅ then

11: SendList{id}{S} ← tmp

12: else

13: for each j = 1 . . . k do

14: SendList{id}{S}{Pj} = min(SendList{id}{S}{Pj}, tmp[j])
15: end for

16: end if

17: end for

18: return SendList{id}{S}

The Filter function for V2 builds the SendList{id}{S} corresponding to
the request id for a service S, i.e. the direct list of GB P’s children that are
potentially able to serve the request for S coming from Pfrom. The function
parses all the services in the routing table, accordingly. The Filter function
for V3 enables service conjunctions and for this it has to be modified. For a
service request of the form SREQ:[((

∧
i=1...n Si), n)], the system is no longer

asked to find n occurrences of a single service, but rather n occurrences of a
conjunction of services. That is, the system has to look for n distinct GCs,
each GC being able to provide all the services in

∧
i=1...n Si. A conjunction of

services is treated atomically, i.e., as a single service S. Both algorithms are
quite intuitive and they are are described in Algorithms 6 and 7.

10

Algorithm 8 Route(Pfrom, S, n, search mode)
1: remaining ← n

2: RoutingList← ∅
3: for each (Q, f) ∈ SendList{id}{S} do

4: if Q = Pfrom or Q = Path{id} then

5: continue // Go to next iteration in loop
6: end if

7: case search mode is

“exhaustive” :

8: if n ≥ f then // More instances asked than offered
9: Insert Q:(S, f) in RoutingList

10: remaining ← remaining − f

11: downstream{id}{S} ← downstream{id}{S}+ f

12: Remove (Q, f) from SendList{id}{S}

13: else // More instances offered than asked
14: Insert Q:(S, n) in RoutingList

15: remaining ← 0
16: downstream{id}{S} ← downstream{id}{S}+ n

17: f ← f − n

18: end if

19: “selective” :

20: if remaining ≥ f then // More instances asked than offered
21: Insert Q:(S, f) in RoutingList

22: remaining ← remaining − f

23: Remove (P, f) from SendList{id}{S}

24: else // More instances to offer than asked
25: Insert Q:(S, remaining) in RoutingList

26: f ← f − remaining

27: remaining ← 0
28: end if

29: if remaining = 0 then // No more instances to treat

30: break // Break loop
31: end if

32: end case

33: end for

34: return (RoutingList, remaining)

The Route function of Figure 8 builds RoutingList, i.e., the list of neigh-
bors that ask for a particular service, according to the selected search mode;
it has the form {(Pi:(S, ni))}

i=1...h, that is neighbors Pi will receive a request
for ni instances of S. The function also returns the remaining instances for
which no server has been found.

4 Protocol Evaluation

The actual Arigatoni’s topology is tree-based with a routing complexity of
O(log N) (N being the number of nodes). However, in each GB, an extra com-
plexity is required in order to solve the filter equation between the service
request and the routing table T containing the mapping between peers and
resources; this complexity is usually linear in the size of S.

To assess the effectiveness and the scalability of the protocol, we have con-
ducted simulations using large numbers of units and service requests. For lack
of space, we only present the results that correspond to the new features of the

11

protocol, namely, the ability to specify multiple instances of a service, service
conjunctions, and multiple services.

We have generated a network topology of 103 GBs, using the transit-stub
model of the Georgia Tech Internetwork Topology Models package (5), on top
of which we added the Arigatoni overlay network. We considered a finite set of
services S1 . . . Sr of size r = 128, with an exact filtering policy (i.e., Si filters
Si and no other services), and we defined the overlap interval 1≤L≤128, as
the interval of indices inside which services filter each other, that is, for all
(i, j) ∈ L2, Si filters against Sj. If L=128, then all services filter each other; if
L=1, then each service only filters with itself. At each GB, we added a number
of GCs chosen randomly between 0 and 100.

At each GB, we added a random number of GCs chosen uniformly at random
between 0 and 100. To simulate subscription load, we then randomly registered
at each GC each service with a probability ρ denoting the global availability of
services, or as the density of population of GCs (since the more the number of
GCs, the more likely it is that a given service is provided). The routing tables
were updated, accordingly.

We then issued 50, 000 service requests at GCs chosen uniformly at random.
Each request contained either a certain number of instances I of a service, or
one instance of a conjunction of services, also chosen uniformly at random.
Each service request is then handled by the RDP V3. We used a service ac-
ceptance probability of α=75%, which corresponds to the probability that a
GC, receiving a request for a S (and offering S), accepts to provide it.

Upon completion of all the requests, we measured for each GB its load as
the number of requests (messages) it received. We then computed the average
load as the average value over the population of GB s in the system. We also
computed the maximum load as the maximum value of the load over all the
GBs in the system.

We computed the average and maximum load fractions as the average and
maximum loads divided by the number of requests. The average load repre-
sents the average load of a GB due to the completion of the n requests. The
average load fraction represents the fraction of requests that a GB served,
on average. The maximum fraction represents the maximum fraction of the
requests that a GB served. Since a GB receives at most one request message
corresponding to a given service request, the average load fraction can be seen
as the fraction of GBs in the system involved in a service request, in average.

We computed the average service acceptance ratio as follows. For each GC, we
computed the local acceptance ratio as the number of service requests that
yielded a positive response (i.e. the system found at least one GC), over the
number of service requests issued at that GC. A service request that contained

12

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9 10

R
at

io
 (

%
)

I

Avg. load fraction
Max. load fraction
Avg. success rate

(a)

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9 10

R
at

io
 (

%
)

I

Avg. load fraction
Max. load fraction
Avg. success rate

(b)

Fig. 1. Average and maximum load fraction, and average success rate w.r.t. (a)
number of instances (b) number of services in conjunction.

multiple instances of a service counts as a positive response only if the system
found as many GCs as the number of instances specified in the request.

We then computed the average acceptance ratio as the average value over the
number of GC (that issued at least one service request). Figure 1(a) shows the
influence of the number of instances I in service requests on the average and
maximum load fraction and on the average success rate. It is obtained with a
value of ρ of 0.12%. Unsurprisingly, we observe that asking for more instances
of a service requires more resources from the system. Indeed, for each instance,
the system tries to find a different GC able to provide the service. We observe
that low level GBs participate more, since there are more delegations. For
values I higher than 7, the average and maximum load fractions stabilize, as
the average success rate keeps decreasing; this means that there are not enough
resources in the system to completely fulfill the request (i.e., not enough GCs
able to provide the requested service).

Figure 1(b) shows the influence of the number of services in a conjunction. It
is obtained with a value of ρ of 3%. The phenomenon and its explanation is
mostly similar to that of Figure 1(a), except that it happens at a much greater
scale. Indeed, the system must find a GC that can provide (and accepts) all
the services in a conjunctive service request, which requires to probe a much
greater portion of the network than if a single service is asked.

5 Related Work and Conclusions

Many technologies, algorithms, and protocols have been proposed recently for
resource discovery. Some of them focus on Grid or P2P oriented applications,
but none of those targets the full generality as Arigatoni does. Indeed, Arigatoni

deals with generic resource discovery for building an overlay network of global
computers, structured in a virtual organization of variable topology, with clear
distinct roles between leader GBs and individuals (GCs or sub-colonies).

13

Discussion on Closest Overlay Architectures (from (6)). The main
challenges of “pervasive computing” are how to build an overlay network with
dynamic topology, and how to route queries and discover resources efficiently.

In an overlay network, any message is routed through the full overlay; as such,
the topology adopted in the overlay strongly affects routing algorithms and
their complexity. The overlay is built on top of the physical one, and, thus,
two neighbor nodes in the overlay network may be many links apart in the
physical network. The Arigatoni topology is a dynamic hierarchical n-layer
tree. To assist lookup, structured overlays map (key of) data item to nodes
(our GBs). Hence, the mapping is usually done through hashing the key space
of the data item to the id space of nodes. In Arigatoni, routing tables denoting
the set of resources are stored in GB’s; thus, each GB maintains a partition of
the data space. When a GC asks for a resource, the query is filtered against the
first direct GB’s routing table; in case of filter-failure, the query is recursively
forwarded to the direct super-GB. Any answer of the query must follow the
reverse path. Thus, lookup overhead reduces when a query is satisfied in the
current colony. Most structured overlays guarantee lookup operations that
are logarithmic in the number of nodes. To improve performance of lookup,
caching and replication of either data, search paths, or both is possible. Besides
improving routing, replication assists in providing load balancing, improves
fault tolerance, and the durability of data items.

In the literature, there are essentially the following types of overlays: struc-
tured (tree, ring, or grid), unstructured, hybrid overlays (a combination of the
two above), and multi-layer (or n-layer) overlays. Arigatoni falls in the latter
category that is widely used in many P2P systems.

In a nutshell, in a n-layer overlay network, the responsibility assigned to in-
dividuals differs (think of the different roles between GBs and GCs), since
super-peers (GBs) serving as a server for a subset of all peers. Ordinary peers
(GCs) submit queries to their super-peers and receive results from it. Super-
peers are also connected to each others; they route messages over the overlay
network, submit, delegate, and answer queries on behalf of their peers. This
structure is replicated recursively, creating a n-layer topology, where peers
become super-peers with decreasing responsibilities.

Typical issues in n-layer overlays are the size of each colony, and the internal
coherence of the resources offered and requested by each colony. Typical bot-
tlenecks of n-layers are reliability, service availability (related to few points of
failure), and load balancing. Classical solutions to cope with these problems
are adding redundancy at the broker-layer.

Historically, the most related tree topologies are BATON (7) and P-GRID (8),
whereas the closest n-layer topologies are the one of Canon (9) and Coral (10).

14

We summarize the most closest topologies.

• (BATON) is a balanced binary tree that features a left and a right routing
table, both contained in each node (denoted by a single logical id). Nodes
may join or leave the network at any time, provided the tree remains bal-
anced. The node receiving a join can forward the join towards a node which
has less children or which is a leaf node. This implies that a GC can become
a GB. Leaving the network is constrained to not breaking the balanced tree
unless finding a substitute. As such, load balancing can be costly.

• (P-GRID) is a distributed dynamic binary search tree, such that the search
space is partitioned between peers. The salient feature of P-GRID is the
separation of concerns between id and position in the network. All peers
maintain a partial routing table of the search space, that negotiated with the
closest peers. Multiple peers can be responsible for the same path, resulting
in a non uniqueness of routing and a robustness under peer failure.

• (Canon) is a multi-layer overlay where routing is based on a hierarchical
DHT. As in Arigatoni, the search space is partitioned into domains ; in con-
trast, routing inside a domain is DHT-based, and topology is static.

• (Coral) is another hierarchical DHT. The search space is partitioned into
three clusters, based on latency; a regional cluster, a continental cluster
and a planet-wide cluster. It also comes with algorithm for self-organizing,
merging and splitting clusters, to ensure acceptable diameters.

Conclusions. In this paper, we describe the version V3 of the Arigatoni’s
generic resource discovery protocol. The new improved protocol RDP pre-
sented in this paper allows for multiple instances, multiple services, and service
conjunctions. Other main achievements are the complete decoupling between
the different units in the system, and the encapsulation of resources in local
colonies, which enable Arigatoni to be potentially scalable to very large and
heterogeneous populations.

The reliability of the RDP V3 itself, although desirable, is of lesser importance,
given the fact that service provision is not guaranteed at all in Arigatoni (indeed
it is not a requirement). In other words, when a GC issues a service request, it
is possible that no individuals are found for some of the services included in the
request. This happens, for example, if those services have not been declared
by any GCs in the system, or if all the GCs that have declared themselves as
potential servers refuse those services .

However, at the cost of memory and bandwidth requirements, it is still possible
(future work) to implement reliable resource discovery by using a reliable
transmission protocol (e.g. TCP), an applicative acknowledgment scheme in
combination with a retransmission buffer, and persistent data storage, and
leader’s replication.

15

As part of our ongoing research, we are also working on a more complete
mathematical study of our system, based on more elaborate statistical mod-
els and realistic assumptions, as well as the possibility to include hierarchical
DHT in addition to the routing tables. The possibility to change the Arigatoni

topology from a hierarchical tree to a graph is also intriguing. We are currently
working on the implementation of a actual prototype and the subsequent de-
ployment on the PlanetLab experimental platform (11), and/or on GRID5000,
the experimental platform available at the INRIA (12).

Acknowledgment. We warmly thanks Pierre Lescanne and the anonymous
referees for the useful comments and multiple constructive suggestions.

References

[1] D. Benza, M. Cosnard, L. Liquori, M. Vesin, Arigatoni: A Simple Pro-
grammable Overlay Network, in: Proc. of John Vincent Atanasoff Inter-
national Symposium on Modern Computing, IEEE, 2006, pp. 82–91.

[2] R. Chand, M. Cosnard, L. Liquori, Resource Discovery in the Arigatoni
Overlay Network, in: I2CS: International Workshop on Innovative Inter-
net Community Systems, LNCS, Springer, 2006, to appear. Also available
as RR INRIA 5928.

[3] R. Chand, M. Cosnard, L. Liquori, Improving Resource Discovery in the
Arigatoni Overlay Network, in: ARCS: International Conference on Ar-
chitecture of Computing Systems, LNCS, Springer, 2007, to appear.

[4] M. Cosnard, L. Liquori, R. Chand, Virtual Organizations in Arigatoni,
DCM: International Workshop on Developpment in Computational Mod-
els. To appear in ENTCS.

[5] E. Zegura, K. Calvert, S. Bhattacharjee, How to Model an Internetwork,
in: Proc. of INFOCOM, IEEE, 1996, pp. 594–602.

[6] AEOLUS, Deliverable D2.1.1: Resource Discovery: State of the Art Sur-
vey and Algorithmic Solutions, Tech. rep., By Evangelia Pittoura, Uni-
versity of Ioannina, http://aeolus.ceid.upatras.gr (2006).

[7] H. Jagadish, B. Q. Vu, BATON: A Balanced Tree Structure for Peer-to-
Peer Networks, in: Proc. of VLDB, ACM, 2005, pp. 661–672.

[8] K. Aberer, P-Grid: A Self-Organizing Access Structure for P2P Informa-
tion Systems , in: Proc.of CoopIS, no. 2172 in LNCS, Springer, 2001, pp.
179–194.

[9] P. Ganesan, P. Krishna, H. Garcia-Molina, Canon in G-major: Designing
DHTS with Hierarchical Structure, in: Proc. of ICDCS, IEEE, 2004, pp.
263–272.

[10] M. J. Freedman, D. Mazières, Sloppy Hashing and Self-Organizing Clus-
ters, in: Proc. of IPTPS, no. 2735 in LNCS, Springer, 2003, pp. 45–55.

[11] Planet Lab Consortium, http://www.planet-lab.org.
[12] The Grid 5000 Consortium, http://www.grid5000.org.

16

