
HAL Id: hal-00910335
https://hal.inria.fr/hal-00910335

Submitted on 29 Nov 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Out-of-Order Execution of Guarded ISAs
Nathanaël Prémillieu, André Seznec

To cite this version:
Nathanaël Prémillieu, André Seznec. Efficient Out-of-Order Execution of Guarded ISAs. [Research
Report] RR-8406, INRIA. 2013, pp.24. �hal-00910335�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49708735?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00910335
https://hal.archives-ouvertes.fr


IS
S

N
0

2
4

9
-6

3
9

9
IS

R
N

IN
R

IA
/R

R
--

8
4

0
6

--
F

R
+

E
N

G

RESEARCH

REPORT

N° 8406

28 novembre 2013

Project-Team ALF

Efficient Out-of-order

Execution of Guarded

ISAs

Nathanael Prémillieu, André Seznec





RESEARCH CENTRE

RENNES – BRETAGNE ATLANTIQUE

Campus universitaire de Beaulieu

35042 Rennes Cedex

Efficient Out-of-order Execution of Guarded

ISAs

Nathanael Prémillieu, André Seznec

Équipe-Projet ALF

Rapport de recherche n° 8406 — 28 novembre 2013 — 24 pages

Résumé : Les processeurs exécutant le jeu d’instructions ARM ne sont omniprésents. La demande
de puissance de calcul est telle qu’aujourd’hui toutes les techniques jusqu’à prśent réservd́es à la
haute performance sont utilisées pour le design de ces processeurs.
Dans ce rapport, nous montrons que le jeu d’instruction prédiqué de ARM n’est pas un obstacle à
la mise en oeuvre efficace de l’exécution dans le désordre.

Mots-clés : Architecture des processeurs

This work was partially supported by the European Research Council Advanced Grant
DAL No 267175



Efficient Out-of-order Execution of Guarded ISAs

Abstract: ARM ISA based processors are no longer low-cost low-power pro-
cessors. Nowadays ARM ISA based processor manufacturers are struggling to
implement medium-end to high-end processor cores which implies implemen-
ting a state-of-the-art out-of-order execution engine. Unfortunately providing
efficient out-of-order execution on legacy ARM codes may be quite challenging
due to guarded instructions.

Predicting the guarded instructions addresses the main serialization impact
associated with guarded instructions execution and the multiple definition pro-
blem. Moreover guard prediction allows to use a global branch-and-guard history
predictor to predict both branches and guards, often improving branch predic-
tion accuracy. Unfortunately such a global branch-and-guard history predictor
requires the systematic use of guard predictions. In that case, poor guard pre-
diction accuracy would lead to poor overall performance on some applications.

Building on top of recent advances in branch prediction and confidence es-
timation, we propose a hybrid branch and guard predictor, combining a glo-
bal branch history component and global branch-and-guard history component.
The potential gain or loss due to the systematic use of guard prediction is dyna-
mically evaluated at run-time. Two computing modes are enabled: systematic
guard prediction use and high confidence only guard prediction use.

Our experiments show that on most applications, an overwhelming majority
of guarded instructions are predicted. Therefore a simple but relatively ineffi-
cient hardware solution can be used to execute the few unpredicted guarded
instructions. Significant performance benefits are observed on most applications
while applications with poorly predictable guards do not suffer from perfor-
mance loss.

Key-words: Processor, Architecture, Guard, Predicate, Prediction



Efficient Out-of-order Execution of Guarded ISAs 3

Efficient Out-of-order Execution of Guarded ISAs

Nathanel Prémillieu and André Seznec

Abstract

ARM ISA based processors are no longer low-cost low-power processors.
Nowadays ARM ISA based processor manufacturers are struggling to implement
medium-end to high-end processor cores which implies implementing a state-of-
the-art out-of-order execution engine. Unfortunately providing efficient out-of-
order execution on legacy ARM codes may be quite challenging due to guarded
instructions.

Predicting the guarded instructions addresses the main serialization impact
associated with guarded instructions execution and the multiple definition pro-
blem. Moreover guard prediction allows to use a global branch-and-guard history
predictor to predict both branches and guards, often improving branch predic-
tion accuracy. Unfortunately such a global branch-and-guard history predictor
requires the systematic use of guard predictions. In that case, poor guard pre-
diction accuracy would lead to poor overall performance on some applications.

Building on top of recent advances in branch prediction and confidence es-
timation, we propose a hybrid branch and guard predictor, combining a global
branch history component and global branch-and-guard history component. The
potential gain or loss due to the systematic use of guard prediction is dynami-
cally evaluated at run-time. Two computing modes are enabled : systematic
guard prediction use and high confidence only guard prediction use.

Our experiments show that on most applications, an overwhelming majority
of guarded instructions are predicted. Therefore a simple but relatively ineffi-
cient hardware solution can be used to execute the few unpredicted guarded
instructions. Significant performance benefits are observed on most applications
while applications with poorly predictable guards do not suffer from perfor-
mance loss.

1 Introduction

Most instruction sets offer a limited form of guarded instructions, generally
the conditional move, e.g. X86, Alpha, MIPS, SPARC V9, ... For these instruc-
tion sets, the compiler has limited option to generate if-converted branches [1],
and in practice, the number of guarded instructions in the generated codes is
quite limited. The impact of guarded instructions on the effective performance
of the processor is also limited. On the other hand, other instruction sets such
as ARM or IA64 have taken a much more radical approach : (nearly) all ins-
tructions can be guarded. Therefore the compiler has much more opportunity
to generate guarded instructions.

The ARM-v7 ISA is now dominating the low power general-purpose proces-
sor segment. With the rise of mobile devices (smartphones, tablets), there is a
constant demand for higher performance. Manufacturers are now adapting all
the concepts that were used in high-end microprocessors to the ARM ISA, inclu-
ding out-of-order execution. However, providing efficient out-of-order execution

RR n° 8406



Efficient Out-of-order Execution of Guarded ISAs 4

on a fully guarded ISA may be quite challenging 1.
The main difficulty for out-of-order execution of guarded instructions is the

multiple definition problem [30]. This arises when the last instruction that may
have written an architectural register Ri was a guarded instruction. In that
case, when renaming the registers for a subsequent instruction I which uses
Ri as an operand, one has to determine the effective physical register which
will provide the value of Ri to instruction I, either the physical destination
register of the guarded instruction or the old physical register associated with
Ri. A working yet not efficient solution is to insert an extra non-architectural
instruction after the guarded instruction [2]. This non-architectural instruction
writes either the result of the operation of the guarded instruction or the old
value depending on the dynamic guard (see Figure 4 in Section 2.3). However,
this solution may hurt performance as it serializes the execution of possibly
independent instructions e.g. when the same register is written on both paths
of a branch that has been if-converted, thus reducing the available instruction
level parallelism. More aggressive solutions [16, 6, 30] have been proposed to
handle the multiple definition problem, but they induce a significant hardware
overhead.

Predicting guarded instructions addresses the multiple definition problem
[8]. However, systematic usage of guard prediction may sometimes lead to high
guard misprediction rate and therefore to poor overall performance. Restricting
the use of guard prediction to the high confidence predictions appears to limit
performance degradation [17].

In this paper, we build on top of recent advances in branch prediction [23]
and confidence estimation [21] for efficiently supporting out-of-order execution
on a guarded ISA. We propose a hybrid branch and guard predictor, combining a
global branch history predictor and a global branch-and-guard history predictor.
This hybrid predictor will be referred to as the BO-BG predictor, for Branch
Only history- Branch-and-Guard history. The BO-BG predictor is often more
accurate on branch prediction than its branch-only history component. However,
on some applications or application phases, the guard misprediction rate of BO-
BG is quite high. In these cases, systematic use of guard predictions leads to
lower performance.

Therefore we introduce a simple heuristic to dynamically estimate the per-
formance benefit or loss of the systematic usage of guard prediction. Our BoL
(for Benefit or Loss) heuristic determines whether to run in systematic guard
prediction use mode or in high confidence only guard prediction use mode. When
running in high confidence only guard use mode , the global branch-and-guard
history can be corrupted with mispredicted guards, therefore, only the branch-
only predictor component is used.

Our experiments using the BO-BG predictor and the BoL heuristic show
that, on most applications, most guarded instructions are predicted. Therefore
simple but relatively inefficient hardware solution can be used to execute the
few unpredicted guarded instructions. Compared with out-of-order execution
without guard prediction, significant performance benefits are encountered on
most applications while applications with poorly predictable guards do not suf-
fer any from performance loss. Moreover, our experiments also show that an

1. The handling of guarded instructions in currently implemented out-of-order execution
processors is largely undocumented

RR n° 8406



Efficient Out-of-order Execution of Guarded ISAs 5

aggressive implementation of guarded instruction execution is not worth the
extra hardware complexity and power consumption.

The remainder of this paper is organized as follows. Section 2 provides back-
ground on the multiple definition problem in out-of-order execution processor
using guarded ISAs. Section 3 presents related works on guarded instructions
and guard prediction. Guards in the ARM-v7 ISA are described in Section 4. Sec-
tion 5 details our BO-BG predictor proposal and the associated BoL heuristic.
Section 6 presents our evaluation framework. Section 7 presents our experimen-
tal simulation results on ARM codes generated with a standard gcc compiler.
Finally, Section 8 concludes this study.

Terminology

When referring to ISAs, guards and predicates are used as synonyms. To
avoid repeating "predicate prediction" and "predicted predicate" in the paper,
we will use the term guard apart in the expression "False Predicated Conditional
Move" that was previously coined by Quiñones et al. [17].

2 Executing Guarded Instructions on an Out-of-

order Engine

2.1 Register Renaming (no predication)

In an out-of-order execution engine, the mapping table is used to store the
links between architectural registers and their associated physical registers value.
This mapping table is used to avoid false dependencies between instructions that
access the same architectural register. Hence, for each instruction, the rename
stage assigns new physical registers to the architectural destination registers and
the architectural source registers are renamed. A physical register P associated
with architectural register R is considered as dead when the next write on R

has been committed ; at this time it can be inserted in the free list and used
again for renaming.

Figure 1 illustrates an example of the register renaming process. Instruction
I reads from architectural registers R1 and R2, and writes into architectural
register R3. To obtain the renamed form of instruction I, one has to read the
mapping table. In this example, R1 is mapped to P12 and R2 to P15. The result
register R3 is assigned to the first physical register available in the free list of
physical register, P22 in this case. Then, the renamed form of I is I : P22 ←
P12, P15.

All these steps are performed by the renaming stage before executing the
instructions. Though renaming is applied to multiple instructions in parallel,
the process preserves the in-order semantic of the program.

2.2 The Multiple Definition Problem on Out-of-execution
Processors

When considering a guarded instruction, one cannot determine at the rename
stage whether it will effectively write its architectural register target at write
back or not because the guard value is often not known at this point.

RR n° 8406



Efficient Out-of-order Execution of Guarded ISAs 6

Figure 1 – Illustration of the register renaming process in an out-of-order
processor.

Figure 2 illustrates this issue, known as the multiple definition problem [30].
I1 conditionally writes to architectural register R1, I1 being guarded with the
guard p. After renaming, I1 conditionally writes to P1. I2 reads from R1, but
it is not possible to know whether the correct physical register associated with
R1 is P1 or P11 before the guard associated with I1 is computed.

Figure 2 – The multiple definition problem on an out-of-order execution engine.

2.3 Dealing with the Multiple Definition Issue

2.3.1 False Predicated Conditional Moves

On an out-of-order execution processor, the execution of guarded instruction
I writing the architectural register Res :

(guard) ? Res ← Operation(Op1, Op2)
should result at execution stage in :

Pafter = (guard) ? Operation(Op1, Op2) : Pbefore

where Pbefore and Pafter are respectively the physical registers assigned to archi-
tectural register Res before and after instruction I. That is if the guard is false,
the instruction copies the value from the physical register previously allocated
to Res to the newly allocated physical register.

Quiñones et al. [17] refer at this functionality as False Predicated Conditional
Move, FPCM.

Direct implementations of FPCM are considered in the literature [16, 6] . Fi-
gure 3 illustrates the artificial dependency that is created by FPCM. Instruction
I2 must be executed after instruction I1 and this, independently of the effective
value of the guard.

RR n° 8406



Efficient Out-of-order Execution of Guarded ISAs 7

The direct implementation of FPCM leads to very significant hardware com-
plexity in the design. Every guarded instruction has an extra physical register
operand. Therefore, extra complexity is added in most of the stages of the pipe-
line, particularly on the physical register file (extra read ports), on the bypass
network and on operand tracking in the issue logic.

Figure 3 – False Predicated Conditional Move ; each guarded instruction is
added an extra register operand : the old value of the target operand

2.3.2 Split FPCM

The above mentioned complexity can not be justified when the use of guar-
ded instructions is quite infrequent, e.g. when the instruction set only allows
conditional moves.

An alternative implementation consists in detecting the guarded instruc-
tion at decode time and splitting the instruction in two consecutive micro-
operations : the first micro-operation executing the computation and the second
micro-operation selecting between the previous target register value and the re-
sult of the first micro-operation. We will refer to this implementation as split
FPCM 2. The two micro-operations corresponding to the instruction I :

(guard) ? Res ← Operation(Op1, Op2)
are

Pnew = Operation(Op1, Op2)
and

Pafter = (guard) ? Pnew : Pbefore

Figure 4 illustrates the serialization of the sequence of accesses on the re-
gisters, as well as the artificial creation of long dependency chains. Even if
micro-operations I1 and I2 were executed on the same cycle T , the physical
register P8 mapping architectural register R1 for subsequent instructions will
not be valid before I2′ is executed (cycle T+2 at best). Such an implementation
may impair performance when a significant amount of guarded instructions are
executed.

2.3.3 Select-µ operation

The split FPCM mechanism inserts systematically an extra micro-operation
for each guarded instruction. This results in a longer latency for guarded instruc-

2. Despites extensive search, we have not found any bibliographical reference on split
FPCM. However this technique has been known in the industry since the mid 90’s [2]

RR n° 8406



Efficient Out-of-order Execution of Guarded ISAs 8

Figure 4 – Split FPCM : the first micro-operation unconditionally executes the
operation, a second micro-operation selects between the new value or the old
value.

tion as well as systematic serialization of potentially independent instructions.
Wang et al. [30] propose the select-µ op instruction, a solution to reduce this

overhead and limit serialization to cases where it is mandatory. This instruction
is conceptually similar to the φ-function used in the Single Static Assignment
analysis [9]. The select-µ op is inserted just before a multiple definition must
be resolved, e.g. when an non-guarded instruction reads a register that was last
written by a guarded instruction.

Compared with split FPCM, select-µ op has several advantages. First, it
postpones the insertion of the selection micro-operation till the effective use of
the architectural register with a different guard. That is, in case of successive
guarded writes on the same architectural register using the same guard, a single
select-µ op selection instruction is inserted. Second, the (speculative) executions
of two guarded instructions writing the same register, but guarded with opposite
guards are not sequentialized and result in a single select-µ op insertion.

However, the select-µ op mechanism is rather complex to implement in hard-
ware ; for instance each entry in the register mapping table must record two dif-
ferent physical register numbers and a physical guard register number. A single
guarded instruction with two register operands and one guard can trigger up to
three select-µ op insertions (one per register operand and one for the guard).
Triggering these insertions requires to check the mapping table to look for the
previous guarded definitions of the registers, adding extra complexity to the re-
naming stage. In comparison, the treatment of split FPCM can be implemented
just at the exit of the decode stage.

Moreover, in their study, Wang et al. [30] fail to indicate how precise inter-
ruptions could be implemented : speculative registers allocated to an instruction
may survive forever in the model proposed in [30] 3.

3 Related Works on Branch and Guard Predic-

tions

Efficiently dealing with control instructions in a processor has always been
a challenge. Two directions have been proposed, using prediction to know in
advance the direction and the target of the branch [25], and using guarded
instructions.

If-conversion was proposed by Allen et al. [1]. They define an algorithm to
convert control dependencies into data dependencies by replacing branches and
their dependent instructions by guarded instructions.The guarded instructions
are only executed if their guard is evaluated to true. This conversion algorithm is

3. Note for reviewers : Solutions to solve this issue are out of the scope of our study

RR n° 8406



Efficient Out-of-order Execution of Guarded ISAs 9

often called if-conversion. If-conversion allows to merge the taken and not-taken
paths in the binary, it removes a branch, and allow to sequence both paths at the
same time. However, it is not possible to if-convert all conditional branches. It is
not always performance effective either, since both paths are fetched, increasing
occupancy of the processor resources. Thus, one should only if-convert a subset
of the convertible branches. Compilers often if-convert short branches only.

Combining branch prediction and guarded execution has been proposed in
several studies [15, 14, 6]. The main idea is to have the compiler generating
branch instructions and taken and not-taken paths for easy-to-predict control
flow while hard-to-predict control flow is treated through if-conversion. This re-
duces the number of mispredicted branches at run-time and should increase per-
formance. Chang et al. [6] use profiling to identify the hard-to-predict branches
to convert. They show that profiling is efficient at identifying hard-to-predict
branches. Kim et al. [15] further propose the wish branches. For each candidate
to if-conversion, two versions of the code are generated, the guarded and the
non-guarded code. Then, the executed version is chosen dynamically based on
a confidence estimation.

Several studies [16, 29] point out that removing branches by if-conversion
may impact the accuracy of branch prediction on the other branches. Simon et
al. [24] observe that the outcomes of some branches can be directly related to
the value of some guards, and therefore that applying if-conversion on selected
branches often decreases branch prediction accuracy for other branches. They
also propose to include guard information in the global branch history to try
to capture the correlation lost by the if-conversion. However their approach is
limited to include effective guard information when known at fetch time.

Guard prediction solves the multiple definition problem. Chuang and Calder
[8] propose to use a guard predictor. The predictor is derived from a branch
predictor. Contrary to branch prediction, on a guard misprediction, there is no
need to squash the entire pipeline. Therefore the authors propose a selective
replay mechanism, where only the instructions that depend on the mispredicted
instruction are re-executed. Quiñones et al. [17] propose to selectively use the
guard prediction. All guards are predicted, but the effective use of prediction is
triggered on a per-guard basis using a confidence estimator. When the confidence
is high enough, the prediction is used. If not, the guarded instruction is handled
through False Predicate Conditional Moves. In a later work, Quiñones et al.
[18] identify that branch outcomes as well as guard values are often correlated
with former guard values and propose a combined branch and guard predictor.
The predictor used in [18] is an alloyed local history/global branch-and-guard
history perceptron predictor.

Our study is directly related to the work by Quiñones et al.. However, we
identify that the association of the use of global branch-and-guard history with
per-guard selective use of guard prediction can lead to the use of corrupted glo-
bal branch-and-guard history. This further leads to significant performance loss
when using state-of-the-art predictors such as TAGE [23], GEHL [19] or hashed
perceptron [28]. This phenomenon is much less marked on a perceptron pre-
dictor as used in [18]. However the perceptron predictor is relatively inefficient
compared with state-of-the-art, thus overall performance is disappointing (see
Section 7).

RR n° 8406



Efficient Out-of-order Execution of Guarded ISAs 10

4 Predicting Guards on the ARM ISA

Most of the previously published studies on out-of-order execution of guarded
instruction ISA target the Intel Itanium ISA [12]. For this ISA, the guard of a
guarded instruction is the boolean value contained in a guard register. In this
study we use the ARM-v7 ISA that features some different specificities that we
present below.

4.1 Guards on the ARM ISA

Instructions are guarded through a boolean value computed from the value
of four flags : the Negative flag (N), the Zero flag (Z), the Carry flag (C) and the
Overflow flag (V). These flags are written by specific instructions, like compare
instructions and specific arithmetic instructions [3]. The values of the guards are
not directly known through reading a register, but requires to evaluate a logical
formula on the flags. Guards are paired with a guard and its opposite. Table
1 illustrates the set of possible guards. Pairs of opposite guards are grouped in
the same entry, the logical formula corresponding to the first guard.

On ARM v7 ISA, conditional branches are guarded instructions.

guard Mnemonics Logical Formula

(EQ,NE) Z == 1
(CS,CC) C == 1
(MI,PL) N == 1
(VS,VC) V == 1
(HI,LS) (C == 1) && (Z == 0)
(GE,LT) N == V
(GT,LE) (Z == 0) && (N == V)

AL (always true)

Table 1 – Possible guards for guarded instructions on ARM v7

4.2 Predicting Guarded Instructions

In many cases, several guarded instructions are using the same guard or the
opposite guard — the original taken and not-taken paths. This leads to the
concept of guarded group of instructions, i.e., the group of guarded instructions
that use the same guard value or its opposite. A guarded group is associated
with the use of the same occurrence of a specific guard. These instructions are
not necessarily contiguous in the code since if-conversion leads to encapsulate
and schedule instructions from the taken path, instructions from the not-taken
path and instructions common to both paths in the same basic block. Figure
5 illustrates an example of two guarded groups. In our study, a guarded group
starts at the first use of a guard and ends when a flag-defining instruction is
encountered.

When guard prediction is used, one has only to predict the guard for the first
instruction of the guarded group. In the remainder of the paper, when referring
to the global branch-and-guard history vector, we assume that the guard is

RR n° 8406



Efficient Out-of-order Execution of Guarded ISAs 11

appended only once to the history on its first encountering in the instruction
flow, even when the same guard is used multiple times.

Figure 5 – A guarded group is a group of instructions that use the same
occurrence of a guard or its opposite. It ends when a flag-defining instruction is
encountered.

5 Branch and Guard Prediction

5.1 Branch History vs Branch-and-Guard History

The accuracy of a branch or a guard predictor depends on the prediction
scheme, the predictor size and also on the quality of the information that the
predictor is exploiting. Global branch or path history is generally considered as
the highest quality information usable to predict branches. All recent branch
predictor proposals such as TAGE [23], GEHL [19], hashed perceptron [28]
or SNAP [27] used global branch or path history as their main input vector.
Adjunct predictors using other information inputs, such as the loop predictor
[10, 20] or a local history predictor component [13, 21] may bring some extra
but relatively marginal accuracy benefit.

Several studies [29, 18] have pointed out that the global branch-and-guard
history is often a better information vector than the global branch history, since
branches are often correlated to some guards. Therefore, one would like to use
the global branch-and-guard history predictor to predict both the branches and
the guards for guarded instructions.

Branch and guard predictors are accessed at prediction time with a specu-
lative history and updated at commit time with a non-speculative history. The
speculative global branch history used to read a prediction matches exactly the
commit time global branch history on the right path. If all guards are predicted
and the pipeline is flushed on every guard misprediction then the same applies
for global branch-and-guard history.

However, systematically using guard prediction can lead to a performance
loss compared to the use of split FPCM (see Section 7). Therefore, selective use
of guard prediction as proposed in [17] is appealing. For instance, one may only
use guard prediction when the confidence of the prediction is high [17]. In that
case, a low confidence guard misprediction does not result in a pipeline flush,
but it results in a corrupted speculative global branch-and-guard history. The
branches and the guards predicted after the mispredicted guard are predicted
using a wrong global branch-and-guard history.

On most predictors, a corrupted global branch-and-guard history induces
reading wrong entries on the predictor, as illustrated in Figure 6. E.g. on TAGE
or GEHL, for the predictions just following the mispredicted guard, all the tables
are read with a wrong entry number. The perceptron predictor is much less

RR n° 8406



Efficient Out-of-order Execution of Guarded ISAs 12

sensitive to this corruption, as illustrated in Figure 7. Since all predictor counters
are accessed using only the program counter, only the counter associated with
the mispredicted guard corrupts the prediction : If the predicted branch or guard
is not strongly correlated with the mispredicted guard then the absolute value
of the counter will be small and the prediction result is likely to be unaffected.

Figure 6 – Corrupted branch-and-guard history leads to read a wrong predictor
entry

Figure 7 – Corrupted branch-and-guard history on a perceptron predictor does
not often mean incorrect prediction

5.2 The Branch-Only-Branch-and-Guard Predictor

To address the issue of corrupted branch-and-guard history mentioned above,
we propose BO-BG (Figure 8) a hybrid predictor consisting in a global branch
history component, BO, and a global branch-and-guard history component, BG.
The predictor is used at fetch time to predict the branches and guards in the
fetch group. A meta predictor, META, and a Benefit-or-Loss heuristic hardware
mechanism, BoL, are used to choose among the predictions flowing out from the
two components.

The benefit-or-loss heuristic hardware mechanism, BoL, determines the exe-
cution mode : Either systematic guard prediction use mode (SY-mode), or high
confidence only guard use mode (HCO-mode). When running in SY-mode, all
the guards are predicted and the predictions are systematically used ; mispre-
dictions are resolved in the execution stage and fetch is resumed at the first
instruction of the guarded instruction group. That is, when executing on the
correct path, the speculative branch-and-guard history used at prediction time
is the correct branch-and-guard history. Therefore one can use the predictions
(for branches and guards) that flow from both the BO and BG components.

RR n° 8406



Efficient Out-of-order Execution of Guarded ISAs 13

Figure 8 – The BO-BG branch and guard predictor

On the other hand, when running in HCO-mode, some guards are not pre-
dicted and the speculative branch-and-guard history is potentially corrupted.
Therefore one should use only the predictions flowing out from the BO com-
ponent.

BoL is in charge of determining whether to run in SY-mode or HCO-mode.
For this, we use a simple yet efficient heuristic. In both modes, the BO, BG
and META components are systematically updated at commit time as if the
processor was running in SY-mode. BoL uses a simple signed 11-bit saturated
counters which is updated according to Algorithm 1.

Algorithm 1 The Benefit-or-Loss heuristic
if Branch then

if Pred(BO-BG) 6= Pred(BO) then

BoL += (Pred(BO-BG) correct) ? Penalty : -Penalty

end if

end if

if Non-branch guard then

if Pred(BO) not high confidence then

BoL += (guarded group size)
if Pred(BO-BG) incorrect then

BoL -= Penalty

end if

else

if Pred(BO-BG) 6= Pred(BO) then

BoL += (Pred(BO-BG) correct) ? Penalty : -Penalty

end if

end if

end if

The intuition behind the BoL heuristic is that 1) the performance benefit
from a correct prediction of a guard is approximately proportional to the size
of the guarded group 2) the performance loss (resp. benefit) from an extra
misprediction (resp. extra correct prediction) can be modeled by an average
penalty.

Switching from HCO-mode to SY-mode implies restoring a correct specu-
lative branch-and-guard history, i.e., draining the complete pipeline. To avoid
ping-ponging back and forth between HCO-mode and SY-mode, the HCO-mode
(resp. SY-mode) is triggered only when the BoL counter becomes lower than
-512 (resp. higher than 512).

RR n° 8406



Efficient Out-of-order Execution of Guarded ISAs 14

OoO@1GHz 4-way 8-way

Memory 100 cycles
12.8GBps, Across a 128B bus

Caches L1D 4-way 64KB, 64B, 1 cycle
L1I 4-way 64KB, 64B, 1 cycle
L2 8-way 4MB, 64B, 8 cycles
Stride Prefetcher for the L2

TLBs Perfect, 4K pages

ROB 128 entries 256 entries
IQ 64 entries 128 entries

LSQ 128 entries (64L/64S) 256 entries (196L/64S)

Width 4 8
(F/D/R/I/E/W/C)

Pipeline 12 stages

FU(latency)
IntAlu(1) 3 6

IntMultDiv(3/12*) 2 2
FpAlu(5) 2 4

FpMultDiv(4/9*) 2 4
Ld(2) 2 2
Str(1) 2 2

Instruction fetch BTB 4-way, 1K entries
RAS, 16 entries, WP corruption detection
2 x TAGE 1+12 components, 15 Kentries

META, 1 Kentries, 5-bit
Perceptron, 40-bit history, 1 Kentries

Misprediction penalty 15 cycles 15 cycles

Table 2 – Simulator configuration overview. *not pipelined.

In the remainder of the paper, Penalty is an empirically determined constant.
However, the best value for Penalty would depend on the precise core micro-
architecture (issue width, pipeline depth, ..). It can also dynamically depend on
the application and on the application phase. Adaptive Penalty is left for future
exploration.

In the remainder of the paper, the BG and BO components of the BO-BG
predictor will be TAGE predictors enhanced with a storage-free confidence me-
chanism close to the one described in [22]. For non-branch guards and on a
correct prediction provided by a counter which value is 1,2, -2 or -3, the predic-
tion counter is incremented with probability 1

32
. This small modification allows

to avoid many high confidence mispredictions without significantly modifying
the global misprediction rate. 256 Kbits storage budgets are considered for each
of the TAGE components, and a PC indexed 1024 5-bit entries META predictor
is modeled.

Other global history predictors can also be considered e.g., GEHL [19], Ha-
shed perception [28] or SNAP [27]. Global history perceptron predictors will
also be considered in Section 7.1.2, since they present the particularity of being
quite resilient to branch-and-guard history corruption. We do not consider any
local branch (or guard history) component as their extra accuracy contribution
extra accuracy is marginal while their hardware implementation is quite tricky ;
in particular predicting several branches and several guards per cycle with a lo-
cal predictor, maintaining speculative local histories involve complex hardware
logic.

RR n° 8406



Efficient Out-of-order Execution of Guarded ISAs 15

IPC %
Benchmarks inputs (BASE) guarded

with without
4-way 8-way branches branches

400.perlbench checkspam diffmail 1.47 1.73 16.59 4.63

401.bzip2 chicken combined liberty program source text 2.21 2.7 16.46 4.68

403.gcc c-typeck 166 cp-decl expr scilab 200 1.67 2.15 36.11 24.47

416.gamess cytosine h2ocu2+ 3.17 4.84 6.7 2.89

429.mcf ref 0.71 0.81 24.5 6.1

435.gromacs ref 3.01 4.8 4.62 1.02

436.cactusADM ref 3.53 4.3 0.09 0.02

444.namd ref 2.62 3.83 8.54 5.18

445.gobmk 13x13 nngs trevorc trevord 1.8 2.29 18.05 6.86

453.povray ref 1.81 2.35 8.09 1.9

456.hmmer nph3 retro 3.25 4.87 17.41 14.67

458.sjeng ref 1.82 2.3 18.76 7.05

459.GemsFDTD ref 2.53 3.89 1.06 0.001

462.libquantum ref 1.86 2.11 23.56 13.42

464.h264ref sss baseline main 2.57 3.21 6.4 2.41

470.lbm ref 2 2.34 0.6 0.02

471.omnetpp ref 0.81 0.91 17.1 4.33

473.astar BigLakes rivers 1.4 1.76 15.62 3.59

483.xalancbmk ref 1.83 2.45 21.09 3.4

Table 3 – Benchmarks, their inputs, their IPC for the BASE 4-way and 8-way
configurations and the ratio of guarded instructions over the total number of
instructions.

6 Experimental Framework

The experimental study for validating our propositions was built upon the
Gem5 simulator [5].

6.1 Simulator Parameters

The simulator models an aggressive 4-way superscalar processor. Split FPCM
is modeled for guarded instructions when guard prediction is not used. The
processor also features a state-of-the-art conditional branch predictor, the TAGE
predictor described in [23]. The store sets predictor [7] is used to predict memory
dependencies.

The other characteristics are summarized in Table 2.
The BASE configuration is the configuration without guard prediction and

featuring only the BO branch predictor component.
We report simulation results (speed-ups over the BASE configuration) as-

suming a 4-way superscalar processor, except in Section 7.6 which shows that
trends are amplified for a 8-way superscalar processor.

6.2 Benchmarks

The simulated benchmarks constitute a subset of the Spec 2006 benchmarks
set [26] listed in Table 3. To reduce the amount of simulation time, we use the
Simpoint methodology [11] to summarize each benchmark in a set of 100 mil-
lions instructions slices. Each slice is representative of a part of the benchmark
execution and is affected a weight representing the portion that it represents
in the execution. For each benchmark, the illustrated results are the weighted
mean of simulations on the set of slices [11]. Table 3 displays the weighted mean

RR n° 8406



Efficient Out-of-order Execution of Guarded ISAs 16

-10
-8
-6
-4
-2
 0
 2
 4
 6
 8
 10
 12

400.perlbench

401.bzip2
403.gcc

416.gamess

429.mcf
435.gromacs

436.cactusADM

444.namd
445.gobmk

453.povray
456.hmmer

458.sjeng
459.GemsFDTD

462.libquantum

464.h264ref

470.lbm
471.omnetpp

473.astar
483.xalancbmk

%
 I
P
C
 i
m
p
ro
v
e
m
e
n
t 
o
v
e
r 
B
A
S
E

-43.36
-43.90

-42.0
6

BO

BG

BO-BG

Figure 9 – Systematic guard prediction use : TAGE-based predictor

-4

-2

 0

 2

 4

 6

 8

 10

 12

400.perlbench

401.bzip2

403.gcc

416.gamess

429.mcf

435.gromacs

436.cactusADM

444.namd

445.gobmk

453.povray

456.hmmer

458.sjeng

459.GemsFDTD

462.libquantum

464.h264ref

470.lbm
471.omnetpp

473.astar

483.xalancbmk

%
 I
P
C
 i
m
p
ro
v
e
m
e
n
t 
o
v
e
r 
B
A
S
E

BO

BG

Figure 10 – High confidence only guard prediction use : TAGE-based predictor

-16
-14
-12
-10
-8
-6
-4
-2
 0
 2
 4
 6
 8
 10

400.perlbench

401.bzip2

403.gcc

416.gamess

429.mcf

435.gromacs

436.cactusADM

444.namd

445.gobmk

453.povray

456.hmmer

458.sjeng

459.GemsFDTD

462.libquantum

464.h264ref

470.lbm
471.omnetpp

473.astar

483.xalancbmk

%
 I
P
C
 i
m
p
ro
v
e
m
e
n
t 
o
v
e
r 
B
A
S
E

BASE Perceptron

BG (hC T.Best)

BO-BG (hC T.Best)

Figure 11 – High confidence only guard prediction use : perceptron-based pre-
dictor

RR n° 8406



Efficient Out-of-order Execution of Guarded ISAs 17

of the Instruction Per Cycle (IPC) count for each benchmark, for the 4-way and
8-way BASE configurations.

As we target the ARM instruction set, some of the benchmarks or some of
their input sets are missing. There are three reasons why some benchmarks are
missing : 1) the binary produced by our cross-compiler is not executable on
a native ARM architecture, 2) the binary is not executable on qemu-arm [4]
which was used to compute the basic block vector (BBV) needed to compute
the simpoints 3) the Gem5 ARM-v7 simulator is not able to run them. In the
end, we were able to run 12 integer benchmarks (the complete set of integer
benchmarks) and 7 floating point benchmarks. Some benchmarks are used with
several inputs (all the inputs that are working are used). In total, we were able
to simulate 38 different workloads. For each benchmark, the results showed are
the average results of its different inputs.

The binaries were generated with the gcc compiler using the O3 optimization
level. Gcc decision to if-convert a branch mainly depends on the number of
instructions that are controlled by the branch. By default, for the ARM target,
this number is set to 4.

6.3 Ratio of Guarded Instructions

Table 3 also lists the ratio of guarded instructions per benchmark. The first
column presents the total percentage of guarded instructions. This includes the
conditional branches. The second column excludes conditional branches.

For all benchmarks, conditional branch instructions represent a large part
of the guarded instructions. However, some benchmarks like 401.bzip2, 403.gcc,
445.gobmk and 456.hmmer contain a significant portion of effective guarded ins-
tructions. Some other benchmarks, like 436.cactusADM, 459.GemsFDTD and
470.lbm feature nearly no effective guarded instructions.

A simple optimization to save energy would be to monitor at run-time the
ratio of effective guarded instructions and to turn-off the guard prediction when
this ratio is under a predefined threshold.

7 Experimental results

-2

 0

 2

 4

 6

 8

 10

 12

 14

400.perlbench

401.bzip2

403.gcc

416.gamess

429.mcf

435.gromacs

436.cactusADM

444.namd

445.gobmk

453.povray

456.hmmer

458.sjeng

459.GemsFDTD

462.libquantum

464.h264ref

470.lbm
471.omnetpp

473.astar

483.xalancbmk

%
 I
P
C
 i
m
p
ro
v
e
m
e
n
t 
o
v
e
r 
B
A
S
E

BO-BP/BoL32

BO-BP/BoL64

BO-BP/BoL128

Figure 12 – Impact of the Penalty constant in BoL heuristic

7.1 Branch History versus Branch-and-Guard History

Unless explicitly mentioned, simulation results are reported in relative speed-
ups over the BASE 4-way configuration.

RR n° 8406



Efficient Out-of-order Execution of Guarded ISAs 18

7.1.1 Systematic Guard Prediction Use

Figure 9 reports simulations results assuming that guard predictions are
systematically used for 3 predictors : a BO-history TAGE, a BG-history TAGE
and the BO-BG predictor without using the BoL heuristic.

As expected, systematic guard prediction is effective at enabling performance
gain on most applications. But on some applications e.g. 444.namd, 456.hmmer,
458.sjeng, 464.h264ref, ... performance losses are encountered. The performance
loss is even dramatic on 456.hmmer. Therefore systematic guard prediction use
should not be considered for implementation in real hardware. One can also re-
mark that using branch-and-guard history is often beneficial, e.g. on 401.bzip2,
416.games or 462.libquantum, but not systematically, e.g. on 429.mcf or 471.om-
netpp. As expected the BO-BG predictor slightly outperforms its two compo-
nents.

7.1.2 High Confidence Only Guard Prediction Use

 0

 0.2

 0.4

 0.6

 0.8

 1

400.perlbench

401.bzip2

403.gcc

416.gam
ess

429.m
cf

435.grom
acs

436.cactusADM

444.nam
d

445.gobm
k

453.povray

456.hm
m
er

458.sjeng

459.G
em
sFDTD

462.libquantum

464.h264ref

470.lbm

471.om
netpp

473.astar

483.xalancbm
k

ra
ti
o
 o
f 
p
re
d
ic
te
d

p
re
d
ic
a
te
d
 i
n
s
tr
u
c
ti
o
n
s

Figure 13 – Use of predicted guarded instructions

Figure 10 illustrates simulations results assuming that guard predictions are
used only when high confidence. As anticipated, the BG-history TAGE results
most often in lower performance than the BO-history TAGE, because the spe-
culative branch-and-guard history is corrupted by incorrect guard predictions.
Restricting the prediction usage to high confidence branches appears as an effec-
tive filter to eliminate performance loss due to guard mispredictions for the BO
predictor. BO-history TAGE should even be considered as a valid design point
for effective designs, since it outperforms the BASE design at the exception of
a marginal loss on 470.lbm.

The BO-BG predictor (not illustrated) is not worth, as a design point since
its BG component has poor behavior.

We run similar simulations assuming perceptron predictors as base com-
ponents instead of TAGE. We assume 40 bits history length and 1 Kentries
predictors, i.e. a 41 Kbytes perceptron predictor. As mentioned in Section 5.2,
the perceptron predictor should be much more resilient to branch-and-guard
history corruption than TAGE. Figure 11 reports results for this experiment.
Prediction confidence is estimated as follows. An extra counter is added to each
perceptron entry to monitor the correctness of the predictions. This confidence
counter is incremented on a correct prediction, and reset on a misprediction.
High confidence is considered on saturated counters only. As the perceptron
predictor is not our main target we run multiple simulations varying the coun-
ter width from 0 to 7 bits, and we only illustrate the best configuration for each
benchmark. The reported results should therefore be considered as an upper
limit.

RR n° 8406



Efficient Out-of-order Execution of Guarded ISAs 19

 0

 2

 4

 6

 8

 10

 12

 14

400.perlbench

401.bzip2

403.gcc

416.gamess

429.mcf

435.gromacs

436.cactusADM

444.namd

445.gobmk

453.povray

456.hmmer

458.sjeng

459.GemsFDTD

462.libquantum

464.h264ref

470.lbm
471.omnetpp

473.astar

483.xalancbmkb
ra
n
c
h
 m
is
p
re
d
ic
ti
o
n
 r
a
ti
o
 (
M
P
K
I)

BASE

Bo-BP/BoL64

Figure 14 – Branch misprediction rates

-12
-10
-8
-6
-4
-2
 0
 2
 4
 6
 8
 10
 12

400.perlbench

401.bzip2

403.gcc

416.gamess

429.mcf

435.gromacs

436.cactusADM

444.namd

445.gobmk

453.povray

456.hmmer

458.sjeng

459.GemsFDTD

462.libquantum

464.h264ref

470.lbm
471.omnetpp

473.astar

483.xalancbmk

%
 I
P
C
 i
m
p
ro
v
e
m
e
n
t 
o
v
e
r 
B
A
S
E

BASE IQ32

BO-BG/BoL64 IQ32

Figure 15 – Instruction Queue size impact

-2
 0
 2
 4
 6
 8
 10
 12
 14
 16
 18

400.perlbench

401.bzip2

403.gcc

416.gamess

429.mcf

435.gromacs

436.cactusADM

444.namd

445.gobmk

453.povray

456.hmmer

458.sjeng

459.GemsFDTD

462.libquantum

464.h264ref

470.lbm
471.omnetpp

473.astar

483.xalancbmk

BO-BG/BoL64 IQ64 over BASE IQ64

BO-BG/BoL64 IQ32 over BASE IQ32

Figure 16 – Relative guard prediction benefit for different Instruction Queue
sizes

RR n° 8406



Efficient Out-of-order Execution of Guarded ISAs 20

First the perceptron predictor alone without guard prediction is quasi-systematically
outperformed by the TAGE predictor, and often by a quite significant margin.
As reported by Quiñones et al. [18], branch-and-guard history associated with
high confidence only guard use allows to systematically outperform the per-
ceptron predictor without suffering major performance loss on any benchmark.
However, the benefit is limited and the performance is lower than BO-history
TAGE + high confidence only guard prediction use. The performance often
does not reach the level of our BASE using a TAGE predictor without any
guard prediction use.

7.2 BO-BG Predictor with BoL Heuristic

Figure 12 reports simulation results assuming the BO-BG TAGE predictor
assuming respectively 32, 64 and 128 as the Penalty constant in the BoL heu-
ristic. As expected, BO-BG/BoL allows to reach performance higher than just
running in SY-mode or just running in HCO-mode. It also slightly outperforms
the best of the two modes for all benchmarks.

However the performance impact of the Penalty constant is relatively low.
This tends to indicate that in most code sections, one of the two modes SY-mode
or HCO-mode has a clear performance benefit over the other mode.

In the remainder of the paper, we will assume that Penalty=64.

7.3 Performance Analysis

The performance benefit allowed by our proposal comes from three different
factors. First, guard prediction eliminates the execution of the extra instruction
in split FPCM and eliminates the execution of the predicted guarded instruc-
tions which guard is predicted false. Second it greatly simplifies the dependency
chain, eliminating the artificial data dependency created by by guarded execu-
tion and for predicted true guarded instructions breaking the dependency chain
with the guard writer.

Figure 13 illustrates the ratio of predicted guarded instructions used in the
different benchmarks. On many applications, the most significant part of the
application runs in SY-mode. Even on applications running essentially in HCO-
mode, a very significant part of the guards are predicted with high confidence
with a minimum of 60 % on 456.hmmer.

Second, the overall conditional branch misprediction rate is sometimes si-
gnificantly reduced through using a hybrid predictor using both branch history
and branch-and-guard history as illustrated in Figure 14, e.g. on 401.bzip2 or
473.astar.

7.4 Reducing the Instruction Queue Pressure

By using guard prediction, the number of instructions that enter the instruc-
tion queue is substantially reduced. First for predicted false guard instructions,
only the first instruction in the guarded group enters the instruction queue.
Second the predicted guarded instructions are not split.

Figure 15 illustrates the performance assuming a 32-entry instruction queue
instead of a 64-entry instruction queue. Without guard prediction, the impact of
instruction queue size reduction is important on a few benchmarks, e.g 444namd,

RR n° 8406



Efficient Out-of-order Execution of Guarded ISAs 21

-2

 0

 2

 4

 6

 8

 10

 12

 14

400.perlbench

401.bzip2

403.gcc

416.gamess

429.mcf

435.gromacs

436.cactusADM

444.namd

445.gobmk

453.povray

456.hmmer

458.sjeng

459.GemsFDTD

462.libquantum

464.h264ref

470.lbm
471.omnetpp

473.astar

483.xalancbmk

%
 I
P
C
 i
m
p
ro
v
e
m
e
n
t 
o
v
e
r 
B
A
S
E

BASE Direct FPCM

BO-BG/BoL64 Direct FPCM

BO-BG/BoL64 Split FPCM

Figure 17 – Split FPCM versus direct FPCM

-4
-2
 0
 2
 4
 6
 8
 10
 12
 14
 16
 18

400.perlbench

401.bzip2

403.gcc

416.gamess

429.mcf

435.gromacs

436.cactusADM

444.namd

445.gobmk

453.povray

456.hmmer

458.sjeng

459.GemsFDTD

462.libquantum

464.h264ref

470.lbm
471.omnetpp

473.astar

483.xalancbmk

%
 I
P
C
 i
m
p
ro
v
e
m
e
n
t 
o
v
e
r 
B
A
S
E

BO-BG/BoL32

BO-BG/BoL64

BO-BG/BoL128

Figure 18 – Guard prediction on a 8-way issue superscalar processor. BASE is
8-way

456.hmmer and 473.astar. Figure 16 illustrates that the relative benefit of using
guard prediction is generally higher when the instruction queue size is smaller,
e.g. 403.gcc and 456.hmmer.

7.5 Split FPCM vs FPCM

Up to now we have assumed that split FPCM execution is used for guar-
ded instructions. Direct implementation of FPCM would save an operation per
guarded instruction (if guard prediction is not used), but would require an extra
register operand per guarded instruction (see Section 2.3). Since in most cases,
guarded instructions are predicted, the potential benefit of a direct implemen-
tation of FPCM can be much lower when guard prediction is used.

Figure 17 illustrates the performance benefit of using FPCM instead of split
FPCM. There is a small performance benefit when guard prediction is not used,
less than 3 % except on 403.gcc up to 10%. This benefit vanishes when guard
prediction is used through our BO-BG/BoL proposal. This is expected since for
most benchmarks, most of the guarded instructions are predicted.

Therefore, the extra hardware complexity associated with the direct imple-
mentation of FPCM instead of split FPCM is not worth paying when guard
prediction is used through our BO-BG/BoL predictor.

7.6 Wide Issue Superscalar Processor

The benefit of our BO-BG/BoL proposal is growing when one considers
a more aggressive implementation featuring a wide issue out-of-order engine.
Figure 18 illustrates this on a 8-way superscalar processor. 64 appears as a
correct tradeoff for the BoL Penalty constant. The speedup over a 8-way base
superscalar grows to up to 18% on 403.gcc and the relative speedup is most

RR n° 8406



Efficient Out-of-order Execution of Guarded ISAs 22

often higher for 8-way issue than for 4-way issue.

8 Conclusion

ARM based processors are becoming ubiquitous in many modern appliances
including smartphones and tablets. The demand for high performance pushes
manufacturers of ARM processors to use the same techniques that have been
used for the two last decades on PCs and server processors including wide-issue
superscalar processors. The 32-bit ARM v7 ISA features guarded instructions.
Providing an efficient solution to efficiently execute guarded instructions out-of-
order is challenging due to the multiple definition problem.

Fortunately, predicting the guarded instructions addresses the multiple defi-
nition problem. In this paper, we have shown that state-of-the-art global branch
history predictor can be adapted to predict both branches and guards. We have
proposed BO-BG, a hybrid predictor combining a branch-only history com-
ponent and a branch-and-guard component. Unfortunately, systematic use of
guard prediction and sometimes poor overall guard prediction accuracy leads to
poor overall performance, sometimes significantly worse that the performance
without guard prediction.

As such, we have proposed BoL, a simple heuristic that evaluates dyna-
mically the potential gain associated with systematic use of guard prediction.
BoL is used to control two execution modes, systematic guard prediction use or
SY-mode and high confidence only guard prediction use or HCO-mode.

Our experiments show that the association of BO-BG with BoL allows to
achieve high out-of-order execution performance on a guarded instruction set.
The processor runs in SY-mode on code sections where the guards are highly
predictable and/or branch-and-guard history allows to reduce the conditional
misprediction rate. The processor runs in HCO-mode on regions where the guard
misprediction rate is high, but still a significant number of guards are predicted
since their prediction is high confidence. Therefore, the simple but relatively
inefficient hardware associated with split false predicated conditional move is
sufficient for executing the few non predicted guarded instructions. Significant
performance benefits are encountered on most applications while applications
with poorly predictable guards do not suffer significant performance loss. This
benefit will be even higher on future very wide-issue superscalar processors.

Therefore guarded ISA is not an obstacle anymore for the implementation of
efficient out-of-order execution. BO-BG/BoL could be considered as an oppor-
tunity to allow more aggressive use of guarded instructions by the compiler. For
instance, on applications featuring a few suspected poorly predictable branch
statements inside loops, e.g 456.hmmer, the branch control-flow instructions
could be handled through if-conversion. At runtime, depending on the global
guard predictability, the hardware will decide whether to execute them either
in HCO-mode or in SY-mode.

Acknowledgement

This work was partially supported by the European Research Council Ad-
vanced Grant DAL No 267175

RR n° 8406



Efficient Out-of-order Execution of Guarded ISAs 23

Références

[1] J. R. Allen, K. Kennedy, C. Porterfield, and J. Warren, “Conversion of
control dependence to data dependence,” in Proceedings of the 10th ACM
SIGACT-SIGPLAN symposium on Principles of programming languages,
1983, pp. 177–189.

[2] “Alpha 21264 microprocessor hardware reference manual,” Compaq Com-
puter Corporation, 1999.

[3] ARM, “Arm architecture reference manual. arm v7-a and arm v7-r edition.”

[4] F. Bellard, “QEMU,” http://wiki.qemu.org/Main_Page.

[5] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,”
SIGARCH Comput. Archit. News, vol. 39, no. 2, pp. 1–7, Aug. 2011.

[6] P.-Y. Chang, E. Hao, Y. N. Patt, and P. P. Chang, “Using predicated exe-
cution to improve the performance of a dynamically scheduled machine
with speculative execution,” International Journal of Parallel Program-
ming, vol. 24, no. 3, pp. 209–234, 1996.

[7] G. Z. Chrysos and J. S. Emer, “Memory dependence prediction using store
sets,” in ISCA ’98 : Proceedings of the 25th annual international symposium
on Computer architecture, 1998, pp. 142–153.

[8] W. Chuang and B. Calder, “Predicate prediction for efficient out-of-order
execution,” in Proceedings of the 17th annual international conference on
Supercomputing, 2003, pp. 183–192.

[9] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck,
“Efficiently computing static single assignment form and the control de-
pendence graph,” ACM Trans. Program. Lang. Syst., vol. 13, no. 4, pp.
451–490, 1991.

[10] H. Gao and H. Zhou, “Adaptive information processing : An effective way to
improve perceptron predictors,” Journal of Instruction-Level Parallelism,
vol. 7, 2005.

[11] G. Hamerly, E. Perelman, J. Lau, and B. Calder, “Simpoint 3.0 : Faster
and more flexible program phase analysis,” Journal of Instruction Level
Parallelism, vol. vol. 7, September 2005.

[12] Intel Corp, “Intel itanium architecture software developerâĂŹs manual. vo-
lume 3 : Instruction set reference,” 2002.

[13] D. A. Jiménez and C. Lin, “Neural methods for dynamic branch prediction,”
ACM Trans. Comput. Syst., vol. 20, no. 4, pp. 369–397, 2002.

[14] H. Kim, J. A. Joao, O. Mutlu, and Y. N. Patt, “Diverge-merge proces-
sor (dmp) : Dynamic predicated execution of complex control-flow graphs
based on frequently executed paths,” in Proceedings of the 39th Annual
IEEE/ACM International Symposium on Microarchitecture, 2006, pp. 53–
64.

[15] H. Kim, O. Mutlu, J. Stark, and Y. N. Patt, “Wish branches : Combining
conditional branching and predication for adaptive predicated execution,”
in Proceedings of the 38th annual IEEE/ACM International Symposium on
Microarchitecture, 2005, pp. 43–54.

RR n° 8406

http://wiki.qemu.org/Main_Page


Efficient Out-of-order Execution of Guarded ISAs 24

[16] D. N. Pnevmatikatos and G. S. Sohi, “Guarded execution and branch pre-
diction in dynamic ilp processors,” in Proceedings of the 21st annual in-
ternational symposium on Computer architecture, ser. ISCA ’94, 1994, pp.
120–129.

[17] E. Quiñones, J.-M. Parcerisa, and A. Gonzalez, “Selective predicate predic-
tion for out-of-order processors,” in Proceedings of the 20th annual inter-
national conference on Supercomputing, 2006, pp. 46–54.

[18] E. Quinones, J.-M. Parcerisa, and A. Gonzailez, “Improving branch
prediction and predicated execution in out-of-order processors,” in
Proceedings of the 2007 IEEE 13th International Symposium on High
Performance Computer Architecture, ser. HPCA ’07. Washington, DC,
USA : IEEE Computer Society, 2007, pp. 75–84. [Online]. Available :
http://dx.doi.org/10.1109/HPCA.2007.346186

[19] A. Seznec, “Analysis of the O-GEometric History Length branch predictor,”
in ISCA, 2005, pp. 394–405.

[20] ——, “The L-TAGE branch predictor,” in Journal of Instruction Level Pa-
rallelism, May 2007.

[21] ——, “A new case for the tage branch predictor,” in MICRO, 2011, pp.
117–127.

[22] ——, “Storage free confidence estimation for the tage branch predictor,” in
HPCA, 2011, pp. 443–454.

[23] A. Seznec and P. Michaud, “A case for (partially) tagged geometric his-
tory length branch prediction,” Journal of Instruction Level Parallelism,
February 2006.

[24] B. Simon, B. Calder, and J. Ferrante, “Incorporating predicate information
into branch predictors,” in Proceedings of the 9th International Symposium
on High-Performance Computer Architecture, 2003, pp. 53–64.

[25] J. E. Smith, “A study of branch prediction strategies,” in Proceedings of the
8th annual symposium on Computer Architecture, 1981, pp. 135–148.

[26] SPEC, “SPEC CPU2006,” http://www.spec.org/ cpu2006/ , 2006.

[27] R. St. Amant, D. A. Jimenez, and D. Burger, “Low-power, high-
performance analog neural branch prediction,” in Proceedings of the 41st
Annual IEEE/ACM International Symposium on Microarchitecture, ser.
MICRO 41. Washington, DC, USA : IEEE Computer Society, 2008,
pp. 447–458. [Online]. Available : http://dx.doi.org/10.1109/MICRO.2008.
4771812

[28] D. Tarjan and K. Skadron, “Merging path and gshare indexing in perceptron
branch prediction,” TACO, vol. 2, no. 3, pp. 280–300, 2005.

[29] G. S. Tyson, “The effects of predicated execution on branch prediction,” in
Proceedings of the 27th annual international symposium on Microarchitec-
ture, 1994, pp. 196–206.

[30] P. H. Wang, H. Wang, R.-M. Kling, K. Ramakrishnan, and J. P. Shen, “Re-
gister renaming and scheduling for dynamic execution of predicated code,”
in Proceedings of the 7th International Symposium on High-Performance
Computer Architecture, 2001, pp. 15–25.

RR n° 8406

http://dx.doi.org/10.1109/HPCA.2007.346186
http://www.spec.org/cpu2006/
http://dx.doi.org/10.1109/MICRO.2008.4771812
http://dx.doi.org/10.1109/MICRO.2008.4771812


RESEARCH CENTRE

RENNES – BRETAGNE ATLANTIQUE

Campus universitaire de Beaulieu

35042 Rennes Cedex

Publisher

Inria

Domaine de Voluceau - Rocquencourt

BP 105 - 78153 Le Chesnay Cedex

inria.fr

ISSN 0249-6399


	Introduction
	Executing Guarded Instructions on an Out-of-order Engine
	Register Renaming (no predication)
	The Multiple Definition Problem on Out-of-execution Processors
	Dealing with the Multiple Definition Issue
	False Predicated Conditional Moves
	Split FPCM
	Select- operation


	Related Works on Branch and Guard Predictions
	Predicting Guards on the ARM ISA
	Guards on the ARM ISA
	Predicting Guarded Instructions

	Branch and Guard Prediction
	Branch History vs Branch-and-Guard History
	The Branch-Only-Branch-and-Guard Predictor

	Experimental Framework
	Simulator Parameters
	Benchmarks
	Ratio of Guarded Instructions

	Experimental results
	Branch History versus Branch-and-Guard History
	Systematic Guard Prediction Use
	High Confidence Only Guard Prediction Use

	BO-BG Predictor with BoL Heuristic
	Performance Analysis
	Reducing the Instruction Queue Pressure
	Split FPCM vs FPCM
	Wide Issue Superscalar Processor

	Conclusion

